
CS354p Lab 8: Building a Data-Driven GUI

This lab will explore the basics of building out a GUI in a data-driven way.
This will involve bringing in .csv data, working with the Game Instance for
persistent storage and data handling, then connecting all of this information to
a UMG Widget to display it to screen. There are a lot more software design
considerations you’ll want to account for in a larger game, but this will provide
the requisite knowledge to get started!

Getting Started (Complete Before Class)

Create a blank C++ Unreal project called Lab8 as usual. You won’t need any
starter content, and you won’t need to see anything in the actual game, but I’d
recommend creating a simple level for loading purposes. All the level needs is a
plane to place your Player Start capsule and a directional light to make it easier
to work with in the editor. Save this map and make it the default.

Next, go to the Canvas page and download all the assets under Files ->Lab
Material ->Lab 8. Create a folder in your Unreal project under Content called
NonAssets and place these files (a .jpg and two .csvs) there. If the Unreal project
asks you if you want to import them, for now, say no — we’re going to handle
it during the lab itself.

Make sure to set up git to include these assets (the .jpg can be committed
using lfs but the .csvs should be treated as regular text files), but otherwise,
you’re ready for the lab!

Importing String Tables

The first thing we need to do is modify the Lab8.h and Lab8.cpp to handle
loading and unloading String Tables, which is where we store all the text in
the game for localization. In this case, we have one .csv called Lab8.csv which
contains all the strings we’ll need for our dialogue demo. If you open up this file,
you’ll see it contains header information for two columns, Key and SourceString

and one row of information that will act as our test dialogue.
To do this, we will first add our own class definition to Lab8.h, which will

have two methods, StartupModule() and ShutdownModule(). It should look
something like this:

Create the method definitions in Lab8.cpp. You will also need the following
include:

1

#include "Internationalization/StringTableRegistry.h"

And the parent function call will look something like this:
FDefaultGameModuleImpl::StartupModule();

Next, you’ll need to load in your table data using the LOCTABLE FROMFILE GAME

macro. This macro registers a string table using a table key, a table namespace,
and a path to the .csv with the values you’re bringing into the table. Ours will
look something like this:
LOCTABLE FROMFILE GAME("Lab8Strings", "Lab8Strings", "NonAssets/Lab8Strings.csv");

This must be done on module startup. We’ll unregister any tables we’ve
loaded via the table key during shutdown:
FStringTableRegistry::Get().UnregisterStringTable("Lab8Strings");

Finally, we must update IMPLEMENT PRIMARY Game Module to look
like this:
IMPLEMENT PRIMARY GAME MODULE(FLab8, Lab8, "Lab8");

i.e. we want to use the module we just defined rather than the default.
Note that this macro must run AFTER the functions above have been defined!
Assuming this compiles, we’ll start on the next part, but we won’t be able to
confirm this is fully working until a bit later...

Creating Data Handlers

Next, we’re going to create some files to assist us in data handling. We’re going
to create two files: Lab8Structs, and Lab8DataAssets. These will help us with
managing the data within Lab8Dialogue.csv, which includes how we will pair
who is talking with the dialogue they’re saying with the portrait we want to
display. Note that we need to also setup a UMG Widget to accomplish this,
but for now, let’s just focus on bringing in the data.

Structs

We will first create a .h to hold all the structs we’ll be using in our game (one
in this case). To do this, create a C++ class that inherits from UObject called
Lab8Structs. We can just ignore the .cpp. For Lab8Structs.h, go ahead and
remove all the class information.

We need to add the following include:
#include "Engine/DataTable.h"

Next, create a struct that will handle our Lab8Dialogue.csv info. Since this
.csv essentially contains dialogue information, we’ll name our struct FDialogueStruct,
and it will inherit from type FTableRowBase. We want our USTRUCT to be a
BlueprintType so it is accessible viable Blueprints, and we also need to include

2

the macro GENERATED USTRUCT BODY() so that it will play nicely in the UObject
runtime system.

Next, we need to create UProperties for each of the columns in the .csv
excluding the first RowName column (which is used for searching through the
data). You MUST create a UProperty for each column, and the name must
exactly match the name in the .csv. Types can vary (e.g. you can load this
column data as booleans, ints, floats, etc), but in our case we’re going to treat
all the column data as “String” data, which means we will import it as FName
data.

As an example, the first column’s field can look something like this (though
the UProperty specifies can vary):
UPROPERTY(EditAnywhere, BlueprintReadOnly)

FName Dialogue;

The last step for completing Lab8Structs.h is to create a constructor for the
struct. You can assign all field values to “None” (i.e. FName(TEXT("None"))).

Now that we have a data structure to reference when we bring in our .csv,
we can drag the Lab8Dialogue.csv into the editor’s Content Browser. It will
ask what type we’d like to bring the CSV in as, so we’ll select DialogueStruct.
Once that data’s imported, you can open it to see the contents within the editor.
If you update this csv, the editor will automatically ask if you want to reimport
the data, and when you do, you’ll see these updates reflected in the editor.

Data Assets

Data Assets provide a clean way to bring in additional information and manage
project assets without directly referring to the file in the directory by path
(which is extremely fragile in practice). We’re going to try this feature out by
creating a small “portrait handler” which will associate portrait data (in this
case, just Dracula’s) with the FName associated with it via the Portrait column
in our Lab8Dialogue.csv.

We will create a C++ class of type UDataAsset called Lab8DataAsset, and
all we need to do is declare any data structures we want this asset to hold. Since
all we need this time are the portrait images and their associated keys, the only
thing we need to add for now is a TMap that contains an FName key associated
with a UTexture2D* value.

Once this is compiled, you can now create a DataAsset in the editor and
make it of type Lab8DataAsset. We’ll name it DialogueAsset (since that’s
what it contains). You can now open up this asset and add a key/value pair.
The key should exactly match the value(s) listed in the Portrait column of
Lab8Dialogue.csv, and you can drag and drop the .jpg provided for this project
into the editor’s Content Browser to create a texture of it. Once that’s in the
project, you can add this as the value to your key.

3

Creating a User Widget

We’re not quite ready to bring in the data, but we’re getting there...let’s take a
break from that to mock up aWidget first, though. First, create Lab8DialogueWidget,
which inherits from UserWidget in C++. This widget must contain any child
widgets that we want to hook up via C++, which will include two TextBlocks
to hold the Speaker and Dialogue respectively as well as an Image to display
the speaker’s portrait.

Thus, we’ll declare three properties: Name, Dialogue, and Portrait in Lab8DialogueWidget.h.
In order to bind these correctly to the Blueprint UMG, we must include the
BindWidget specifier in our UProperty macro. It will look something like this:
UPROPERTY(BlueprintReadWrite, meta = (BindWidget))

UTextBlock * Name;

In practice, we’d want to make RichTextBlocks rather than TextBlocks, but
that requires additional setup time we definitely don’t have for this lab. Once
that’s done, we will switch back to the editor and create a new Widget Blueprint
from the drop down under the User Interface tab. When it asks you for the type,
choose Lab8DialogueWidget and name it Lab8DialogueWidgetBP. Add in the
correctly named and typed widgets to match what’s in the BP. You’ll be able
to check if they’re set up correctly by looking at this bindings tab under the
Palette tab for the UMG Designer.

Once that’s done, we’ll hook up the widget to the controller via the Blueprint
level for simplicity. Open the level BP by clicking the little graph button at the
top. It will look something like this:

Once that’s in place, add the following BP nodes to the BeginPlay exec node:

4

You should now see your Widget displayed on the screen when you hit play!

Creating a Game Instance

You might be thinking at this point, “surely we’re almost done, right?” and
by some definition of “almost” that’s probably true! But no, not really. We’re
finally to the important stuff. Namely, now it’s time to create our own Game
Instance so we can handle asynchronous loading and persistent data storage
(both essential things to do correctly on larger projects).

The last C++ class we need to create is Lab8GameInstance, which will
inherit from GameInstance. Once you do this, you will need to go into Maps
and Modes under Project Settings and set the Game Instance default class to
Lab8GameInstance.

We want to load our dialogue dynamically at runtime, so we’re going to
override Init() (and usually Shutdown() to handle any clean up, but we don’t
need to worry about that for this project). We’re also going to create a func-
tion void LoadDialogueData(FSoftObjectPath DialogueToLoad) and we’re
going to create a variable DialogueData, which is of type UDataTable *, and
it’s where we’re going to actually store the .csv data at runtime.

The LoadDialogueData function will follow a very boilerplate form. It will
look like this:

What this does is create a streamable handle to allow asynchronous loading
of the data table. If the Asset Manager is able to retrieve the data, it then

5

pulls out the data and, in our case, assigns it to the DialogueData pointer we
created earlier. Note that the code within the if (AssetHandle) block is an
asynchronous callback, so we don’t know exactly when AssetHandle will be
populated. Thus, if you call LoadDialogueData in Init (which we will do!) you
cannot this pointer will be populated before the next call in Init. Asynchronous
function calls are extremely common in event driven systems, so developing a
good mental model of concurrency is essential.

You will also need to include Engine/AssetManager.h and Engine/DataTable.h
to get it to compile. You can now call on this function in Init. You can cre-
ate the Soft Object Path (e.g. a soft reference to an asset) via FSoftObjectPath
DataPath(TEXT("DataTable’/PathToData/Lab8Dialogue.Lab8Dialogue’"));

where Lab8Dialogue is the Data Table you created in the editor.

Connecting the Data to Widgets

At long last, we’re ready to actually populate our widget! We need to populate
both the text and the texture, but let’s start with the text just to confirm it’s
working (though just fyi, there will be a bug with our approach the first time we
load in the data, but we’ll come back to fix it after we get this part connected).

Let’s start by creating a BlueprintCallable function called SetupDialogue()
in Lab8DialogueWidget. We’re doing this so we can kick the dialogue loading
off via the level BP for convenience (so make it public), but there are many
other ways to hook this up depending. This will be the actual function that
populates the three widgets, so we’ll need to get the correct FDialogueStruct
in order to get that information. Note that there is only one row in our example,
but there will be many more in practice. Since there is only one row, the Row
Name we’re looking for is 1.

Regardless, we need to search through the DialogueData variable stored
in Lab8GameInstance to find the row that matches to this Row Name key.
Let’s create a helper method in Lab8GameInstance to assist with that pro-
cess. For the sake of simplicity, our method signature will be FDialogueStruct
GetDialogueStruct(), and we’ll hardcode our Row Name into this method
rather than passing it in as an argument. This is a pretty bad idea, but we’ll
do it for now, since this lab already has enough going on.

All we need to do is call FindRow from DialogueData then return it to
whoever is querying for that data. The function implementation will look like
this:

6

Once you get that compiled (be sure to include Lab8Structs.h, let’s access
this function from Lab8DialogueWidget’s SetupDialogue function to retrieve
our data!

Displaying Text

First, we need to include "Kismet/GameplayStatics.h" and Lab8GameInstance.h
so we can access the GameInstance. We’re going to access the GameInstance by
calling GameplayStatics::GetGameInstance(GetWorld()) and then cast that
value to our Lab8GameInstance. We can then access the FDialogueStruct

that’s returned from GetDialogueStruct() to pull out the FNames associated
with the individual values.

You can call SetText from the TextBlock widgets to set them to FText values
(not FNames, so you need to call the function FText::FromName()). You’ll also
notice the dialogue isn’t correct (since the value stored in Lab8Dialogue.csv

is actually a key into the string table. Thus we need to access the string table
using the function FText::FromStringTable(). All together, the function will
look like this:

7

Don’t forget the necessary includes: Lab8Structs.h and "Components/TextBlock.h",
and then hook this into the Level blueprint after creating the widget to test that
it’s working. The last step is to add the image data!

Displaying Images

We’ve come this far using reasonable-ish code practices, so let’s handle the
images in a mildly intelligent way as well. In this kind of system, we can
probably assume we’ll display any given image several times over the course
of a level, so let’s start by caching our image data in TMap PortraitMap in
Lab8DialogueWidget. Note that TMaps aren’t garbage collected in Unreal, so
you should implement NativeDestruct() to remove elements from the TMap.

We’ll also create a function void SetPortraitAssets(ULab8DataAsset *

PortraitDataAsset), which will bring in DialogueAsset and pull out the data
into PortraitMap. That functionality will just look like this:
for (auto& Elem : PortraitDataAsset->Portraits)

{ PortraitMap.Emplace(Elem.Key, Elem.Value); }
Now that you’ve loaded the FNames and Textures into PortraitMap, you

can access the correct image to display in SetupDialogue using the FindRef

function for PortraitMap. This should return a UTexture2D * which you
can then set to be the image displayed for the Portrait binding by calling
SetBrushFromTexture. You can call this function within Lab8DialogueWidgetBP’s
Event Graph or from the Level BP. Either way is fine given our current setup!
If you do it from your Construct event in in the widget directly, it will look
something like this:

If everything’s working, congratulations! You’re done with your whirlwind
tour of data management in Unreal! There are a couple caveats I’ve ignored, but
this should be enough to start digging into additional data/UI functionalities!

Submission

After you’re satisfied, take a screenshot of your GUI displaying the correct
information. Also screenshot exciting parts of your code, and submit these files
plus the project code via your GitLab account and include a link to your video
via Youtube. Link your repository as your Canvas submission.

8

