Basic Ray Tracing

Rendering: Reality

Eye acts as pinhole camera

Photons from light hit objects

Rendering: Reality

Eye acts as pinhole camera

Photons from light hit objects
Bounce everywhere
Extremely few hit eye, form image
one lightbulb $=10^{19}$ photons $/ \mathrm{sec}$

Synthetic Pinhole Camera

Useful abstraction: virtual image plane

 aperture (virtual camera origin, \approx eye) (image plane in front)

Rendering: Ray Tracing

Reverse of reality

- Shoot rays through image plane
- See what they hit

- Embarrassingly parallel

Local Illumination

Simplifying assumptions:

- Ignore everything except eye, light, and object
- No shadows, reflections, etc

"Ray Tracing is Slow"

Very true in the past; still true today
Ray tracing already used within the "raster" pipeline
Real-time, fully raytraced scenes are here for older games

Big Hero 6 (2014)

Control (2019)

Fully Path Traced Portal and Quake 2 (2022)

Side Note: RTX

Side Note: DLSS

Why is Ray-Tracing Slow?

Why Slow?

Naïve algorithm: O(NR)

- R: number of rays
- N : number of objects

But rays can be cast in parallel

- each ray $\mathrm{O}(\mathrm{N})$
- even faster with good culling

Why Slow?

Despite being parallel:

1. Poor cache coherence

- Nearby rays can hit different geometry

2. Unpredictable

- Must shade pixels whose rays hit object
- May require tracing rays recursively

Basic Algorithm

For each pixel:

- Shoot ray from camera through pixel
- Find first object it hits
- If it hits something
- Shade that pixel
- Shoot secondary rays

Shoot Rays From Camera

Ray has origin and direction

Points on ray are the positive span

How to create a ray?

Shoot Rays From Camera

Creating a ray:

- Origin is eye
- Pick direction to pierce center of pixel

Whitted-style Ray Tracing

- Turner Whitted introduced ray tracing to graphics in 1980
- Combines eye ray tracing + rays to light and recursive tracing
- Algorithm:

1. For each pixel, trace primary ray in direction \mathbf{V} to the first visible surface.
2. For each intersection trace secondary rays:

- Shadow in direction \mathbf{L} to light sources

- Reflected in direction \mathbf{R}
- Refracted (transmitted) in direction \mathbf{T}

3. Calculate shading of pixel based on light attenuation

Find First Object Hit By Ray

Collision detection: find all values of t where ray hits object boundary

Take smallest positive value of t

When Did We Hit an Object?

How do we know?
How can we calculate this efficiently?

Efficient Approximations

Multiple approximate checks eliminate candidates more efficiently than a single, accurate check

Checks (in order):

- Ray-Plane intersection
- Ray-Triangle intersection
- Position of intersection on triangle

Ray-Plane Collision Detection

Plane specified by:

- Point on plane
- Plane normal

In-class Activity:
Use the plane equation to determine where point \mathbf{Q} is based on the ray origin \mathbf{P} and direction \vec{d} assuming we also know at least one other point on this plane
$N \cdot Q+d=0$

$$
\begin{gathered}
N \cdot(\mathrm{P}+\overrightarrow{\mathrm{d}} t)+d=0 \\
N \cdot \mathrm{P}+N \cdot \overrightarrow{\mathrm{~d}} t=-d \\
N \cdot \overrightarrow{\mathrm{~d}} t=-(d+N \cdot \mathrm{P})
\end{gathered}
$$

$$
t=-\frac{N \cdot \mathrm{P}+d}{N \cdot \overrightarrow{\mathrm{~d}}}
$$

$$
Q=\mathrm{P}+\overrightarrow{\mathrm{d}} t
$$

Ray-Triangle Collision Detection

- Intersect ray with triangle's supporting plane:

$$
N=(A-C) x(B-C)
$$

- Check if inside triangle

How to Check if Inside?

- Using triangle edges
- Using barycentric coordinates
- Using projections

Ray-Triangle Collision Detection

Normal:

$$
\hat{n}=\frac{(B-A) \times(C-A)}{\|(B-A) \times(C-A)\|}
$$

Ray-Triangle Collision Detection

Normal:

$$
\hat{n}=\frac{(B-A) \times(C-A)}{\|(B-A) \times(C-A)\|}
$$

Idea: if P inside, must be left of line $A B$

How can we determine if point Q is to the left or right of a triangle edge?

Intuition

Cross product will point in opposite direction if point Q is to the right
Therefore dot product will now be negative $\left(\cos \Theta<0\right.$ if $\left.\Theta>90^{\circ}\right)$

Ray-Triangle Collision Detection

Normal:

$$
\hat{n}=\frac{(B-A) \times(C-A)}{\|(B-A) \times(C-A)\|}
$$

Idea: if P inside, must be left of line $A B$

$$
(B-A) \times(P-A) \cdot \hat{n} \geq 0
$$

Inside-Outside Test

Check that point Q is to the left of all edges:

$$
\begin{aligned}
& {[(\mathrm{B}-\mathrm{A}) \mathrm{x}(\mathrm{Q}-\mathrm{A})] \cdot \mathrm{n}>=0} \\
& {[(\mathrm{C}-\mathrm{B}) \mathrm{x}(\mathrm{Q}-\mathrm{B})] \cdot \mathrm{n}>=0} \\
& {[(\mathrm{~A}-\mathrm{C}) \mathrm{x}(\mathrm{Q}-\mathrm{C})] \cdot \mathrm{n}>=0}
\end{aligned}
$$

If it passes all three tests, it is inside the triangle

Barycentric Coordinates

Affine frame defined by origin
$(t=c)$ and vectors from $c(v$
$=\mathrm{a}-\mathrm{c}, \mathrm{w}=\mathrm{b}-\mathrm{c}$)

Point can be represented using area coordinates α, β, γ (ratio between sub-area and total triangle area):

$$
\mathrm{Q}=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}
$$

Barycentric Coordinates

What does these area coordinates tell us?

Barycentric Coordinates

If point Q's
$\alpha, \beta, \gamma>=0$
and
$\alpha+\beta+\gamma=1$
then Q is within the triangle!

Barycentric Coordinates

Proportional to lengths of crossproducts:
$A_{a}=\|((C-B) x(Q-B))\| / 2$
$A_{b}=\|((A-C) x(Q-C))\| / 2$
$A_{c}=\|((B-A) x(Q-A))\| / 2$

Beyond Triangle Intersections...

- Barycentric coordinates can interpolate
- Vertex properties
- Material properties
- Texture coordinates
- Normals

$$
k_{d}(\mathrm{Q})=\alpha k_{d}(\mathrm{~A})+\beta k_{d}(\mathrm{~B})+\gamma k_{d}(\mathrm{C})
$$

- Used everywhere!

Barycentric Coordinates in 2D

Project down into 2D and compute barycentric coordinates

Möller-Trumbore Triangle Intersect

- Introduced as an optimized triangle-ray intersection test
- Based on the barycentric parameterization
- Direction of ray intersection from ray origin becomes 3rd axis (uw are barycentric axes)
- Still commonly used

Full details here:
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection

Other Common Intersects

- Sphere
- Box
- Cylinder

Ray Tracing: Shading

- Shading colors the pixels
- Color depends on:
- Object material
- Incoming lights
- Angle of viewer

Object Materials

Different materials can behave very differently

- opaque vs translucent vs transparent
- shiny vs dull

We classify different responses to light into "types"

Emissive Lighting

Light generated within material

Diffuse Reflection

Light comes in, bounces out randomly (Lambertian)

Typical for "rough" unpolished materials
View angle doesn't matter

Specular Reflection

Light reflects perfectly

Typical for smooth, "polished" surfaces

General Opaque Materials

Diffuse-specular spectrum:

What About Translucent?

Subsurface Scattering

What About Translucent?

Subsurface Scattering

Refraction

What About Translucent?

Subsurface Scattering

Refraction Structural Color

Not today.

Phong Shading Model

We'll talk about the specific math behind shading models later. For now, let's focus on the "ray-tracing" aspect of shading...

Ray Tracing: Shading

Let $I(P, d)$ be the intensity along ray $P+t d$

$I(P, d)=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}$

- Idirect computed from Phong model
- $I_{\text {reflected }}=k_{r}(Q, R)$
- $I_{\text {transmitted }}=\mathrm{k}_{\mathrm{t}}(\mathrm{Q}, \mathrm{T})$

Reflection and Transmission

Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

Snell's law of refraction: $\eta_{i} \sin \theta_{\mathrm{i}}=\eta_{\mathrm{t}} \sin \theta_{\mathrm{t}}$

(η is index of refraction)

What is this effect?

Total Internal Reflection

- Occurs if:
- $\eta_{\mathrm{i}}>\eta_{\mathrm{t}}$ (index of refraction of current medium > index of refraction of other medium)
- $\theta_{i}>\Theta_{c}$ (angle of incidence $>$ critical angle)
- Critical angle is an angle of incidence that provides an angle of refraction of 90°
- No transmission occurs - only reflection

Critical Angle in TIR

- If $\theta_{t}=90^{\circ}$, light moves along boundary surface
- If $\theta_{t}>90^{\circ}$, light is reflected within current medium

Light and Shadow Attenuation

Light attenuation:

- Light farther from the source contributes less intensity
Shadow attenuation:
- If light source is blocked from point on an object, object is in shadow
- Attenuation is 0 if completely blocked
- Some attenuation for translucent objects

Light Attenuation

Real light attenuation: inverse square law

Tends to look bad: too dim or washed out

So, we cheat:
d is light-to-point distance
Tweak constant \& linear terms to taste:

$$
f_{\text {atten }}(d)=\frac{1}{a+b d+c d^{2}}
$$

Shooting Shadow Rays

Local Illumination Redux

Simplifying assumptions:

- ignore everything except eye, light, and object
- no shadows, reflections, etc
- only point lights
- only simple (diffuse \& specular) materials

Beyond Local Shading

