Vector and Affine Math II
Linear Transformations

Given vector space V and W, function $f: V \rightarrow W$ is a linear map (linear transformation) if

$$f(a_1v_1 + \ldots + a_m v_m) = a_1 f(v_1) + \ldots + a_m f(v_m)$$
Transformations

A 2D transformation matrix: \[M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

Applied to a 2D vector: \[v' = Mv \]

\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

In which case: \[x' = ax + by \]
\[y' = cx + dy \]
Scaling

Suppose \(b = c = 0 \), but \(a \) and \(d \) can take on any positive value…

Scaling matrix:

\[
\begin{bmatrix}
 a & 0 \\
 0 & d
\end{bmatrix}
\]

What happens if \(a \) and \(d \) are not equal?
Reflection

Suppose $b = c = 0$, but either a or d goes negative

Reflection matrices:

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\quad \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\]

Across which axes will each of these matrices reflect?
Shear

Suppose $a = d = 1$, but b or c changes value

Shear matrix:

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \quad x' = x + by$$

$$y' = y$$

Skews in one dimension in 2D

What does a shear do in 3D?
In-class Exercises

1. Create a 2D box with Euclidean coordinates. Now separately:
 1. Apply a uniform and non-uniform scaling to its vertices
 2. Apply reflection to its vertices
 3. Apply a shear to its vertices
2. Draw all of these transformations

For all activities, show matrices
Rotation

Rotation about the origin:

\[M_R = R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \]

\[
\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \\ -\sin(\theta) \end{bmatrix}
\]
Linear Transformation Limitations

No notion of an origin

What important graphics operation does this leave out?
Affine Transformations

- Augment linear space \(u, w \) with an origin, \(t \)
- \(u \) and \(w \) are basis vectors
- \(t \) is a point
- A change of frame looks like:

\[
p' = x \cdot u + y \cdot w + t
\]

- How do you represent linear transformations within affine frames?
Homogeneous Coordinates

Loft problem into next dimension:

\[p' = Mp \]
\[
\begin{bmatrix}
 a & b & t_x \\
 c & d & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
=\begin{bmatrix}
 u & w & t
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= x \cdot u + y \cdot w + 1 \cdot t
\]

Note that \([a c 0]^T \text{ and } [b d 0]^T\) represent vectors and \([t_x t_y 1]^T, [x y 1]^T\) and \([x' y' 1]^T\) represent points.
In-class Exercises

1. Create a 2D box with Euclidean coordinates. Now separately:
 1. Apply a uniform and non-uniform scaling to its vertices
 2. Apply reflection to its vertices
 3. Apply a shear to its vertices
 4. Apply a translation then a rotation
 5. Apply a rotation then a translation

2. Draw all of these transformations

For all activities, show matrices
Rotation Around Arbitrary Points

1. Translate q to origin
2. Rotate
3. Translate back

Note that transformation order matters!
Additional Concepts

- Parametric Line Segments
- Plane Equation
- Barycentric Coordinates

All core concepts for working with raytracing! (Assignment 1)
Parametric Line Segment

Linear interpolation along a line, ray or line segment:

\[p(t) = p_0 + t(p_1 - p_0) = (1 - t)p_0 + tp_1 \]

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = \begin{bmatrix}
 x_0 \\
 y_0 \\
 z_0
\end{bmatrix} + t \begin{bmatrix}
 x_1 - x_0 \\
 y_1 - y_0 \\
 z_1 - z_0
\end{bmatrix} = \begin{bmatrix}
 (1-t)x_0 + tx_1 \\
 (1-t)y_0 + ty_1 \\
 (1-t)z_0 + tz_1
\end{bmatrix}
\]

Line segment: \(0 \leq t \leq 1 \)
Ray: \(0 \leq t \leq \infty \)
Line: \(-\infty \leq t \leq \infty \)
Plane Equation

Given normal vector \(N \) orthogonal to the plane and any point \(p' \) in the plane, \(p \) is in plane if:

\[
(p - p') \cdot N = 0
\]

This can be rewritten:

\[
N \cdot p + d = 0
\]

Where

\[
d = - (N_x p'_x + N_y p'_y + N_z p'_z)
\]
Plane Equation

\[N \cdot p + d = 0 \]

\[
\begin{bmatrix}
a & b & c \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} + d = ax + by + cz + d = 0
\]
Triangle Normal

\[N = \text{normalize}((v_1 - v_0) \times (v_2 - v_0)) \]

Note: Order matters to point the normal in “front-facing” direction (CCW for right-handed systems)
Barycentric Coordinates

A set of points can be used to create an affine frame

Form a frame with an origin C and vectors from C to other vertices: \(\mathbf{u} = \mathbf{A} - \mathbf{C} \quad \mathbf{v} = \mathbf{B} - \mathbf{C} \quad \mathbf{t} = \mathbf{C} \)

Write \(\mathbf{p} \) in this coordinate frame: \(\mathbf{p} = \alpha \mathbf{u} + \beta \mathbf{v} + \mathbf{t} \)

Coordinates \((\alpha, \beta, \gamma)\) are called the barycentric coordinates of \(\mathbf{p} \) relative to \(\mathbf{A}, \mathbf{B}, \) and \(\mathbf{C} \)
In-class Exercises

1. Create a 2D box with Euclidean coordinates. Now separately:
 1. Apply a uniform and non-uniform scaling to its vertices
 2. Apply reflection to its vertices
 3. Apply a shear to its vertices
 4. Apply a translation then a rotation
 5. Apply a rotation then a translation

2. Draw all of these transformations

3. Find points \(p' \) along an edge of this box using the parametric equation and \(t \) values 0.1, 0.4 and 0.7

For all activities, show matrices