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GAME ENGINE ARCHITECTURE
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—//using UnityEngine;
using System.Collections;

1=||public class scriptPlayer i—im
bool going, spotReached,
public short direction, © ’Kr ‘ L
movePlayer moveP; GameObj o Gt compiend. [> ===
© Custam Tick

Color colorStart; Color

void Start() {
going = se; north
speed = Globals.pSpeed;
moveP = GetComponent<mdg
gameSFX = GameCbject.Fi
gameBGM = GameCbject.Fi
colorStart = renderer.
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o if (south){ direction transform.eulerAngles = new Vector
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o

spotReached if (steps sfxScript.sndMove () ;

on); steps++; if(steps >= speed) ) { steps = spotReached =

else{ of
if (!spotReached) { o
if (Globals.readyP) moveP.Move (direc if(steps >= | speed) ) { steps spotReached =
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WHAT IS A GAME ENGINE?

> Low-level architecture

> 2D/3D graphics system

v

Physics system

v

GUI system

v

Sound system

v

Networking system
> High-level architecture
> Game objects

> Game mechanics

> Toolsets

>

>

>

Level editor
Character and animation editor

Material creator

> Subsystems

>

v

v

v

v

Run-time object model

Real-time object model updating
Messaging and event handling
Scripting

Level management and streaming
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RUN-TIME SYSTEM

* Low-level architecture
~ 2D/3D graphics system
" Physics system
> GUI system
* Sound system

> Networking system
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SYSTEM MODULARITY FOR PLAY

* Keep systems as independent as possible during run-time
* What does this mean and how do we do this?

* Examples of keeping systems independent:
* The scene still renders even if the physics engine fails

> The world state is consistent between client and server
even if sounds or animations are lost

* The game loop does not wait for Al to make a decision
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SYSTEM MODULARITY FOR DEVELOPMENT

» Keep systems as independent as possible during development

* What does this mean and how do we do this?
» Examples of keeping systems independent:
* The game is playable before the GUI is built

* Changes a programmer makes do not clobber the artist or
designer pipelines

* The binary for a game that doesn’t use physics does not
require the physics libraries



CS354P

HIGH-LEVEL ARCHITECTURE

* Game objects

> Game mechanics
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MODELING DATA

» What sort of data is in a game and what systems need to use this data?

» Data must be passed between various run-time systems in an efficient
manner!

» Two broad approaches
» Object-centric

» Property-centric

» The choices made here will have ramifications for every single
subsystem and any communication between subsystems!
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WORKING WITH OBJECTS

» Use of classes (attributes and behaviors) to create and
update data

» Engine defines run-time systems and supporting systems
within its own frameworks of classes

» Game developer extends these classes through
inheritance to match specific behavior required
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WORKING WITH PROPERTIES

» Use of tables of properties and object ids to define and
update data

» Engine defines run-time systems and supporting systems
within its own frameworks of API calls

» Game developer passes “object” information required
by systems to exhibit correct behavior
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WHAT DOES THIS MEAN FOR DEVELOPMENT?

» Object-centric approaches have a more rigid structure
» Much upfront mastery required
» Better debugging tools longer term

» Property-centric approaches have a more fluid structure
» Easier early prototyping

» Potentially confusing structures in large-scale projects
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UNREAL ENGINE

» UES is object-oriented and uses components and
interfaces extensively

» Large codebase with many specific functionalities

» Must understand the underlying architecture to work
effectively in it!
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TOOLSETS

> Level editor
> Character and animation editor

> Material creator
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DESIGNER TOOLS

» Tools related to game design depend heavily on the game
» Crafting/leveling systems may primarily be done in CSVs

» Combat/movement systems closely tied to in-game
animations and physics systems

» Dialogue usually written externally then imported

» Game engines may or may not support any of these
natively
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LEVEL EDITORS

» Provided by most engines

» May or may not generate
level content

programmatically/ o o
procedurally e .5; T

» Editor considerations also
include loading/streaming/
level of detail
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ARTIST TOOLS

» Tools related to the artist pipeline extend beyond the game
engine

» Maya/Max/Blender/ZBrush/Houdini for modeling
» Substance/Houdini for procedural texture generation
» Maya/Blender for animation

» Houdini for VFX

» Game engine must provide ways to bring in this data, modify
it for in-game use, and use it during gameplay
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UES MATERIALS EDITOR

» Allows artists to create
shaders in a node-based
way

» Node-based material
graphs standard practice
in graphics pipeline

» Some tools for
performance debugging
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UES ANIMATION SYSTEMS

» Multiple systems to
support skeletal, time-
based, and cinematic
animations

» Animation Blueprints/
State Machines
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UES VEX SYSTEMS

» Multiple systems to
support visual special
effects

» Particle systems
» Hair and cloth simulation
» Post-processing shaders

» Material shaders
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SUBSYSTEMS

>

>

Run-time object model

Real-time object model updating
Messaging and event handling
Scripting

Level management and streaming
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MEMORY MANAGEMENT

» Memory and performance are big considerations in game
development

» Nice-looking games need to run on consoles and
phones at decent frame rates

» Engine design should facilitate performant code

» Build for intelligent use of garbage collection and
smart pointers to keep developer code clean and easy
to reason about
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HIGH-LEVEL INTERACTIONS

» Developers should work on as high a level as performance allows
» Easier to reason about
» Easier to structure
» More reusable code
» Many game engines are written and optimized in C++
» Support higher level scripting languages on top of this
» Support visual scripting languages for artists and designers

» If your entire game is nothing but C++ (or equivalent low-level language),
there may be a problem

» We're here to make games -- not programmer flex at each other
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UES'S STRUCTURE

» Designed to facilitate collaboration between programmers, artists, and

designers

1. Engine provides general functionality with an efficient
implementation for most game features

2. Game programmers create building-blocks for specific needs in
UES5-specific subset of C++

3. Designers and artists build on top of building blocks in node-based
visual scripting language called Blueprint

> We will work primarily in C++ but also use Blueprint to better understand
UES5’s architecture and how to collaborate with designers/artists
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ASSIGNMENT 0

» Assignment O is available!
» Can be completed on personal machines or in the lab

» Please try to set up Unreal on your personal machine
before defaulting to the lab

» We will be assuming C++ projects for the entirety of the
semester

» Please get Visual Studio (or equivalent) set up as soon as
possible to confirm compilation toolchain is working!



