Advanced Animation Techniques
Modern Animation

Example: Player package from Death Stranding

https://www.youtube.com/watch?v=55W5ZKNrpsz4
Modern Animation Concerns

- Motion capture
- Easy and flexible animation controls
- Automatic retargeting
- Handling soft bodies
- Physically based animations
Motion Capture

https://youtu.be/BH58puh-Olg?t=76
Motion Capture Overview

• Detect and track markers associated with joints
 • Variety of techniques and equipment
 • Closely related to computer vision
• Markers provide data about changes to position and rotation
• Data cleaned then used for retargeting meshes
Automatic Retargeting

Practice of taking existing skeleton and remapping it to a new mesh to apply animations

Requires both meshes to share the same skeleton asset

• Same structure, different proportions
• Skeleton joints translated to correct position on the mesh

Animation handles joint rotations during sequence
Animation Controls
Articulated Models

The previous examples are all articulated models:

- Rigid parts (bones)
- Connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

- Direct control of joints
- Inverse kinematics (IK)
Forward Kinematics
Inverse Kinematics

Inverse kinematics take the target pose and compute all necessary joints along the chain to reach that pose.

Forward kinematics are easier to compute but harder to reason about.

Inverse kinematics are more natural to reason about but harder to compute.
Defining Target Poses

Skeleton must include **kinematic chains** along parts of hierarchy with joint dependencies

- e.g. Dependency extends from shoulder to wrist

Each kinematic chain has an **end effector** to target different positions (or orientations)

- New position of end effector updates all joints along kinematic chain

May be possible to solve analytically but usually solved approximately and iteratively

- Minimization problem: get end effector as close to target position as possible
Inverse Kinematics Example

https://vimeo.com/114626019
Jacobian Technique

A Jacobian matrix is a matrix of first-order partial derivatives of system
- Describes changes in end effector position based on changes in joint angle

Jacobian inverse allows computation of joint angles from changes in end effectors

Goal is to perform small, iterative changes to joint angles using Jacobian to reach target position

Must calculate Jacobian
- Numerically or analytically

Must approximate inverse
- Pseudo-inverse or transpose
Cyclic Coordinate Descent

Iterative optimization algorithm used to reduce error or find minimum of function

- Minimize distance between end effector and target position

Individually adjusts joint angles starting at last link and working backward

Determine joint-to-end-effector vector and target-to-end effector vectors

- Can determine angle between them (or amount to rotate) using dot product
- Can determine direction to rotate using cross product
Local Minima

Issue with all optimization algorithms
Solution finds a local (but incorrect) minima and is unable to continue descent toward global minima
In CCD, bones do not consider other bones — only distance to optimal position
 • Leads to “tangling” that places bones in optimal positions but does not respect chain
 • Placing rotational constraints on joints reduces these errors but cannot fully correct for it
FABRIK

Forward and Backward Reaching Inverse Kinematics
Iterative method to find joint position on a line rather than considering joint angles
Determine if target is reachable (i.e. distance from root to target is less than total length of chain)
Move end effector to target position (within tolerance) and recalculate positions of previous joints
Move root joint back to its initial position and recalculate positions of all child joints
IK in Games

Emphasis on stability and speed
Inverse Jacobian common in film but too slow for games
CCD has unwanted pathologies
FABRIK is extremely efficient, simple to implement, and looks good
 • Can also apply FABRIK with joint constraints and to hierarchies with multiple end effectors
Other 3D Animation Techniques

Faces are hard to rig: many muscles

instead, precompute a small set of **basis deformations**
blend between them (**blendshapes**) knobs not always intuitive
Blend Shape Demo

https://vimeo.com/115836284
Soft Bodies

Treats objects as deformable
 • Shape of object can change
Accurate simulation is more computationally intensive
 • Finite element simulation breaks system into smaller, solvable subdomains that can be reassembled
Mostly faked in games
 • Rigid bodies in a lattice can fake slime, cloth, etc
Soft Body Uses

Volume Conservation
Deformation and Fracture in Games

https://www.youtube.com/watch?v=ly64-Bn7i4k
Other 3D Animation Techniques

Anatomy-based animation
- simulate the tendons and muscles

Most correct motion
Restricted to “real” animals
Slow
Machine Learning and Motion Synthesis

• Machine learning can allow for good-looking animations
 • https://www.youtube.com/watch?v=urf-AAIwNYk
• Can lower cost of artistic pipeline
• Downside is that learned function is mostly unmodifiable/incomprehensible
 • Difficult to correct in pathological cases
• Also realism is not necessarily as appealing as artistic interpretation
ML in Modern Games

https://www.youtube.com/watch?v=SkJNxLYNwN0