
OVERVIEW: GRAPHICS
CS354P

DR SARAH ABRAHAM



CS354P

WHAT IS GRAPHICS?

▸ Broad area that includes anything involved in the process of getting 
pictures onto a screen


▸ Rendering pipeline


▸ Physical simulation


▸ Procedural generation


▸ Animation


▸ Geometry and modelings


▸ etc...



CS354P

WE’LL FOCUS ON THE RENDERING FEATURES

▸ This will be as high-level as possible, since we won’t have 
time to cover the actual math/hardware in any detail


▸ We’ll come back to some of these features when we talk 
more about the GPU pipeline



CS354P

GRAPHICS PIPELINE OVERVIEW

▸ CPU (Central Processing Unit) passes functionality and data to the GPU (Graphics 
Processing Unit)


▸ GPU architecture designed for throughput


▸ High bandwidth, high latency


▸ Goal is to process many similar operations in a parallel manner (i.e. efficiently 
apply mathematical operations to scene data)


▸ Considerations:


▸ What data does the GPU need?


▸ How do we get it to the GPU?


▸ How do we specify what the GPU should do?



CS354P

GRAPHICS LIBRARIES

▸ Provide APIs for communicating data between the CPU and GPU


▸ OpenGL is a higher-level library created by the Khronos Group


▸ Performs more of the setup and makes assumptions about memory to simplify 
developer interactions


▸ OpenGLES is graphics library for embedded systems such as mobile devices and web 
applications


▸ Vulkan is a lower-level library created by the Khronos Group


▸ Allows greater flexibility and developer control by having developers perform setup 
and determine things like memory management/thread management


▸ DirectX is the family of libraries created by Microsoft


▸ DirectX12 is equivalent to Vulkan in most functionality


▸ Metal is graphics library created by Apple and Sony has their own library as well...



CS354P

HOW DOES THESE RELATE TO THE GRAPHICS HARDWARE?

▸ Graphics hardware has API specifications that these graphics libraries 
adhere to


▸ Graphics libraries supported in hardware via drivers


▸ The choices that graphics libraries make effect their support by drivers:


▸ OpenGL has tremendous backwards compatibility and support, and this 
complexity effects its performance


▸ DirectX11 has similar issues but also more hand-optimized due to 
marketshare


▸ DirectX12 and Vulkan are in the process of replacing OpenGL/DirectX11 
in high-end games



CS354P

UNREAL: SUPPORTING MULTIPLE HARDWARES

▸ Rendering Hardware Interface (RHI) is a C++ interface to allow 
communication from UE5’s rendering code to platform-dependent 
implementations of graphics APIs


▸ Also use of an internal shader cross compiler (HLSLCC)



CS354P

WHAT ARE SHADERS?

▸ Small programs that run on GPU hardware


▸ GPUs have programmable pipelines which allow these compiled 
programs to be linked to pipeline stages and dictate how data passed 
from the CPU is processed


▸ Apply transforms to vertex data


▸ Use texture information


▸ Apply post-processing effects


▸ etc...


▸ Final output is an image buffer with each pixel “shaded” accordingly



CS354P

AT LAST...THE PRETTY STUFF...

▸ Shaders are where we specify things like lighting models, texture 
mapping, material interactions and more


▸ i.e. they make things pretty
Final Fantasy 7 Remake

Everwild

Guilty Gear Strive

Backbone



CS354P

MATERIALS AND PHYSICALLY-BASED RENDERING (PBR)

▸ Concept of the visual qualities a mesh object has


▸ Textures are part of this but called materials because they represent 
the actual material properties in relation to the lighting equation


▸ Take incoming light data and apply it to the physically-based lighting 
function of the material to determine the final pixel color output



CS354P

BRDFS

▸ Bidirectional reflectance 
distribution function


▸ Defines how a material reflects 
light based on the angle of 
observation


▸ Determines ratio of reflected 
radiance


▸ Physically-based


▸ Empirically studied by material 
sample



CS354P

MATERIAL PARAMETERIZATION

▸ Base Color (Albedo)


▸ Diffuse color based on scattering/absorption of light wavelengths


▸ Roughness


▸ Amount of microsurfaces and imperfections on material’s surface leading 
to light scatter


▸ Metallic


▸ Degree of “metalness” including colored reflections and any diffusion 
from corrosion/dirt on surface


▸ Reflectance


▸ Amount of reflected light on non-metallic surfaces



CS354P

ALBEDO



CS354P

ROUGHNESS



CS354P

METALLIC



CS354P

REFLECTANCE



CS354P

MATERIALS IN UNREAL

▸ Assets that can be applied to meshes to control the mesh’s 
lighting properties


▸ Uses a node-based scripting language that connects to the 
underlying shader programming language (in this case, HLSL)


▸ Allows artists to create visual effects without any shader 
programming knowledge


▸ Possible to access HLSL directly but not required in many 
cases



CS354P

MATERIAL PROPERTIES AND INPUTS

▸ Material properties specify things like blend 
mode, shading model, level of detail, 
translucency, and shader pipeline 
optimizations among others 


▸ Material inputs specify the material 
parameterization discussed earlier


▸ Can connect to art programs like Substance, 
which specialize in generating procedural, 
PBR-based textures and materials

Material Inputs



CS354P

PUTTING IT ALL TOGETHER...

▸ Can create very simple to very complex effects...

https://forums.unrealengine.com/community/work-in-progress/7372-water-material

https://forums.unrealengine.com/community/work-in-progress/7372-water-material


https://forums.unrealengine.com/community/work-in-progress/7372-water-material

https://forums.unrealengine.com/community/work-in-progress/7372-water-material


CS354P

BUILT-IN EFFECTS

▸ Unreal has a ton of beautiful effects/features you can use “out of the box”

▸ Sky Atmospheres create 
physically-based sky and 
atmospheric rendering with time 
of day


▸ Multiple types of visibility culling 
plus per-instance settings


▸ Many, many pre-baked and 
dynamic lighting setups


▸ Dynamic resolution support for 
adjusting resolution per frame



CS354P

POST-PROCESSING EFFECTS

▸ Effects done at the end of the shading pipeline to apply visual changes globally 
to the scene


▸ Unreal uses Post-Process Volumes that apply effect within that volume


▸ Effects include:


▸ Anti-aliasing


▸ Bloom


▸ Depth of Field


▸ Lens Flare


▸ Chromatic Aberration


▸ Vignette



CS354P

POST PROCESS MATERIALS

▸ Can also apply Post Process Materials, which are shaders 
that work in the scene’s texture space*

* Note to students who have taken graphics: I’m differentiating texture and screen space 
because Unreal assumes a deferred shading pipeline (which we’ll touch on later) but 
you can think of this as a fragment shader

Some post-process material examples



CS354P

PARTICLE SYSTEMS

▸ Rules and memory management for a large body of point masses to create visual 
effects


▸ Creation of fluid effects


▸ Creation of crowd behaviors/flocking


▸ etc..


▸ UE5 has two particle systems:


▸ Cascade is older, better documented system with less flexibility


▸ Niagara is newer, less documented system with greater flexibility


▸ Cascade and Niagara both designed for designer/artist use


▸ Niagara is more “next-gen” allowing designers/artists to create more lower-level 
functionality with programmer assistance



CS354P

PARTICLE EFFECTS IN ACTION

Created by Ashif Ali in Niagara (https://cghow.com/members/asif786ali/)

https://cghow.com/members/asif786ali/


CS354P

RAY TRACING

▸ Technique that emulates the physical equations of light transport 
to get an accurate representation of light-material interaction


▸ Increasingly common in modern systems with growing hardware 
support


▸ Unreal supports two kinds of ray tracing


▸ Path tracing (offline, expensive form of raytracing to correctly 
emulate light transport)


▸ Hybrid ray tracing (real-time form of raytracing that is used in 
tandem with “raster” style effects)



CS354P

HYBRID RAYTRACING EXAMPLE: ARCHITECTURE STUDIOS

https://www.youtube.com/watch?v=YSZnX6P7-MM

https://www.youtube.com/watch?v=YSZnX6P7-MM


CS354P

FURTHER READING

▸ NVIDIA Bringing Unreal Engine 4 to OpenGL [https://
de45xmedrsdbp.cloudfront.net/Resources/files/
UE4_OpenGL4_GDC2014-514746542.pdf]


▸ OpenGL vs DirectX -- what really happened? [https://
www.back2gaming.com/reviews/b2g-games/pc/opengl-
vs-directx-what-really-happened/]


▸ UE4 Rendering and Graphics [https://
docs.unrealengine.com/en-US/Engine/Rendering/
index.html]

https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html

