
Physical Simulation

Things We Can Simulate

• Point Masses
• Collision Detection and Response
• Rigid Bodies
• Articulated Systems and Constraints
• Soft Bodies
• Fluid Dynamics

Point Masses

Remember that particle systems are
functionally a collection of point masses
that obey some set of rules

What rules might particles in a physical
simulation follow?

Newton’s Equations of Motion

Describe motion over time by modeling
force in relationship to object trajectory
• F = ma

Integrating over time captures a system’s
physical behaviors

How to discretize?

Vector Field

At any point in space, function g(x, t)
defines a vector field dictating velocity
for x at time t

Particle in a Vector Field

• Particle has a position
and a velocity
based on the vector
field

• How to calculate a
new position?

Differential Equations

is a first-order differential equation!
Solve for x over time by starting at initial

point and stepping along the vector field

Start Here

Euler’s Method

• Take linear time steps (Δt) along flow:

• Write as a time iteration:
€

•

Euler across Time Steps

What do you notice about Euler’s method?

Explicit Euler Properties

• Simplest numerical method
• Bigger steps lead to bigger errors

Particle in a Force Field

Now consider a particle with mass in a
force field f

We can write out Newton’s law as follows:

Since f depends on particle position,
velocity and time:

Second Order Equations

is a second order differential equation…
we’d rather not deal with this!

Rather than solve directly, create a pair of
coupled first order equations:

Differential Equation Solver
Since

Euler’s method:

With substitutions:

Euler Iterative Form

Still performs poorly for large time steps!

Ideally we want a more stable integrator…

Many Integrators Exist!
• Runge-Kutta
• Implicit Integration
• Semi-implicit Euler
• Verlet

• Vary in terms of complexity and computation

Verlet Integration
A better solver with greater stability and no

additional computational overhead (popular
in realtime applications)

Three versions:
• Position
• Velocity
• Leapfrog

Verlet Flavors
Position Verlet

• Uses 2 previous positions to model velocity
Leapfrog

• Alternately updates position and velocity
Velocity Verlet

• Updates position and velocity in same time
step

Position Verlet

Handles velocities implicitly:

• Requires constant time steps and two
steps to start

• Simple and cheap to implement

⃗x i+1 = ⃗x i + (⃗x i − ⃗x i−1) + ·vΔt2

⃗x i−1 = ⃗x i

Applying Forces

Each particle experiences a force/forces

Common forces:
• Constant (gravity)
• Position/time dependent (force fields)
• Velocity dependent (drag)
• Combinations (damped springs)

Force Examples
Gravity:

Viscous drag:

One body spring:

One body damped spring:

Collision Detection and Response

Collision Detection: Determine when an
intersection has happened

Collision Response: Determine what to do
when intersection detected

Collision Detection

A very familiar problem!
(think ray-tracing)

Must also consider particle
velocity N

v

P

Collision Response
• After Contact (a posteriori)

• Run simulation
• “Roll back” if intersection occurs

• Before Contact (a priori)
• Predict time of collision
• Update position accordingly

• Resting Contact
• Two objects are in contact with each other
• A surprisingly difficult special case!

Rigid Bodies

Extends idea of point-mass
• Bodies can be interconnected
• Bodies are rigid relative to each other

Articulated Systems and Constraints

Not all rotations are
physically plausible

Solve by limiting joint
movement with constraints

Use of inverse kinematics
to solve for all joint angles
based on final position of
child bones

Soft Bodies
Distance between particles is not fixed
Generally a very expensive computation
Easier to simulate as a system of rigid body

springs

Cloth Simulation Demo

https://www.youtube.com/watch?
v=UhmZ3uigDvo

https://www.youtube.com/watch?v=UhmZ3uigDvo
https://www.youtube.com/watch?v=UhmZ3uigDvo

Fluid Dynamics

Describes the flow of fluids and gases
Models properties such as:

• Flow velocity
• Pressure
• Density
• Temperature

Navier-Stokes
Applies Newton’s second law to fluid

motion to calculate flow velocity

Requires solving for fluid’s:
• Diffusion (change in concentration)
• Advection (transport of material)

Can solve using grid-based or particle-
based methods

Grid vs Particle

Boundaries

Define interactions between fluid and
other objects/types of fluid

Common ones:
• Slip (does not cross boundary)
• No-slip (at rest at boundary)
• Inflow (enters boundary with velocity)
• Outflow (can leave boundary)

Boundary Conditions
Usually specified as values for function at

boundary
• e.g. velocity = 0 for no-slip

Can also define boundary in terms of
pressure or other domains

Must resolve violations of boundary
conditions if they occur during advection
step

Fluid Demo

https://vimeo.com/247574785

https://vimeo.com/247574785

Curl-Noise
Non-physically-based method for approximating

fluid flow
• Create a vector field using Perlin noise
• Take curl (rotation) of this field to generate a

divergence-free (doesn’t shrink or expand)
velocity field

A popular method in real-time applications!

https://www.cs.ubc.ca/~rbridson/docs/bridson-
siggraph2007-curlnoise.pdf

https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph2007-curlnoise.pdf
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph2007-curlnoise.pdf

Curl Noise Demo

https://www.youtube.com/watch?
v=8TNZS2AkFNs

https://www.youtube.com/watch?v=8TNZS2AkFNs
https://www.youtube.com/watch?v=8TNZS2AkFNs

