
Basic Ray Tracing

Rendering: Reality

Eye acts as pinhole camera

Photons from light 
hit objects

Rendering: Reality

Eye acts as pinhole camera

Photons from light 
hit objects

Bounce everywhere
Extremely few 

hit eye, form image

one lightbulb = 1019 photons/sec

Synthetic Pinhole Camera

Useful abstraction: virtual image plane

Rendering: Ray Tracing

Reverse of reality
• Shoot rays through image plane
• See what they hit
• Secondary rays for:

• Reflections
• Shadows

• Embarrassingly parallel

Local Illumination

Simplifying assumptions:
• Ignore everything except eye, light, and

object
• No shadows, reflections, etc

“Ray Tracing is Slow”

Very true in the past;
still true today

Ray tracing already
used within the
“raster” pipeline

Real-time, fully ray-
traced scenes are
here for older
games

[Nvidia OptiX]

Big Hero 6 (2014)

Control (2019)

Fully Path Traced Portal and Quake 2 (2022)

Side Note: RTX

Side Note: DLSS

Why is Ray-Tracing Slow?

Why Slow?

Naïve algorithm: O(NR)
• R: number of rays
• N: number of objects

But rays can be cast in parallel
• each ray O(N)
• even faster with good culling

Why Slow?

Despite being parallel:

1. Poor cache coherence
• Nearby rays can hit different geometry

2. Unpredictable
• Must shade pixels whose rays hit object
• May require tracing rays recursively

Basic Algorithm

For each pixel:
• Shoot ray from camera through pixel
• Find first object it hits
• If it hits something
• Shade that pixel
• Shoot secondary rays

Shoot Rays From Camera

Ray has origin and direction

Points on ray are the positive span

How to create a ray?

Shoot Rays From Camera

Creating a ray:
• Origin is eye
• Pick direction to pierce center of pixel

Whitted-style Ray Tracing
• Turner Whitted introduced ray tracing to

graphics in 1980
• Combines eye ray tracing + rays to light

and recursive tracing

• Algorithm:
1. For each pixel, trace primary ray in

direction V to the first visible surface.
2. For each intersection trace secondary

rays:
• Shadow in direction L to light sources
• Reflected in direction R
• Refracted (transmitted) in direction T

3. Calculate shading of pixel based on light
attenuation

Find First Object Hit By Ray

Collision detection: find all values of t 
where ray hits object boundary

Take smallest positive value of t

When Did We Hit an Object?

How do we know?
How can we calculate this efficiently?

Efficient Approximations
Multiple approximate checks eliminate

candidates more efficiently than a single,
accurate check

Checks (in order):
• Ray-Plane intersection
• Ray-Triangle intersection
• Position of intersection on triangle

Plane specified by:
• Point on plane
• Plane normal

In-class Activity:
Use the plane equation to determine
where point Q is based on the ray origin P
and direction assuming we also know at
least one other point on this plane

Ray-Plane Collision Detection

⃗d

N ⋅ Q + d = 0

N ⋅ (P + ⃗d t) + d = 0

N ⋅ P + N ⋅ ⃗d t = − d

N ⋅ ⃗d t = − (d + N ⋅ P)

t = −
N ⋅ P + d

N ⋅ ⃗d

Q = P + ⃗d t

Ray-Triangle Collision Detection
• Intersect ray with triangle’s supporting

plane:
N = (A - C)x(B - C)

• Check if inside triangle

How to Check if Inside?

• Using triangle edges
• Using barycentric coordinates
• Using projections

Normal:

Ray-Triangle Collision Detection

Normal:

Idea: if P inside, must be left

of line AB

Ray-Triangle Collision Detection

How can we determine if point Q is to
the left or right of a triangle edge?

Intuition

Cross product will point in opposite
direction if point Q is to the right

Therefore dot product will now be negative
(cosϴ < 0 if ϴ > 90°)

Normal:

Idea: if P inside, must be left

of line AB

Ray-Triangle Collision Detection

Inside-Outside Test
Check that point Q is to the left of all edges:

[(B-A)x(Q-A)]⋅n >= 0
[(C-B)x(Q-B)]⋅n >= 0
[(A-C)x(Q-C)]⋅n >= 0

If it passes all three tests, it is inside the triangle

Barycentric Coordinates
Affine frame defined by origin

(t = c) and vectors from c (v
= a-c, w = b-c)

Point can be represented
using area coordinates 𝛼, β,
𝛾 (ratio between sub-area
and total triangle area):

Q = 𝛼a + βb + 𝛾c

Barycentric Coordinates

What does these area
coordinates tell us?

Barycentric Coordinates

If point Q’s
𝛼, β, 𝛾 >= 0
and
𝛼 + β + 𝛾 = 1
then Q is within the

triangle!

Barycentric Coordinates

Proportional to lengths of crossproducts:
Aa = ||((C-B)x(Q-B))||/2
Ab = ||((A-C)x(Q-C))||/2
Ac = ||((B-A)x(Q-A))||/2

Beyond Triangle Intersections…

• Barycentric coordinates can interpolate
• Vertex properties
• Material properties
• Texture coordinates
• Normals

• Used everywhere!
€

kd (Q) =αkd (A) + βkd (B) + γkd (C)

Barycentric Coordinates in 2D

Project down into 2D and compute
barycentric coordinates

Möller-Trumbore Triangle Intersect
• Introduced as an optimized triangle-ray intersection test
• Based on the barycentric parameterization

• Direction of ray intersection from ray origin becomes
3rd axis (uw are barycentric axes)

• Still commonly used

Full details here:
https://www.scratchapixel.com/lessons/3d-basic-

rendering/ray-tracing-rendering-a-triangle/moller-
trumbore-ray-triangle-intersection

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection

Other Common Intersects

• Sphere
• Box
• Cylinder

Ray Tracing: Shading

• Shading colors the pixels
• Color depends on:

• Object material
• Incoming lights
• Angle of viewer

Object Materials

Different materials can behave very
differently

• opaque vs translucent vs transparent
• shiny vs dull

We classify different responses to light
into “types”

Emissive Lighting

Light generated within material

Diffuse Reflection
Light comes in, bounces out randomly (Lambertian)

Typical for “rough” unpolished materials
View angle doesn’t matter

Specular Reflection

Light reflects perfectly

Typical for smooth, “polished” surfaces

General Opaque Materials

Diffuse-specular spectrum:

What About Translucent?

Subsurface Scattering

What About Translucent?

Subsurface Scattering
Refraction

What About Translucent?

Subsurface Scattering
Refraction
Structural Color
…

Not today.

Phong Shading Model

We’ll talk about the specific math behind
shading models later. For now, let’s
focus on the “ray-tracing” aspect of
shading…

Ray Tracing: Shading

Let I(P, d) be the intensity along ray P + td

I(P, d) = Idirect + Ireflected + Itransmitted

• Idirect computed from Phong model
• Ireflected = krI(Q, R)
• Itransmitted = ktI(Q, T)

Reflection and Transmission

Law of reflection:
θi = θr

Snell’s law of refraction:
ηisinθi = ηtsinθt

(η is index of refraction)

What is this effect?

• Occurs if:
• ηi > ηt (index of refraction of current

medium > index of refraction of other
medium)

• ϴi > ϴc (angle of incidence > critical
angle)

• Critical angle is an angle of incidence that
provides an angle of refraction of 90°

• No transmission occurs — only reflection

Total Internal Reflection

Critical Angle in TIR
• If θt = 90°, light moves along boundary

surface
• If θt > 90°, light is reflected within current

medium

Light and Shadow Attenuation
Light attenuation:

• Light farther from the source contributes
less intensity

Shadow attenuation:
• If light source is blocked from point on an

object, object is in shadow
• Attenuation is 0 if completely blocked
• Some attenuation for translucent objects

Light Attenuation
Real light attenuation: inverse square law

Tends to look bad: too dim 
or washed out

So, we cheat:
d is light-to-point distance
Tweak constant & linear terms to taste:

fatten(d) =
1

a + bd + cd2

Equation used in raytracing assignment

Shooting Shadow Rays

Local Illumination Redux

Simplifying assumptions:
• ignore everything except eye, light, and

object
• no shadows, reflections, etc

• only point lights
• only simple (diffuse & specular)

materials

Beyond Local Shading

