
CS354p Lab 5: Working with Animations

This lab will focus on extending the a playable character you created in Lab
4 by connecting animations to the State Machine you created. Thus, this lab
will have some C++ development, but we will largely be working in Blueprints
and with Assets, so this will be a good time to familiarize yourself with those
systems, if you are not confident yet in your ability to use the UE5 Editor/work
directly with assets.

Getting Started (Complete before the Lab)

You can choose whether to attempt migrating your Lab4 to this new project,
Lab5, or just copy what you had in Lab4 to a separate folder for Lab5. I per-
sonally just copied it, because the project is small and I didn’t want to bother
with migration. That said, if you feel confident in your understanding of Unreal
build systems, it’s possible to migrate assets, update the C++ module, and fix
the derivations in Blueprint. The following resources will give you some context:
https://isaratech.com/ue4-how-to-rename-an-unreal-engine-project-with-sources-files/

https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/

MigratingContent/

https://unrealxeditor.wordpress.com/2015/05/28/tip-renaming-c-classes-without-breaking-your-project/

Adding a Camera to Character

Now you will add a camera setup to Lab5Character. This means including
a Camera Component and a Spring Arm Component that acts as a boom to
better control it and handle physical interactions with the camera if necessary.
This will be very similar to what we did in Lab3.

You may need to rebuild intermediate data, but once that’s working and you
see the changes updated in the Blueprint, congratulations! This is basically all
we’re doing with C++ in this lab! We do need to add a proper mesh in our
Lab5CharacterBP though.

Since we aren’t making our own animation assets from scratch, we’ll migrate
the Character assets from Lab1 to our project. This will also give you some ideas
of how to build out your animation state machine since it includes the premade
ones. To perform a migration, open up Lab1 and right click on Content ->
Characters. Select “Migrate.” You can choose specific assets or just grab them
all. We are going to be working with Manny, but the same principles will apply
to Quinn if you want both. Select your Lab5’s Content folder for the target
directory then wait for the files to copy over.

1

https://isaratech.com/ue4-how-to-rename-an-unreal-engine-project-with-sources-files/
https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/MigratingContent/
https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/MigratingContent/
https://unrealxeditor.wordpress.com/2015/05/28/tip-renaming-c-classes-without-breaking-your-project/


Once this is done, you can open Lab5CharacterBP, select the Mesh Compo-
nent and under the Mesh group in Details, select “SKM Manny” as the Skeletal
Mesh. This attaches a mesh and working rig to your Character. Align the man-
nequin mesh that appears within the Viewport with the Capsule Component
so that it will handle collisions in a plausible way. Confirm this is working in
play-in-editor (PIE).

Creating an Animation Blueprint

We now need to add animations. You may notice they have a very nice ani-
mation blueprint included as ABP Manny and ABP Quinn. We are going to
create a somewhat simplified version of these using our Character State Enums
created in Lab4.

To do this, access the Content folder and right-click to create a new asset. We
want a Animation->AnimationBlueprint. Select SK Mannequin as the skele-
ton and name it “Lab5CharacterAnimBP.” Then go back into Lab5CharacterBP.
Select the Mesh, and within Details, go to the Animation group. Set Animation
Mode to “Use Animation Blueprint” and select “Lab5CharacterAnimBP” from
the drop down menu to select the Animation Blueprint you just created. You
are pretty much done working in Lab5CharacterBP unless you need to improve
your event logic (very likely) to handle animations more gracefully, but don’t
worry about that until you’re debugging the animations.

To create animations, we’ll need to build out two types of functionality in
the Animation Blueprint: Event Graph functionality to receive updates from
Lab5CharacterBP, and Anim Graph where we build out the actual State Ma-
chine and transition functionality. You can work on them in any order (or in
conjunction), and you are welcome to look up additional tutorials/examples to
help in this process. Just be aware that we’re using Lab5Character’s state
setup we created within our enumeration, so you’ll be using that information as
your primary source of state information.

2



Animation Blueprint Event Graph

To get started, you will first need to access data in Lab5CharacterBP from the
Animation Blueprint’s Update Animation Event, which is in the Event Graph
tab of the Animation Blueprint. It will look something like this:

Notice that I’m accessing the Pawn’s Owner, then casting it to Lab5CharacterBP.
If it succeeds, I go ahead and grab Character Action State, which is the cur-
rent state of Lab5CharacterBP (this event is called on Tick). I can now switch
on Character Action State to update the logic in my Animation FSM.

To do this, I need to create several variables within this Animation Blueprint,
so that I can determine transitions (as I can’t access the original Blueprint
variables from within Anim Graph). The variables I created for this are listed
here:

This is by no means the only way to approach building your state ma-
chine, but it demonstrates one of many ways to distinguish walking versus run-
ning, forward motion versus strafing, when the character is falling, and after
the landing animation during Jump state has finished. ActionEnum is of type
ECharacterActionStateEnum, and I am just setting ActionEnum’s values (in
Lab5CharacterAnimBP) to match Character Action State (in Lab5CharacterBP),
so I can use that information in Lab5CharacterAnimBP.

You’ll also want to ensure your booleans are updated correctly in the Event
Graph, but you can also come back to that after starting on the FSM itself in
Anim Graph if you’re not sure about the logic.

3



Animation Blueprint Anim Graph

Within the Anim Graph, you will build out a hierarchical FSM. You can start by
right clicking on the Anim Graph and typing “state machine.” The highest-level
of this will look like this:

It can get much more complicated if you want better blending, but we’ll just
go with this for now. Inside this State Machine, the Entry point should lead to
the Idle state, which you will create by right-clicking and creating a State called
Idle. Double-click on Idle to set the outputted animation pose. We’re not going
to do anything fancy — just create “Play MM Idle” or “Play MF Idle.” Once
this is in place, you should see your BP Character mesh idling.

Other high-level states to create are Jump, Movement, and Interact. If you
are unsure how to create states and transitions, please ask or feel free to look
up a tutorial, but the basics are: right-click to create a new state, left-drag from
one state to another to create a transition. Take some time to play around with
this and determine the transitions that will allow Jump from both Idle, and
Movement, but not Interact, and Interact from Idle only.

If you click on the transitions, you can set the condition that will allow this
transition. Within transitions, you can access Action Enum and your boolean
values to set up the necessary logic. Within the State itself, you can either set the
animation pose from the animation files already associated with your Mannequin
(e.g. PlayNameOfAnimation), or you can create another sub-State Machine.
We will be creating a sub-State Machine for both Jump and Movement. The
Movement state machine should handle the differences in Run, Walk, and Strafe.
Run should playing the running animation if the Character speed is above some
value of your choosing, and both Walk and Strafe will play the walk animation
depending on Character speed and if the Character is more strafing than moving
forward respectively. You do not need to worry about exiting from the sub-State
Machine – that will be handled with the transitions between Movement and the
other states.

For the Jump state machine, you will chain together two animations: Jump Start
and Jump Loop. Jump Start will play upon entering the Jump sub-State Ma-
chine then transition as it completes into Jump Loop. Jump Loop will play as
long as the Character is in the “Falling” state (something you can grab from the
Character’s MovementComponent in the Event Graph). When the Character
lands, you will return to Idle or Move.

4



As always, please feel free to ask if you are confused about any of the above
information. Working with Blueprints is a separate but highly technical skill,
so it may take some experimentation. This will hopefully give you a better
understanding of FSMs, as well as an appreciation for artists and designers who
are able to make cool systems that look good!

Submission

After you’re satisfied, collect some video footage. Please submit a link to your
repository with your Lab2 project. Include this video footage, or a link to this
footage, and a report that goes through what we did during the lab by including
screenshots of the code and the Blueprints and explaining what this code does.
If you were unable to complete a feature, include an explanation of what you
did and where you got stuck.

5


