Parametric Surfaces
Parametric Curves

Define curve as values at t along an interval \([u_0, u_n]\)
Parametric Surfaces

Extends idea of parametric curves:
Parameters \((u, v)\) define points along a surface \(S(u, v) = (x(u,v), y(u,v), z(u,v))\)
Example: Circle vs Sphere

Unit Circle:
\[\gamma(t) = (\cos(t), \sin(t)) \]

Unit Sphere:
\[\gamma(\phi, \Theta) = (\cos(\phi)\sin(\Theta), \sin(\phi)\sin(\Theta), \cos(\Theta)) \]
NURBS Revisited

- Basis splines form curves
- Curves form patches
- Complex shapes generated from little data

Subdivision surface NURBS surfaces
Surfaces of Revolution

Idea: Rotate a 2D profile curve around an axis to create a surface

In-class activity: What shapes do the above curves (red) form around the axis (black)?
Parameterization

\(u = \text{axis of rotation} \)

\(v = \text{rotation} \)

Example: surface \(S(u, v) \) rotated around \(z \) axis

\[
\begin{align*}
x &= \text{radius}(u)\cos(v) \\
y &= \text{radius}(u)\sin(v) \\
z &= u
\end{align*}
\]
Properties

• Axial symmetry
• Easily computed surface area
• Simplified calculations
• Nice physical properties
Extruded Surfaces

Idea: Take a curve or patch in a plane and extend along an axis
Parameterization

\[C(u) = \text{curve in plane} \]
\[v = \text{axis of extrusion} \]

Example: surface \(S(u, v) \) from curve \(C(u) \) in xy-plane extruded along z axis

\[x = C_x(u) \]
\[y = C_y(u) \]
\[z = v \]
Sweep Surfaces

Idea: Move profile curve along trajectory curve to create a surface
How to Orient?

Assume profile curve $C(u)$ lies in a coordinate system (x_c, y_c) with origin O_c
For every point along trajectory curve $T(v)$, O_c should coincide with $T(v)$

How to orient $C(u)$ at each point?
Fixed Frame

Translate O_c along $T(v)$
Frenet Frame

- Smoothly varying orientation
- Must calculate TNB (tangent, normal, binormal) unit vectors
 - $C(u)$ in normal plane
 - O_c at $T(v)$
 - x_c aligned with b
 - y_c aligned with $-n$
Frenet in Practice
Fixed Versus Frenet

(FreeCAD)
Sweeping with Rails

Common industry practice uses two guiding curves or “rails”
Other Variations

• Scale $C(u)$ as it moves along $T(v)$
 • Length of $T(v)$ can be scale factor

• Morph $C(u)$ into some other curve $C'(u)$ as it moves along $T(v)$
Constructive Solid Geometry

Create new objects from existing objects using boolean operations
Primitives

Simple shapes that form the basis of all constructed objects
 • Cube, prism, sphere, cylinder, cone, torus

Affine transformations can be applied
Boolean Operations

Set operations:
 • Union, intersect, difference (subtract)

Objects defined by boundary representations
 • Ray cast to determine overlap
 • BSP trees often used as acceleration structure
Spatial Partitioning with BSPs

Remember BSP trees?

- Binary Space Partitioning Trees
BSP Trees

- Natural fit for these sorts of operations
- Tree constructed based on geometry of object
 - Fast to create
 - Good depth and partitioning properties
 - Good traversal properties
CSG Uses

• Guarantees on water-tightness if primitives are water-tight
• Fast to calculate
• Arbitrary complexity from very simple shapes
• Common in:
 • CAD programs for engineering and manufacturing
 • Mathematical guarantees for physically-based systems
 • Game engines for level-building
 • BSP trees useful for world partitioning in games
Geometry Brushes in UE4
BSP primitives in UE4