
GAME ENGINE ARCHITECTURE

CS354P
DR SARAH ABRAHAM

MODERN GAME
ENGINES

CS354P

WHAT IS A GAME ENGINE?

‣ Low-level architecture

‣ 2D/3D graphics system

‣ Physics system

‣ GUI system

‣ Sound system

‣ Networking system

‣ High-level architecture

‣ Game objects

‣ Game mechanics

‣ Toolsets

‣ Level editor

‣ Character and animation editor

‣ Material creator

‣ Subsystems

‣ Run-time object model

‣ Real-time object model updating

‣ Messaging and event handling

‣ Scripting

‣ Level management and streaming

CS354P

RUN-TIME SYSTEM

‣ Low-level architecture

‣ 2D/3D graphics system

‣ Physics system

‣ GUI system

‣ Sound system

‣ Networking system

CS354P

SYSTEM MODULARITY FOR PLAY

‣ Keep systems as independent as possible during run-time

‣ What does this mean and how do we do this?

‣ Examples of keeping systems independent:

‣ The scene still renders even if the physics engine fails

‣ The world state is consistent between client and server
even if sounds or animations are lost

‣ The game loop does not wait for AI to make a decision

CS354P

SYSTEM MODULARITY FOR DEVELOPMENT

▸ Keep systems as independent as possible during development

‣ What does this mean and how do we do this?

▸ Examples of keeping systems independent:

‣ The game is playable before the GUI is built

‣ Changes a programmer makes do not clobber the artist or
designer pipelines

‣ The binary for a game that doesn’t use physics does not
require the physics libraries

CS354P

HIGH-LEVEL ARCHITECTURE

‣ Game objects

‣ Game mechanics

CS354P

MODELING DATA

▸ What sort of data is in a game and what systems need to use this data?

▸ Data must be passed between various run-time systems in an efficient
manner!

▸ Two broad approaches

▸ Object-centric

▸ Property-centric

▸ The choices made here will have ramifications for every single
subsystem and any communication between subsystems!

CS354P

WORKING WITH OBJECTS

▸ Use of classes (attributes and behaviors) to create and
update data

▸ Engine defines run-time systems and supporting systems
within its own frameworks of classes

▸ Game developer extends these classes through
inheritance to match specific behavior required

CS354P

WORKING WITH PROPERTIES

▸ Use of tables of properties and object ids to define and
update data

▸ Engine defines run-time systems and supporting systems
within its own frameworks of API calls

▸ Game developer passes “object” information required
by systems to exhibit correct behavior

CS354P

WHAT DOES THIS MEAN FOR DEVELOPMENT?

▸ Object-centric approaches have a more rigid structure

▸ Much upfront mastery required

▸ Better debugging tools longer term

▸ Property-centric approaches have a more fluid structure

▸ Easier early prototyping

▸ Potentially confusing structures in large-scale projects

CS354P

UNREAL ENGINE

▸ UE5 is object-oriented and uses components and
interfaces extensively

▸ Large codebase with many specific functionalities

▸ Must understand the underlying architecture to work
effectively in it!

CS354P

TOOLSETS

‣ Level editor

‣ Character and animation editor

‣ Material creator

CS354P

DESIGNER TOOLS

▸ Tools related to game design depend heavily on the game

▸ Crafting/leveling systems may primarily be done in CSVs

▸ Combat/movement systems closely tied to in-game
animations and physics systems

▸ Dialogue usually written externally then imported

▸ Game engines may or may not support any of these
natively

CS354P

LEVEL EDITORS

▸ Provided by most engines

▸ May or may not generate
level content
programmatically/
procedurally

▸ Editor considerations also
include loading/streaming/
level of detail

CS354P

ARTIST TOOLS

▸ Tools related to the artist pipeline extend beyond the game
engine

▸ Maya/Max/Blender/ZBrush/Houdini for modeling

▸ Substance/Houdini for procedural texture generation

▸ Maya/Blender for animation

▸ Houdini for VFX

▸ Game engine must provide ways to bring in this data, modify
it for in-game use, and use it during gameplay

CS354P

UE5 MATERIALS EDITOR

▸ Allows artists to create
shaders in a node-based
way

▸ Node-based material
graphs standard practice
in graphics pipeline

▸ Some tools for
performance debugging

CS354P

UE5 ANIMATION SYSTEMS

▸ Multiple systems to
support skeletal, time-
based, and cinematic
animations

▸ Animation Blueprints/
State Machines

▸ Timelines

▸ Sequencer

CS354P

UE5 VFX SYSTEMS

▸ Multiple systems to
support visual special
effects

▸ Particle systems

▸ Hair and cloth simulation

▸ Post-processing shaders

▸ Material shaders

CS354P

SUBSYSTEMS

‣ Run-time object model

‣ Real-time object model updating

‣ Messaging and event handling

‣ Scripting

‣ Level management and streaming

CS354P

MEMORY MANAGEMENT

▸ Memory and performance are big considerations in game
development

▸ Nice-looking games need to run on consoles and
phones at decent frame rates

▸ Engine design should facilitate performant code

▸ Build for intelligent use of garbage collection and
smart pointers to keep developer code clean and easy
to reason about

CS354P

HIGH-LEVEL INTERACTIONS
▸ Developers should work on as high a level as performance allows

▸ Easier to reason about

▸ Easier to structure

▸ More reusable code

▸ Many game engines are written and optimized in C++

▸ Support higher level scripting languages on top of this

▸ Support visual scripting languages for artists and designers

▸ If your entire game is nothing but C++ (or equivalent low-level language),
there may be a problem

▸ We’re here to make games -- not programmer flex at each other

CS354P

UE5’S STRUCTURE

▸ Designed to facilitate collaboration between programmers, artists, and
designers

1. Engine provides general functionality with an efficient
implementation for most game features

2. Game programmers create building-blocks for specific needs in
UE5-specific subset of C++

3. Designers and artists build on top of building blocks in node-based
visual scripting language called Blueprint

‣ We will work primarily in C++ but also use Blueprint to better understand
UE5’s architecture and how to collaborate with designers/artists

CS354P

ASSIGNMENT 0

▸ Assignment 0 is available!

▸ Can be completed on personal machines or in the lab

▸ Please try to set up Unreal on your personal machine
before defaulting to the lab

▸ We will be assuming C++ projects for the entirety of the
semester

▸ Please get Visual Studio (or equivalent) set up as soon as
possible to confirm compilation toolchain is working!

