
Raytracing Pseudocode

function traceImage (scene):
 for each pixel (i,j) in image
 S = PointInPixel
 P = CameraOrigin
 d = (S - P)/|| S – P||
 I(i,j) = traceRay(scene, P, d)
 end for
end function

function traceRay(scene, P, d):
 (t, N, mtrl) ← scene.intersect (P, d)
 Q ! ray (P, d) evaluated at t
 I = shade(mtrl, scene, Q, N, d)
 R = reflectDirection(N, -d)
 I ← I + mtrl.kr ∗ traceRay(scene, Q, R)
 if ray is entering object then
 n_i = index_of_air
 n_t = mtrl.index
 else
 n_i = mtrl.index
 n_t = index_of_air
 if (mtrl.k_t > 0 and notTIR (n_i, n_t, N, -d)) then
 T = refractDirection (n_i, n_t, N, -d)
 I ← I + mtrl.kt ∗ traceRay(scene, Q, T)
 end if
 return I
end function

Thinking About Refraction

Remember Snell’s law?
• ηisinθi = ηtsinθt

When does light bend?
• Must account for entering and

leaving!
• How do we know if we’re entering or

leaving? (hint: all geometry has a
“front face” and a “back face”)

Calculating Refraction

unit vector perpendicular to N in plane of I and N

⃗I

⃗N

− ⃗N

θi

θt

Adapted from Computer Graphics (James Foley)

⃗Ncosθi − ⃗I

⃗Ncosθi

−cosθt
⃗N

⃗M =
(⃗Ncosθi − ⃗I)

sinθi

sinθt
⃗M

⃗T = sinθt
⃗M − cosθt

⃗N

Calculating Refraction
⃗T =

sinθt

sinθi
(⃗Ncosθi − ⃗I) − cosθt

⃗N ⃗I

⃗N

− ⃗N

θi

θt

⃗Ncosθi − ⃗I

⃗Ncosθi

−cosθt
⃗N

⃗M =
(⃗Ncosθi − ⃗I)

sinθisinθt
⃗M

⃗T = sinθt
⃗M − cosθt

⃗N

Let ηr =
ηi

ηt
=

sinθt

sinθi
(Snell’s Law)

⃗T = (ηrcosθi − cosθt) ⃗N − ηr ⃗I

cosθi = ⃗N ⋅ ⃗I

cosθt = 1 − sin2θt = 1 − η2
r sin2θi

cosθt = 1 − η2
r (1 − (⃗N ⋅ ⃗I)2)

⃗T = (ηr(⃗N ⋅ ⃗I) − 1 − η2
r (1 − (⃗N ⋅ ⃗I)2)) ⃗N − ηr ⃗I

Determining TIR
⃗T = (ηr(⃗N ⋅ ⃗I) − 1 − η2

r (1 − (⃗N ⋅ ⃗I)2)) ⃗N − ηr ⃗I

• TIR occurs when index of refraction of current
medium (ηi) > index of refraction of other
medium (ηt)

• going from more dense to less dense
medium

• Critical angle is value of sinϴi when sinϴt is 1
• Critical angle ϴc = sin-1(ηt/ηi)
• TIR occurs when square root of expanded

cosϴt is imaginary

function shade(mtrl, scene, Q, N, d):
 I ← mtrl.ke + mtrl. ka * scene->Ia
 for each light source l do:
 atten = l -> distanceAttenuation(Q) *
 l -> shadowAttenuation(scene, Q)
 I ← I + atten*(diffuse term + spec term)
 end for
 return I
end function

function PointLight::shadowAttenuation(scene, P)
 d = (l.position - P).normalize()
 (t, N, mtrl) ← scene.intersect(P, d)
 Q ← ray(t)
 if Q is before the light source then:
 atten = 0
 else
 atten = 1
 end if
 return atten
end function

Some Additional Notes

The raytracer skeleton code is extensive
but largely undocumented
• Taking time to look through the code

to understand what it does is
essential

• Mathematical elegance doesn’t mean
there’s a simple codebase

Passing by Reference

Many important values are passed by
reference!
• Look carefully to determine where/how

values are being updated
• Very common in C and C++

codebases

tmax and tmin

Parametric values that define the
bounding box around the scene
• Returned t values are within this range

Scene can be further subdivided for
additional intersect optimizations!

Debugging Visually: What Happened?

Casting Shadow Rays

at what t does the
ray hit an object?

Casting Shadow Rays

at what t does the
ray hit an object?

if lucky: {-1.2, 0.0}

if unlucky: {-1.2, 1e-12}

Shadow Rounding Error

Classic fix: move slightly in normal
direction before shooting shadow ray
• RAY_EPSILON provided for this

But Shadows Don’t Look Like This!

Hard vs Soft Shadows

Calculate Penumbra

Use full lighting equation or calculate
geometrically (not required for A1!)

