L-Systems and Particle Systems

Procedural Modeling

Idea: Detailed meshes are hard to build by hand, so let's create a function that builds out meshes for us

Same idea as Perlin noise but in 3D!

Another Example: Fractals

Iterated function system leads to infinite detail

4D Fractals

Can be created using quaternions

https://www.youtube.com/watch? v=eS7qCfttmBk

Turtle Graphics

- Graphics system implemented in LOGO (1967)
- Cursor is "turtle" with position and orientation
- Code moves turtle, creating a line trail

Turtle Graphics

Simple code generates very complex results

L-Systems

- Recursive definition of an object using a string rewriting system and formal grammar
- Invented by botanist, Aristid Lindenmayer
- Designed to model plants
- Przemyslaw Prusinkiewicz brought concepts to graphics

L-System Definition

Axiom: Starting string Variables: Set of symbols to be rewritten

according to rules

Terminals: Set of symbols that have no rewriting rules

Rules: Set of substitutions possible for variables

Using L-Systems in Graphics

- 1. Associate actions (e.g. draw line, rotate, etc) with each variable and terminal
- 2. Recursively expand the axiom *n* times
 - 1. Execute actions of resulting string
 - 2. Generate image from string

Example: Koch Curve

- Rule: F = F-F++F-F
- F: Draw line segment scaled by 1/3
- -: Turn 60° left
- +: Turn 60° right

Example: 2D Tree

Depth 1 Depth 2

Axiom: L0 1. L0 -> F [- F L1] F [+ F L2] F L0 (center branch) 2. L1 -> F [- F L1] F [+ F T] F L1 (left half of tree) 3. L2 -> F [- F T] F [+ F L2] F L2 (right half of tree)

Parameterized L-Systems

Action specified by symbol can be parameterized:

Parameterized L-Systems

Not just parameterized symbols!

- Randomized rule-selection
- Parameterization based on depth
- Changes in parameters over time

L-System Examples

SpeedTree

Leading vegetation generator: http://www.speedtree.com/

https://www.youtube.com/watch? v=N2wmmdKzp8E

Treelt (a free L-System I use): http://www.evolved-software.com/treeit/treeit

Generating Cities

Same idea with different symbols and rules

 Good idea to having working understanding of the modeled system

https://graphics.ethz.ch/Downloads/Publications/ Papers/2001/p_Par01.pdf

City Generation

What are the "rules" for generating a city?

City Generation

What are the "rules" for generating a city?

Based on terrain, types of buildings and plots, population, architecture style, and city history (i.e. planned versus sprawling)

Example: Home Free

https://www.youtube.com/watch? v=ahBSQrX1yOE

Example: Infamous

Additional Reading

<u>http://algorithmicbotany.org/papers/</u> graphical.gi86.pdf

http://algorithmicbotany.org/papers/

Particle Effects

General Particle Systems

- Particles treated as point masses with orientation
- Simple rules control how they move
- Controlled/rendered to simulate different "group" phenomenon
 - Fireworks
 - Waterfalls, spray, foam,
 - Explosions
 - Clouds/Atmospherics
 - Crowds/herds

Particle System Steps

- 1. Inject new particles into system with individual attributes
 - Generated at source(s)
- 2. Remove particles that exceed lifespan
 - Fixed lifespan or death upon some condition
- 3. Move current particles
 - Script provides rules for movement
- 4. Render current particles
 - Billboards, shaders, etc

Particle Generation

- Expensive to create and destroy objects
- We also want coherency in memory
- Use pools to solve both problems!
- Sources can vary based on desired effect
 - Random generation (e.g. clouds)
 - Stream generation (e.g. waterfall)
 - Scripted generation (e.g. fireworks)

Particle Movements

Rules of movement based on desired behavior:

- Emulate laws of physics
- Use environmental conditions
- Use particle neighborhood

Particle death also defined by rules

Concept: Smoke Trails

We want to create a rocket that leaves a smoke trail in its wake

What do we need to consider in terms of particle creation, movement, death, and appearance?

Example: Smoke Trails

- 1. Spawned at constant rate from end of rocket
 - Their initial velocity is 0 m/s (or perhaps some small velocity away from the rocket)
 - Given a density value that grows rapidly then falls off slowly
- 2. Movement in vertical direction (rise or fall as if from wind)
- 3. Extinguished when density is below some threshold
- 4. Render as a billboard facing the view or in shaders
 - Size and color of smoke puff based on density

Example: Object Fracturing

- System starts when target breaks
- As target breaks into pre-determined pieces, a particle is assigned to each piece
- Each particle gets an initial velocity away from the center of the explosion
- Movement rules:
 - 1. Move ballistically unless collision
 - 2. Compute rigid body rotation or generate random rotation
 - 3. Resolve any collisions elastically
- Render target geometry with particle location and orientation

Laurent Renaud (http://cgcookie.com/max/2009/08/18/creating-an-exploding-planet/)

Particles in Games

They're everywhere!

https://www.youtube.com/watch?v=6_NsaYtooQA

Particles in Movies

https://www.youtube.com/watch?v=A4QuKwfv6Wk

Particles in Movies

https://www.youtube.com/watch?v=ent02yItm60

Flocking Behavior

Particles can also model flocks, swarms, crowds, etc

(https://portraitsofwildflowers.wordpress.com/2011/12/10/grackles-revisited/)

Flocks and Herds

Idea: Flocks and herds are composed of individual, autonomous agents.

Goal: Define simple individual rules to obtain global emergent behavior

Flocking Models

- Each flock member follows same set of movement rules
- Rules contribute to the member's ultimate direction, velocity, acceleration, etc
- Different rules can create different forms of group behavior (flocks vs schools vs herds vs crowds)

www.cs.toronto.edu/~dt/siggraph97-course/cwr87/

Flocking Rules

How can these rules be combined?

Combining Rules

- Each rule acts as an acceleration in a direction based on its weight
 - e.g. high avoidance and low cohesion
- Combine using one of these strategies:
- 1. Apply in order of highest weight until maximum acceleration is reached
- 2. Take weighted sum and truncate to maximum acceleration

How do these combination strategies differ in practice?

Using Potential Fields

- Models each object as having an outward force field that pushes all other objects away from it
- Useful way to keep agents from colliding with each other or additional obstacles
- Common technique in motion planning

Flocking Demo

https://www.youtube.com/watch? v=rN8DzlgMt3M

Particles as Fluid

Particles also work well for modeling fluid simulation!

Particle-based is one of the two overarching categories of fluid simulation (the other being grid-based)

But we'll talk (a little) about this next time!

Particle-based Fluid Simulation

https://www.youtube.com/watch? v=DhNt_A3k4B4