
ENTITY COMPONENT SYSTEMS

CS354P

DR SARAH ABRAHAM

CS354P

COMPONENTS IN UNITY

Transform component

Camera component

Example: Main Camera Game Object associated with each scene

CS354P

UNITY COMPONENT PROPERTIES

▸ Primary form of interacting with the system

▸ Functionality on components themselves

▸ Easy to create redundant or inter-dependent systems

▸ Still object-oriented and inheritance-based

▸ Memory management handled by GameObject

▸ Not fully data-driven

CS354P

WHAT DOES DATA-DRIVEN MEAN?

CS354P

ENTITY COMPONENT SYSTEMS (ECS)

▸ A form of component-based architecture where all
functionality comes from the components

▸ Entity is an id

▸ Entity data stored in components

▸ Systems modify related components

CS354P

ECS VS OOP

▸ Key difference: entity does not control or organize
components in ECS

(http://www.alecmce.com/)

▸ Objects have properties
and behaviors

▸ Model resembles the
real-world concept of
objects

▸ Entities are purely a
container class

▸ Model resembles a
relational database

http://www.alecmce.com/

CS354P

UNITY DOTS

▸ Data-oriented Technology Stack (DOTS) intended to make
Unity competitive in the Triple A space

▸ Better architecture for managing large-scale projects

▸ Better support for multi-threading

▸ Better compilation

▸ Move from MonoBehaviour-based system to an ECS
system

CS354P

DOTS ENTITIES
▸ Entities are IDs that are stored per-world by an EntityManager

▸ EntityManager maintains list of all entities

▸ Determines how to process entities to optimize performance

▸ Creates EntityArchetypes based on components associates with
entities

▸ EntityArchetype structs allow the creation and reuse of particular
combinations of components

▸ GameObjects and Prefabs converted to entities at runtime

▸ Possible to also create entities directly using Instantiate() and
CreateEntity()

CS354P

DOTS COMPONENTS

▸ Components contain data related to a particular behavior

▸ Implemented as a struct with variable data

▸ Still a data container -- behaviors exists within Systems only

▸ Component structs use interfaces based on type of data and
data needs:

▸ IComponentData, IBufferElementData,
ISharedComponentData, ISystemStateComponentData,
ISharedStateComponentData

CS354P

ARCHETYPES AND MEMORY LAYOUT

▸ Archetypes group components
based on entities

▸ Entities with same archetype
stored in chunks

▸ Changes to components at
runtime changes an entity’s
archetype and where it is
stored

CS354P

CHUNKS AND MEMORY LAYOUT

▸ Chunks always contain
entities of single archetype

▸ Chunk memory allocated
dynamically

▸ Allows for one-to-many
relationship for querying

▸ ECS generally requires flat,
cache-friendly data layout
to get good performance

CS354P

SOME ADDITIONAL TYPES OF COMPONENTS

▸ Chunk components contain data applied to all entities in a
chunk

▸ Shared components allow entities to be stored with other
entities that have the same value

▸ Both chunk and shared component data stored outside of
chunk

▸ Allows the reuse of a single component instance across
the chunk

CS354P

DOTS SYSTEMS

▸ Systems that perform actual logic on component data

▸ Systems automatically discovered and instantiated at
runtime

▸ Organized into groups within the world

▸ Two basic types of systems provided depending on the
intended functionality:

▸ Component System and Job Component System

CS354P

COMPONENT SYSTEMS VS JOB COMPONENT SYSTEM

▸ Component Systems perform work on the main thread and
not specifically optimized for ECS

▸ Behaves similarly to old-style Unity Component (but
only contains methods)

▸ Job Component Systems perform work on components in
parallel

▸ Behaves in expected ECS way

CS354P

TYPES OF JOBS

▸ Systems kick off jobs to iterate over entities/components

▸ Job types provided based on usage and performance
requirements

▸ IJobForEach, IJobForEachWithEntity, IJobChunk,
IJobParallelFor, etc...

▸ Possible to access specific data using EntityQueries

▸ Allow running jobs specifically for those entities/
components

CS354P

HANDLING JOB DEPENDENCIES

▸ When data is read-only, system jobs are embarrassingly
parallel, but writes require dependencies

▸ Job Handle created per-world to schedule jobs based on
read/write dependencies within data

▸ Dependency graph created automatically for any Job
Component System

CS354P

SYSTEM EVENTS

▸ Events supported per-system for entity life-cycle
management

▸ OnCreate(), OnStartRunning(), OnUpdate(),
OnStopRunning(), OnDestroy()

▸ All events executed on the main thread

▸ Can schedule jobs on background threads from
OnUpdate()

CS354P

DOTS STACK

▸ ECS is only one part of the greater DOTS framework

▸ Job scheduler essential

▸ Burst compiler allows for further optimizations

CS354P

C# JOB SYSTEM

▸ C# Job System allows for the writing of safe, multi-
threaded code

▸ Integrated into Unity’s native job system for better pooling

▸ Jobs sent copy of data rather than reference to data to
prevent race conditions

▸ Uses “blittable” types to avoid conversion overhead

▸ Blittable types can be safely copied using memcpy

CS354P

WORKING WITH JOBS

▸ Jobs scheduled on the main thread using Schedule()

▸ Once called, job cannot be interrupted

▸ Results of job should be stored in a NativeContainer so that
it is accessible by both job thread and main thread

▸ Complete() called when results are needed

▸ If job is not completed when this function is called, will block

▸ Dispose() frees memory allocated by result

CS354P

BURST COMPILER

▸ Recall: C# is compiled by .NET’s CLR (Common Language
Runtime) VM

▸ First compiled into IL (Intermediate Language) then JIT
(Just-in-time) compiled into machine code at runtime

▸ Burst compiler uses LLVM to translate IL into machine code
for greater efficiency

▸ Works well with ECS job model

CS354P

LLVM

▸ Infrastructure for cross-platform compilation and toolchain
technologies

▸ Written in C++ but designed to be language-independent

▸ Supports compiling of Rust, Ada, Haskell, Swift, Lua, Fortran etc...

▸ LLVM Intermediate Representation (IR) is low-level language

▸ Strongly-typed RISC (Reduced Instruction Set) language

▸ Three equivalent forms of IR: in-memory compiler, on-disk bitcode,
human-readable

▸ Highly optimizable, flexible, and powerful system for compilation

CS354P

ECS PROS

‣ Can be more memory-efficient

‣ Only store properties in use, no unused data members in objects

‣ Easier to construct in a data-driven way

‣ Define new attributes with scripts, less recoding of class
definitions

‣ Can be more cache-friendly

‣ Data tables loaded into contiguous locations in cache

‣ Struct of arrays (rather than array of structs) principle

CS354P

ECS CONS

▸ Hard to enforce relationships among properties

▸ Harder to implement large-scale behaviors

▸ Composed of scattered pieces of fine-grained
behavior

▸ Harder to debug

▸ Can’t just put a game object into a watch window in
the debugger and see what happens to it

CS354P

WHAT IS THE RIGHT MODEL?

▸ ECS is a very low-level model

▸ Requires thinking extensively about memory management

▸ Job dependencies, caching properties, etc

▸ Works well if the engine mostly handles this for game
developers

▸ Trade-off between convenience and performance
otherwise

CS354P

DOMAIN-SPECIFIC LANGUAGES AND PROGRAMS

▸ Domain-specific languages (DSLs) are languages intended for
specific use-cases rather than general-purpose programming

▸ Examples: Matlab, Mathematica, YACC, SQL, etc

▸ Domain-specific programs are the same concept applied to a
greater system

▸ Provide high-level interface with potential for low-level
optimizations

▸ But not intuitive to non-expert users...

CS354P

FURTHER READING

▸ Unity ECS Overview <https://docs.unity3d.com/Packages/
com.unity.entities@0.1/manual/index.html>

▸ Unity at GDC <https://www.youtube.com/watch?
v=kwnb9Clh2Is&t=1s>

▸ Unity Burst Compiler <https://docs.unity3d.com/
Packages/com.unity.burst@1.2/manual/index.html>

https://docs.unity3d.com/Packages/com.unity.entities@0.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.1/manual/index.html
https://www.youtube.com/watch?v=kwnb9Clh2Is&t=1s
https://www.youtube.com/watch?v=kwnb9Clh2Is&t=1s
https://www.youtube.com/watch?v=kwnb9Clh2Is&t=1s
https://docs.unity3d.com/Packages/com.unity.burst@1.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@1.2/manual/index.html

