Raytracing Pseudocode

function tracelmage (scene):
for each pixel (1,)) 1n 1mage
S = PointInPixel
P = CameraOrigin
d=(S-P)||S-P|
I(1,)) = traceRay(scene, P, d)
end for
end function

function traceRay(scene, P, d):
(t, N, mtrl) < scene.intersect (P, d)
QO € ray (P, d)evaluated at t
I = shade(mtrl, scene, Q, N, d)
R = reflectDirection(N, -d)
[< I +mtrl.k_ = traceRay(scene, O, R)
if ray 1s entermg object then
n 1=1index of air
n t= mtrl.index
else
n 1= mtrl.index
n t=1index of air
if (mtrl k t>0 and notTIR (n i,n t, N, -d)) then
T = refractDirection (n i,n t, N, —d)
[< I +mitrl.k, * traceRay(scene O, T)

end if
return I
end function

Thinking About Refraction

Remember Snell’s law?
* NiSinB; = NtSiNB;

When does light bend?

- Must account for entering and
leaving!

- How do we know if we’re entering or

leaving? (hint: all geometry has a
“front face” and a “back face”)

Calculating Refraction

N
7 A

i ﬁcos@i -1

’V

unit vector perpendicular to N in plane of | and N

N cos0;

sing M (ﬁcosﬁi — 7)

> 17—

sin6;

[£

T = sin@tl_j— cos@tﬁ

Adapted from Computer Graphics (James Foley)

Calculating Refraction

— sin0,
T = (Ncos@ —I)—COSHN
sind;
n;, sind,
Letyn, = — = — (Snell’s Law)
n, sin6;

= (17,c050; — cosOnN — 17,,7

-

cos0; = N-T

cos0, = \/1 — sin’6, = \/1 — n?sin’0

cosO, = \/1 — X 1= (N -1)?

T = sin@tl_/f— cos@tﬁ

(m(N I —y/1-n21

-(N- 7>2>>TV’ -l

Determining TIR

T = <m(ﬁ-7)—\/1 - (1 —<ﬁ-i’>2>)ﬁ—mf

* TIR occurs when index of refraction of current
medium (n;) > index of refraction of other
medium ()

» going from more dense to less dense
medium

» Critical angle is value of sin©; when sin©t is 1
» Critical angle B¢ = sin-1(nv/n))

» TIR occurs when square root of expanded
cos6t is imaginary

function shade(mtrl, scene, O, N, d):
[< mtrl.k, + mtrl. k, * scene->1,

for each light source | do:
atten = | -> distanceAttenuation(Q) *
| -> shadowAttenuation(scene, Q)
[<= I + atten®(diffuse term + spec term)
end for
return I
end function

function PointLight::shadowAttenuation(scene, P)
d = (l.position - P).normalize()
(t, N, mtrl) < scene.intersect(P, d)

Q < ray(t)

if O 1s before the light source then:
atten = 0

else
atten = 1

end if

return atten
end function

Some Additional Notes

The raytracer skeleton code is extensive
but largely undocumented

» Taking time to look through the code
to understand what it does is
essential

- Mathematical elegance doesn’t mean
there’s a simple codebase

Passing by Reference

Many important values are passed by
reference!

 Look carefully to determine where/how
values are being updated

* Very common in C and C++
codebases

tmax and tmin

Parametric values that define the
bounding box around the scene

* Returned t values are within this range

Scene can be further subdivided for
additional intersect optimizations!

What Happened?

lly

Visua

Debugging

.5

)

e ol

R Ty

VoW

Casting Shadow Rays

— W

at what t does the
ray hit an object?

Casting Shadow Rays

— W

at what t does the
ray hit an object?

if lucky: {-1.2, 0.0}
If unlucky: {-1.2, 1e-12}

Shadow Rounding Error

— W

Classic fix: move slightly in normal
direction before shooting shadow ray

* RAY_EPSILON provided for this

But Shadows Don’t Look Like This!

Hard vs Soft Shadows

Calculate Penumbra

Use full lighting equation or calculate
geometrically (not required for A1!)

Light source

4 Light source
/ﬁ

\

i

| Penumbra Umbra

