
Viewing and Projections

What are Projections?

Classical Projections

Planar Geometric Projections

• Standard projections project onto a
plane

• Projectors are lines that either:
• Converge at center of projection
• Are parallel

• Preserve lines but not angles

Remember Art Class?

Projection Taxonomy

parallel perspective

axonometric multiview

orthographic

oblique

isometric dimetric trimetric

2 point1 point 3 point

planar geometric projections

Orthographic Projection

Projectors orthogonal to projection surface

Orthographic Uses

Preserves shape and
measurements
(great for CAD)

Need isometric to see
what’s hidden

Default Camera Projection
Orthographic is default

pp = Mp

M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0000
0010
0001xp = x

yp = y

zp = 0

wp = 1

Projecting onto a Screen
Define area of screen and clip coordinates

glOrtho(left,right,bottom,top,near,far)

Normalized Device Coordinates
Transformed clipped coordinates to

normalized device coordinates (NDC)
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0,
1.0);

(coordinates outside NDC discarded)

Why Use NDC?

Provides a standard range for plotting
onto a device/screen

“Screen space” coordinates that can then
be transformed into device coordinates

Orthographic Eye to NDC

P = ST

2
right − left 0 0 0

0 2
top − bottom 0 0

0 0 2
far − near 0

0 0 0 1

1 0 0 − left + right
right − left

0 1 0 − top + bottom
top − bottom

0 0 −1 − far + near
far − near

0 0 0 1

• Scale to have sides of length 2
• Move center to origin

NDC space flipped
(left-handed coordinate system)

Orthographic Eye to NDC
• Scaled to have sides of length 2
• Centered at origin
• NDC looks down +Z axis

2
right − left

0 0 −
right + left
right − left

0 2
top−bottom

0 −
top+bottom
top−bottom

0 0 2
near − far

−
far +near
far −near

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Perspective Projection

• Converge at point
along projection
(vanishing point)

• Multiple vanishing
points in multi-
point perspective

Projective Space

• w provides extra dimension to (x, y, z)
coordinate space

• Acts as a scaling value to represent
distance from projector

• Larger w values correspond to more
distance from viewer

Simple Perspective

• Center of projection at origin
• z is projection plane

xp =
dz
x
/

yp =
dz
y
/

zp = d

Homogeneous Form

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0/100
0100
0010
0001

d
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

dz
z
y
x

/

consider Mp = p’ where:

Apply perspective division (convert
coordinate back to w=1) to be NDC
p’ = (dx/z, dy/z, d, 1)

=

Perspective Projection
glFrustum(left,right,bottom,top,near,far)

Projecting onto the Near Plane

Map eye space point (xe, ye, ze) to near
plane point (xp, yp, zp)

Perspective Normalization
Convert frustum into NDC coordinate system:
[l, r] = [-1, 1]
[b, t] = [-1, 1]
[-n, -f] = [-1, 1]

Frustum is in right-handed coordinate system; NDC is in
left-handed coordinate system

Clipping

near plane is mapped to z = -1
far plane is mapped to z = 1
sides are mapped to x = ± 1, y = ± 1

zndc =
zc

wc
=

αze + βwe

−ze

xc
yc
zc
wc

=

.
0 0 α β
0 0 −1 0

xe
ye
ze
we

Only 4th column known
Use w to determine z in NDC space (3rd column)

Solving for Alpha and Beta

Take ratio of near, far, and eye:

zndc =
zc

wc
=

αze + βwe

−ze

ze

zndc
=

−n
−1

=
−f
1

(we = 1 in NDC)

−αn + β
n

= − 1
−αf + β

f
= 1

Solving for Alpha and Beta

With a little algebra, we determine:

α =
−(f + n)

f − n
β =

−2nf
f − n

.
0 0 −(f + n)

f − n
−2fn
f − n

0 0 −1 0

General Frustum Transform

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

+−
−

+

−

−

+

−

0100

2)(00

020

002

nf
fn

nf
nf
bt
bt

bt
n

lr
lr

lr
n

Mapping x and y into NDC using triangle
ratios from earlier to determine 1st and
2nd columns...

Final matrix:

Symmetric Viewing Volume

When right = -left and top = -bottom:

r + l = 0
r - l = 2r
t + b = 0
t - b = 2t

Normalized Device Coordinates
Note:
X and Y map to screen width and height
Z used for depth (deeper points are higher)

Screen Coordinates
Screen coordinates use different system!

Handling Aspect Ratio
glViewPort(x, y, width, height)

transforms NDC to window coordinates

Allows for an aspect ratio in final display to
screen after being normalized

Incidentally (x, y) specifies the lower left
corner of the viewport

Note about Deprecation

glOrtho and glFrustum are deprecated as
of OpenGL 3.0

Replacements:
glm::glOrtho
glm::glFrustum

Additional Reading

• http://www.songho.ca/opengl/
gl_projectionmatrix.html

• https://www.scratchapixel.com/lessons/
3d-basic-rendering/perspective-and-
orthographic-projection-matrix/opengl-
perspective-projection-matrix

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix

