
WORKING WITH DATA
CS354P

DR SARAH ABRAHAM

CS354P

THINKING ABOUT DATA...

▸ What sorts of data do we need?

▸ When do we need that data?

▸ Where should we store all this data?

CS354P

DATA WE NEED
▸ Design information

▸ Designer-created information including stats, tech-trees, combo flow, weapon
customization, etc

▸ Usually made in Excel or other external tools

▸ Player information

▸ Information related to a player that is necessary between levels

▸ Includes things like inventory, health, current quests, completed quests, etc

▸ Game information

▸ Information related to the game state that is necessary between levels

▸ Includes things like time of day and weather, round information, enemy
information, etc

CS354P

WHEN THAT DATA IS NEEDED

▸ On game loading

▸ Data may be needed at the start of the game

▸ User information, save information, asset and system information, etc

▸ Within the level

▸ Data may be loaded at the start of the level or during the level

▸ Asset and system information, player information, save information, etc

▸ Persistent between levels

▸ Data may be needed across multiple levels

▸ Game state information, player information, etc

CS354P

ACCESSING DATA

▸ Data can be accessed from a remote server or from a local file
system*

▸ User information

▸ Asset information

▸ Systems information

▸ World state information

▸ etc...

▸ When should we store this information remotely versus locally?

*Note: Possible to “hard code” a lot of information, but we should avoid this in practice

CS354P

WHAT ABOUT STORING DATA DURING A SESSION?

▸ I/O is expensive

▸ Accessing data from both a file system and a network
connection are expensive

▸ Minimize this cost as much as possible by storing data per
session

▸ Must consider:

▸ What the data is

▸ When we need it

▸ How long we need it

CS354P

EXAMPLE: LEVEL STREAMING

▸ Feature for loading and unloading parts of a map to minimize memory
footprint and reduce rendering

▸ Essential for consoles and handhelds

▸ Must be done asynchronously to avoid lag/stuttering

▸ Use of sublevels and streaming volumes to access parts of the persistent
level

▸ Closely tied to texture streaming

▸ Determines resolution of all necessary textures in the visible scene

▸ Determines what textures to load and unload as well as priority

▸ Manages its own streaming pool to determine available texture budget

CS354P

THINKING ABOUT TRANSIENT VERSUS PERSISTENT DATA

▸ Level data is highly transient in many
games

▸ Data constantly being loaded and
unloaded based on player position

▸ But! May be necessary to save
“changes” to the world should the
player return to allow for persistence...

▸ Data comes in many forms

▸ Think carefully about how to store it
and whether it should be persistent or
transient...

CS354P

GAME MODE AND GAME STATE

▸ GameMode and GameModeBase are actors that define and controls the
game’s rules

▸ Exist only on the server

▸ Determines win conditions, points, characters allowed, number of
players allowed, available items, etc...

▸ GameState and GameStateBase are actors that track the current state
of the game

▸ Replicated to clients

▸ Stores information on team points, number of players the game,
currently available items, etc...

CS354P

PLAYER STATE

▸ PlayerState holds information about an individual
player

▸ Replicated to all clients and stored in PlayerArray in
GameState

▸ Stores information tied to an individual player such as
individual score, user name, ping, etc...

CS354P

PLAYER CONTROLLER

▸ PlayerController is the interface between the player and
the game

▸ Not just a source of inputs into the game!

▸ First level of interface that the client actually owns

▸ Connects the player to the server

▸ Tracks pawn current possessed by the player

▸ Note: Pawns can be replicated to other clients -- player
controller exists only on the server and owning client

CS354P

USING THESE ACTORS

▸ GameMode is the authority that should inform and update GameState and
PlayerState

▸ Changes to these states must be done from the server

▸ Replication is only there so clients can see these changes in state reflected
in their local view

▸ PlayerController is where you access the player’s current HUD

▸ All of these actors are transient (e.g. only exist in the current level)

▸ Cannot store data that required between levels (but will exist across
sublevels in a persistent level)

▸ Except...

CS354P

SEAMLESS TRAVEL

▸ Possible to seamlessly travel between levels under certain
circumstances:

▸ Already connected to the server

▸ Destination map has been previously loaded

▸ Will carry over GameMode and Controllers to new level

▸ ServerTravel() moves server and all clients to the new level

▸ ClientTravel() can either move client to new server or to
new map, if called from server

CS354P

GAME INSTANCE

▸ UGameInstance is a high-level manager for a running game

▸ Spawned at game creation

▸ Destroyed when game instance is shut down

▸ Can store data that needs to persist if seamless travel isn’t an option

▸ Or data that doesn’t make sense to store on PlayerControllers

▸ Good, built-in option for data storage but is very high-level

▸ Manages entire game rather than specific subsystems

CS354P

GAME MANAGERS

▸ Systems that control and manage smaller tasks within the larger game system

▸ Can be used for a specific domain:

▸ Audio Manager

▸ Particle Manager

▸ File System Manager

▸ Can be used for a specific subsystem:

▸ Board Manager

▸ Quest Manager

▸ Minigame Manager

▸ UE5 provides subsystems to assist in managing these

CS354P

STATIC CLASSES

▸ Ensures only one copy is stored in memory

▸ Used extensively in Unreal for library calls
(UGameplayStatics, Math, etc)

▸ Possible to create your own “static class”

▸ Make every function and member static (C++ doesn’t
actually support static classes so we just pretend)

▸ Inherit from UObject

CS354P

STATIC CLASS CAVEATS

▸ Static members are initialized before main() is called

▸ No guarantees on order of initialization so static members cannot
depend on each other

▸ Note: it is possible to use lazy initialization in general C++ to
solve this issue

▸ Due to UE5’s class structure/build process, static members should
be const and initialized at compile time rather than runtime

▸ For dynamic objects and data, try to pass in values as
arguments as much as possible (i.e. dependency injection)

CS354P

SINGLETONS

▸ Singleton pattern restricts the
instantiation of a class to a
single instance

▸ Allows for lazy instantiation

▸ Never created if never
used

▸ Available anywhere

▸ Can be subclassed

class Singleton {

 static Singleton * instance;

 Singleton() { }

public:

 static Singleton * instance() {

 if (!instance)

 instance = new Singleton();

 return instance;

 }

}

Canonical singleton implementation

CS354P

SINGLETON PROBLEMS

▸ Highly controversial design pattern!

▸ Sometimes called an anti-pattern because it breaks more
than it fixes

▸ In practice it’s just a fancy global variable...

▸ Hard to reason about and debug in large-scale projects

▸ Allows for coupling of unrelated behaviors

▸ Performs poorly in concurrent systems (too much shared
memory)

CS354P

HOW TO SOLVE?

▸ Use dependency injection as much as possible

▸ Pass data in as arguments when processing

▸ Use static classes over singletons

▸ Still have issues but easier to reason about

▸ If a static class doesn’t work, consider using a static flag
with a non-static class to ensure only one is created

▸ Use Service Locators (discussed later)

CS354P

WHAT ABOUT UE5?

▸ Unreal highly discourages the use of singletons

▸ If it seems like the best solution, rethink your approach

▸ GameInstance is not implemented as a singleton but it functions as a
singleton

▸ Functions as global state

▸ Accessible via UGameplayStatics library

▸ GameInstance may be too broad and high level to work well for managing
sub-systems but it is generally the right place to store sub-systems

▸ Only one exists

▸ Exists for the entirety of the game

CS354P

MANAGING WITH GAME INSTANCE

▸ Include managers as objects within GameInstance

▸ Use NewObject<MyManager>() to construct a new manager

▸ Same principle as a singleton (only allow one object to be
instantiated) but must be accessed through GameInstance

▸ GameInstance holds the manager instance variable rather than
singleton holding its instance variable

▸ Assumes we cannot eliminate global state so instead focuses on
managing it/making it easier to reason about and maintain

▸ Should still be a “last resort” rather than the de facto choice

CS354P

GAMEINSTANCE SUBSYSTEMS

▸ Unreal provides subsystems for easier lifetime management

▸ Create a class of type UGameInstanceSubsystem

▸ Access the subsystem through a UGameInstance using:

▸ MyGameInstance-
>GetSubsystem<UMyGameSubsystem>();

▸ Must include UMyGameSubsystem in the header

▸ Focus on having limited access patterns for the subsystem
data as well

CS354P

WORKING WITH UNREAL’S FILE SYSTEM

▸ Can use FPaths to access the Unreal File System (UFS)

▸ FPaths::ProjectDir() returns the FString of the project
directory

▸ Numerous other directories available via the FPaths API
including access to the Engine

▸ FPlatformFileManager is a system-agnostic file system manager

▸ Allows the adding, deleting, moving, etc of files

▸ FFileHelper allows for the reading and writing of files

CS354P

WORKING WITH DATA TABLES

▸ Data tables can contain flexible data types for use in a variety of
situations

▸ Essential for dynamic loading of data into scenes when cooking
(binaries such as BPs and textures will not be included in build if
loaded dynamically)

▸ Curve tables can only contain floats and are used for interpolating
values (i.e. power curves)

▸ Specify the type of interpolation between data points

▸ Can use UDataAsset class to customize data types to import/use

CS354P

CSVS

▸ CSVs (Comma Separated Values) are flat file structures for
storing tabular data

▸ Widely used in gameplay development

▸ UE5 supports data and curve tables for parsing in CSVs

▸ Stored in structs that inherit from FTableRowBase to
define expected column values

CS354P

DATA HANDLES

▸ After dragging .csv into Content Folder, can define the
expected data row type

▸ FDataTableRowHandle and FCurveTableRowHandle
expose data to Blueprint for designer use

▸ Once references are set (usually via Blueprint), possible to call
FCurveTableRowHandle::GetCurve() and
FDataTableRowHandle::FindRow() to process data stored

▸ Pointers to structs should not be cached to prevent stale data

CS354P

JSON

▸ JSON (Javascript Object Notation) is the preferred format for transmitting
web-based data

▸ Can be used locally as well

▸ Stores values as arrays or objects allowing for flexible hierarchies

▸ Requires use of Json and JsonUtilities modules (add to Build.cs)

▸ Use #include “JsonUtilities.h"

▸ Use the TJsonReaderFactory to create a reader for deserializing the file

▸ Built in parser for accessing values stored in arrays/objects

CS354P

XML

▸ XML (Extensible Markup Language) is a very flexible format for storing data

▸ Stores values in elements allowing complex, flexible (potentially to the point
of indecipherable) hierarchies

▸ Still commonly used in game development for data storage

▸ Requires use of XmlParser module (add to Build.cs)

▸ Use #include "XmlFile.h"

▸ FXmlFile provides handle to DOM (Document Object Model) for
traversing the file like a tree

▸ FXmlNode provides access to the nodes of the DOM

CS354P

IMPORTING DATA FROM HTTP

▸ Requires use of the HTTP module (add to Build.cs)

▸ Use #include “Runtime/Online/HTTP/Public/
Http.h"

▸ Calls made through a FHTTPModule object

▸ CreateRequest()

▸ ProcessRequest()

▸ OnProcessRequestComplete()

CS354P

FURTHER READING

▸ Game Programming Patterns: Singletons <https://
gameprogrammingpatterns.com/singleton.html>

▸ UE4 File Management <https://www.ue4community.wiki/file-and-
folder-management-create-find-delete-et2g64gx>

▸ Data Driven Gameplay Elements <https://docs.unrealengine.com/en-
US/Gameplay/DataDriven/index.html>

▸ Orfeas Eleftheriou: Parsing JSON <https://www.orfeasel.com/parsing-
json-files/>

▸ David Kay: UE4 and HTTP <http://www.davidykay.com/UE4-Hello-
Http/>

https://gameprogrammingpatterns.com/singleton.html
https://gameprogrammingpatterns.com/singleton.html
https://gameprogrammingpatterns.com/singleton.html
https://www.ue4community.wiki/file-and-folder-management-create-find-delete-et2g64gx
https://www.ue4community.wiki/file-and-folder-management-create-find-delete-et2g64gx
https://www.ue4community.wiki/file-and-folder-management-create-find-delete-et2g64gx
https://docs.unrealengine.com/en-US/Gameplay/DataDriven/index.html
https://docs.unrealengine.com/en-US/Gameplay/DataDriven/index.html
https://docs.unrealengine.com/en-US/Gameplay/DataDriven/index.html
https://www.orfeasel.com/parsing-json-files/
https://www.orfeasel.com/parsing-json-files/
http://www.davidykay.com/UE4-Hello-Http/
http://www.davidykay.com/UE4-Hello-Http/

