
OBJECT-ORIENTED
PROGRAMMING

CS354P

DR SARAH ABRAHAM

CS354P

OBJECT-ORIENTED PROGRAMMING

▸ Treats functionality and data as “objects”

▸ Objects have their own properties and methods that they can access

▸ Objects have notion of “self” (this in C++)

▸ Can use classes to provide property and method definitions

▸ Instances (objects) created from these definitions have unique
property values based on self

▸ Prototyping is another way to implement OOP that avoids the class/
instance dichotomy

▸ Prototypes are objects that other objects inherit from

CS354P

FOUR PRINCIPLES OF OOP

▸ Encapsulation

▸ Abstraction

▸ Inheritance

▸ Polymorphism

CS354P

ENCAPSULATION

▸ Mechanism of hiding data implementation details

▸ Designed to facilitate using object functionality without having to
understand underlying details

▸ Prevents side effects that occur when data is manipulated directly

▸ Simplifies debugging process if mistakes does occur

▸ public versus private and protected access modifiers help expose
what is necessary to see but hide what is unnecessary to see

▸ Make properties private and expose with getters/setters

▸ Make helper methods private

CS354P

OKAY BUT...
▸ Encapsulation is a pain

▸ Ideally make everything private then expose to public/protected only when
necessary

▸ Hard to do when prototyping

▸ Easy to just make everything public and imagine you’ll rework the class to
be better designed once it’s done...

▸ Should you still try to follow best practices from the start?

▸ Yes. Think of it as a way to help you organize your thoughts on what the
end-user should see/not see

▸ Yes. This principle is less important in small bodies of code, but as systems
get larger, encapsulation prevents confusion and saves debugging time

CS354P

ABSTRACTION

▸ General concept and goal in programming of focusing on
the model/design rather than implementation details

▸ Abstraction in OOP focuses on presenting available
functionality to the user while hiding how the functionality
is implemented

▸ Commonly use concept of interfaces to define the
functionality that an object implementing the interface
will have

CS354P

INTERFACES

▸ Programming structure that defines expected properties
or behaviors of a class that implements it

▸ Different languages vary in terms of how interfaces are
implemented/what is allowed

▸ Can allow or not allow state (e.g. properties)

▸ Can be inheritance-based or use mix-ins (class contains
methods but not part of the inheritance chain)

CS354P

ABSTRACT CLASSES

▸ C++ uses abstract classes to implement interfaces

▸ Abstract classes cannot be used to create instances

▸ Child classes can instantiate objects

▸ Abstract class can be referred to by references and pointers

▸ A C++ abstract class is any class that has a pure virtual function

▸ Declaring a pure virtual function:

 virtual returntype functionname() = 0;

CS354P

VIRTUAL AND OVERRIDE
▸ virtual notifies the compiler that the specified function is virtual and

requires a dynamic binding (i.e. should only be looked up at runtime)

▸ Allows the derived class’s function implementation to be executed at
runtime overriding the base class’s virtual function

▸ Must be defined in base class if it is not a pure virtual function

virtual returntype functionname ();

▸ override ensures the function is overriding a virtual function from the base
class

▸ C++11 feature that generates a compiler error if derived class is not
correctly overriding base class virtual function

returntype functionname () override;

CS354P

VIRTUAL FUNCTIONS IN UNREAL?

▸ Unreal UObjects do not support pure virtual functions but virtual
functions are used extensively

▸ PURE_VIRTUAL macro makes compiler check that all child classes
have implemented the function to “imitate” pure virtual

▸ Why no pure virtual functions?

▸ UClass system requires that all UObjects be instantiated

▸ Creates at least one instance of the Class Default Object (CDO)

▸ Uses this object as a prototype for all objects created from that class

▸ Class constructor only called once to create this object!

CS354P

MAKE SENSE?

CS354P

INHERITANCE

▸ Mechanism that allows an object or class to be based another
object or class

▸ Child class/object acquires most properties and behaviors of
parent class/object (does not acquire constructor, destructor, etc)

▸ May be a subtyping mechanism that allows classes to express an
“is-a” relationship

▸ This is the case in C++

▸ Two broad categories of inheritance:

▸ Class-based and prototype-based

CS354P

CLASS-BASED INHERITANCE

▸ Use of classes to define properties and behaviors representing the
“physical” objects

▸ Do not “physically” exist until instantiated as objects of that type

▸ Child classes extend parent classes

▸ Abstractions of abstractions

▸ Child objects inherit properties and behaviors of all previous class
abstractions

▸ An instance of an abstraction of an abstraction

CS354P

PROTOTYPE-BASED INHERITANCE

▸ Use of objects to define initial properties and behaviors as
well as “physical” instantiation

▸ Generalized objects can be cloned and/or extended to
make new objects or new types

▸ To create inheritance, child object is cloned from parent
object then given properties and behaviors unique to it

▸ Child objects cloned from this generic child object

▸ An instance of a generalization

CS354P

SO IS UNREAL CLASSICAL OR PROTOTYPAL?

▸ C++ is a classical language

▸ Prototypal languages include Javascript and Lua

▸ UE5’s underlying UClass inheritance is prototypal but it looks and
behaves much like a classical model

▸ Prototypal inheritance is more flexible, dynamic, and potentially
efficient than classical inheritance

▸ Key differences primarily relate to the constructors

▸ Class constructors cannot contain runtime logic

▸ Subobjects must be constructed before object is constructed

CS354P

UE5 C++ OBJECT CONSTRUCTION REDUX

▸ CreateDefaultSubobject

▸ Only callable in the class constructor

▸ Creates the CDO instance

▸ NewObject<T>

▸ Called during gameplay

▸ Convenience template for constructing an object

▸ SpawnActor<T>

▸ Called during gameplay

▸ Convenience template for placing an Actor into a level

▸ Wrapper around NewObject<AActor>

▸ All object construction ultimately calls StaticConstructObject_Internal

CS354P

C++ TEMPLATES
▸ Templated functions operate with generic types

▸ Allows for the creation of functionality that exists in only one place but can
work on multiple types of objects

▸ Templated classes have members that use template parameters as types

▸ Facilitates the creation of interfaces across multiple derived classes

▸ Extremely important, and deep, feature of C++ for “simplifying” the issues
related to being strongly-typed

▸ Simplifying because it allows the writing of generic code once for use by
multiple types

▸ “Simplifying” because it can be used for metaprogramming, or using
programs as data to create new programs

CS354P

POLYMORPHISM

▸ The representation of a single entity using multiple types

▸ Polymorphism types:

▸ Ad hoc allows arguments of different types (e.g. function
overloading)

▸ Parametric uses generics to handle values of different types while
maintaining static type-safety

▸ Subtype allows instances to have multiple types

▸ OOP polymorphism usually refers to subtype polymorphism

▸ Can achieve the others in an OOP context though (e.g. see
discussion on templating)

CS354P

KNOWING THE OBJECT TYPE

▸ If a single object can have multiple types, the correct type
must be determined at runtime based on context

▸ i.e. function is called on the base class type but instances
are of the derived class

▸ How to do this in C++?

▸ Compiler creates a hidden pointer in the base class that all
derived classes inherit

▸ Pointer connects to a table of instance’s virtual functions

CS354P

VPTR AND VTABLES

▸ Vptr is the pointer created at compile time for each instance

▸ Vtable is the static table for each base/derived class containing
function pointers to all virtual functions of base class

▸ Function pointers point to the most derived version of the function

▸ Each instance’s vptr points to its most derived class’s vtable

▸ When polymorphic functions are called (e.g. are virtual), vptr is
accessed and the correct version of the function is accessed based on
the vtable pointers

▸ Does have some overhead over non-virtual functions

CS354P

EXAMPLE OF CLASSES AND THEIR VTABLES

▸ From this image, what do we know about the relationship
of B and C, which functions are virtual, and which functions
are implemented by what class?

https://pabloariasal.github.io/2017/06/10/understanding-virtual-tables/

https://pabloariasal.github.io/2017/06/10/understanding-virtual-tables/

CS354P

CHECKING TYPES IN UE5

▸ Since Unreal implements reflection (the ability of an object to
examine itself), we can also efficiently check object type at
runtime

▸ instance->IsA(OtherClass::StaticClass());

▸ Allows for more nuanced, flexible interactions with objects
than just using virtual functions

▸ e.g. you get back an array of all PrimitiveComponents
colliding with an Actor, but you only need to perform an
operation on the ones of a given type

CS354P

UNREAL INTERFACES

▸ Unreal has UInterface which facilitates implementation of
interfaces without an abstract base class

▸ Derives from UInterface rather than UObject

▸ Use UINTERFACE macro rather than UCLASS macro

▸ Exposes this interface to Unreal reflection system

CS354P

INTERFACES VS COMPONENTS?

▸ Fundamentally both tackle the same problem:

▸ How do I have shared functionality between unrelated objects?

▸ Deciding between a component and an interface can be tricky and is
largely based on personal experience and preference.

▸ In general I prefer components but use interfaces if:

▸ The functionality is between totally unrelated objects

▸ The functionality serves an unrelated purpose between these objects

▸ More info here: https://dev.epicgames.com/documentation/en-us/unreal-
engine/interfaces-in-unreal-engine

https://dev.epicgames.com/documentation/en-us/unreal-engine/interfaces-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/interfaces-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/interfaces-in-unreal-engine

CS354P

CRITICISMS OF OOP

▸ OOP is quite contentious these days

▸ Many fervent supporters and many fervent detractors

▸ General arguments against are that it is:

▸ Too complex in practice

▸ Too focused on types and data

▸ Not as flexible as other approaches

▸ Too simplistic in its modeling

CS354P

SO WHY OOP?

▸ OOP paradigm meshes well with the modeling of real-world
concepts of objects and object interactions (i.e. what we want in
most video games)

▸ C++ is a highly efficient, feature-rich language with great cross-
platform compiler support

▸ Broad specifications of OOP means language implementations
can be more or less efficient and more or less legible

▸ Not necessarily the right solution for all problems but useful
when applied in a domain-specific way

CS354P

UNREAL AND OOP

▸ Unreal does take an object-oriented approach to its architecture

▸ Built around the fundamental principles of OOP

▸ Built on an object-oriented language

▸ Unreal doesn’t necessarily look like a “typical” OOP
implementation for something built on C++

▸ Overlap with Javascript and other dynamic languages

▸ Takes the efficiency of C++ and applies it in a more dynamic
way for the class of problems it is built to solve

