
C++ AND UNREAL
CS354P
DR SARAH ABRAHAM

CS354P

WHAT WE WANT FROM A GAME ENGINE

▸ Runtime efficiency

▸ Cross-platform compatibility

▸ Ease of iterative development

CS354P

GAME ENGINES BUILT ON C++

▸ Frostbite

▸ Unreal Engine

▸ Lumberyard (formerly CryEngine)

▸ Source

▸ Unity

▸ Godot

▸ Game Maker

▸ Cocos2D

CS354P

GAME ENGINES/FRAMEWORKS BUILT ON SOMETHING ELSE

▸ id Tech 1-3 (C)

▸ JMonkeyEngine (Java)

▸ Scage (Scala)

▸ Flixel (ActionScript)

▸ MonoGame (C#)

▸ Allegro (C)

▸ Three.js (JavaScript)

CS354P

C++ FILE STRUCTURE INFO

▸ C++ uses .h files for declarations and .cpp files for definitions

▸ The .cpp file has an include (#include) linking the .h

▸ Never include .cpps in other files!

▸ Members (declared in .h) can be public, protected, or private

▸ public: makes variables and functions accessible to all outside classes

▸ protected: makes variables and functions accessible only to child
classes of the class

▸ private: makes variables and functions accessible only within the
class

CS354P

C++ FILE STRUCTURE INFO

▸ Header recompilation tends to incur heavy overhead as they can be included
in many, many other files

▸ Try to include .h files needed by the class members in the .cpp (rather than
the class .h)

▸ Use forward declarations as much as possible to accomplish this while
avoiding declaration dependencies

▸ Example:

▸ .h declares class UBoxComponent;

▸ .cpp specifies #include “Components/BoxComponent.h” along with
other includes

CS354P

SOME C++ SYNTAX YOU WILL ENCOUNTER
▸ Scope resolution operator (::)

▸ Used to specify the “scope” of functionality

▸ Must specify the scope even if functions are in the same .cpp (e.g.
ABoxActor::MyOnHitFunction())

▸ Pointer declaration (*)

▸ Used to declare a variable is a pointer (e.g. UBoxComponent* myBoxComponent;)

▸ Pointers contain values of addresses in memory (i.e. the location of another value)

▸ Dot operator (.)

▸ Used to access a member of the object (e.g. MyStruct.MyVariable)

▸ Arrow operator (->)

▸ Used to dereference a pointer before pulling out the value of an object being pointed to (e.g.
myShipComponent->AddImpulse());

Note: C++ is confusing because * is also used to dereference:
 myShipComponent->AddImpulse(); (*myShipComponent).AddImpulse();≡

¯_(ツ)_/¯

CS354P

REFERENCES

▸ References (&)

▸ A reference is an alias to an already existing value

▸ Cannot assign NULL to this value

▸ Cannot be reassigned

▸ A bit more complex to reason about but safer to use and
therefore preferred

▸ Unreal will prefer passing by reference rather than passing by
pointer but both are possible

CS354P

C++ IN UNREAL

▸ Epic calls their Unreal C++ libraries “assisted C++”

▸ Lots of custom functionality, data structures, and types

▸ Quality of life “language” features

▸ Designed to work with their in-house scripting language

▸ Can still connect standard C++ libraries but encouraged to
use their C++ style for game objects etc

CS354P

UNREAL CUSTOM DATA STRUCTURES

▸ UE5 is its own ecosystem of classes and functionality

▸ You should aim to work with it rather than against it

▸ Less about knowing C++ and more knowing how to read
documentation and work within a system’s limitations

▸ Four broad categories of gameplay classes:

▸ UObject, AActor, UActorComponent, UStruct

▸ Additional tools for data management

▸ Custom object iterators, strings, containers

CS354P

UOBJECT

▸ Base class for all UE5 objects (object type defined by UClass)

▸ Allows for:

▸ Reflection of properties and methods

▸ Serialization of properties

▸ Garbage collection

▸ Finding the UObject by name

▸ Configurable values for properties

▸ Networking support for properties and methods

CS354P

REFLECTION
▸ Reflection is the ability of a program to examine and modify itself at runtime

▸ Extremely useful feature for editor, serialization, garbage collection, network
replication, and Blueprint/C++ communication

▸ Basically anything that benefits from being able to assess objects/data at runtime

▸ C++ does not natively support reflection!

▸ UE5’s reflection system built on UObject/UClass

▸ Reflection system is opt in

▸ #include “FileName.generated.h”

▸ UCLASS()

▸ GENERATED_UCLASS_BODY()/GENERATED_BODY()

▸ UnrealHeaderTool invoked during build to parse C++ headers for UE5 class meta-data
to implement UObject features

CS354P

SERIALIZATION

▸ Serialization is the process of formatting data of an object such that it
can be stored or transmitted then successfully reconstructed

▸ Stored in memory or file system

▸ Transmitted across a network

▸ FArchive is archive base class for loading, saving, and garbage
collecting in a byte-order neutral way

▸ Many different subclasses for saving and reconstructing game data

▸ Saving data is a surprisingly difficult and nuanced issue...

CS354P

GARBAGE COLLECTION

▸ Handles memory management for all UObject instances

▸ Relies on reflection to inspect objects and determine if they can be safely deleted

▸ Actor objects automatically garbage collected at the end of a level

▸ Calling Destroy removes them from game immediately and allows full deletion
during next garbage collection

▸ UE5 GC Guidelines:

▸ All class members should be declared as UPROPERTY

▸ Member pointers should only point at UObjects

▸ Any non-UObject pointers must point to something “global” in engine or
something within its own UObject

▸ TArray is only safe container for UObject pointers

CS354P

USTRUCT

▸ Specialized struct for Unreal purposes

▸ Marked with USTRUCT()

▸ Not garbage collected

▸ Passed by value

▸ Built-in UStructs:

▸ FVector, FRotator, FQuat, etc...

CS354P

OBJECT/ACTOR ITERATORS

▸ Used to iterate over UObject instances

▸ Can also look for instances of a particular class

for (TObjectIterator<UObject> It; It; ++It)
{
 UObject* CurrentObject = *It;
 // Do something
}

for (TObjectIterator<UMyClass> It; It; ++It)
{
 // ...
}

CS354P

STRINGS AND TEXT

▸ Lots of different functionality depending on need:

▸ FString, FText, FName

▸ FStrings are mutable strings with Unreal specific functionality

▸ Created with TEXT macro

▸ FText are designed for localized text

▸ Created with NSLOCTEXT macro

▸ Macro takes namespace, key and value for default language

▸ FName stores recurring string as identifier

▸ Fast, space-efficient representation across multiple objects

▸ Used for identified bone names in a model’s skeleton, player name, etc

CS354P

CONTAINERS

▸ Dynamically sized containers for UE5 C++ objects

▸ Supports iterators and for-each loops

▸ Common containers are TArray, TMap, TSet

▸ TArray similar to std::vector but elements are garbage
collected

▸ TMap similar to std::map (elements are not garbage collected)

▸ TSet similar to std::set

CS354P

WHAT ABOUT STANDARD LIBRARY?
▸ Generally Unreal Engine avoids standard library

▸ Faster implementations

▸ Additional memory allocation control

▸ Consistent codebases and idioms

▸ UE4 does however use some std features rather than reimplement

▸ atomic

▸ regex

▸ Still possible to use std features but avoid mixing and matching UE5 idioms
as much as possible

▸ Can cause compiler issues

CS354P

NOTE: MAKING SIZES EXPLICIT

▸ int and uint can be used if width is unimportant

▸ Guaranteed at least 32 bits in length

▸ Cannot be used in serialized or replicated formats

▸ Use int32/int64 whenever possible

▸ Enumerations should use uint8 if they are exposed to
Blueprints

CS354P

UE5 AND C++ LANGUAGE FEATURES

▸ UE5 favors massive portability to C++ compilers over language
features

▸ Uses C++17 features but programmers should avoid compiler-specific
features unless wrapped in preprocessor macros or conditionals

▸ Some things you can use:

▸ static_assert (valid for any compile-time assertions)

▸ override and final (strongly encouraged)

▸ nullptr (use instead of NULL macro)

CS354P

WHAT ABOUT AUTO?

▸ auto keyword tells compiler to deduce its type from the initial expression of the variable

▸ Very nice C++11 feature that simplifies type-handling

▸ Not recommended by Epic for use in Unreal because of readability

▸ Doesn’t assist users using merge/diff tools or viewing source files within a repo

▸ Acceptable to use if...

▸ Binding a lambda to a variable

▸ For iterator variables where iterator type is verbose and impairs readability

▸ In template code where type cannot be easily discerned

▸ An example of auto in an iterator:

▸ for (auto EnemyIterator = EnemySet.CreateIterator();
EnemyIterator; ++EnemyIterator) { ... }

CS354P

WHAT ABOUT RANGE-BASED FOR LOOPS?

▸ Range-based for loops execute over the elements within an
expression

▸ Very nice C++11 feature that encourages safety and
readability

▸ Recommended by Epic for use in Unreal

▸ Works with TArray, TMap, and TSet

▸ Commonly used when finding actors of a certain type in a
level

CS354P

RANGE-BASED LOOP EXAMPLES

for (auto EnemyIterator = EnemySet.CreateIterator();
EnemyIterator; ++EnemyIterator)
{ ... }

or rewrite as:

for (const auto& Enemy : EnemySet)
{ ... }

TArray< UPrimitiveComponent *> overlappingComponents;
hitBox->GetOverlappingComponents(overlappingComponents);
for (UObject* object : overlappingObjects)
{ ... }

CS354P

WHAT ABOUT LAMBDAS/ANONYMOUS FUNCTIONS?

▸ Anonymous functions are unnamed functions that can be
passed to higher order functions

▸ Very nice C++11 feature that was extended in C++14

▸ Safe to use in UE5

▸ Encouraged to practice good readability and
documentation

▸ UE5 codebase uses a lot of function pointers, which stateful
lambdas (i.e. lambdas with capture) can’t be assigned to

CS354P

LAMBDAS IN UNREAL

▸ Same principles as lambdas in C++14

▸ Can also combine with Unreal delegates using
BindLambda function:

 MyDelegate.BindLambda([capture](arguments)
{ functionality });

▸ Can also call lambdas from asynchronous threads using
AsyncTasks

CS354P

WHAT ABOUT SMART POINTERS?

▸ Smart pointers allow for automatic memory management
of objects when pointers are going out of scope

▸ Very nice C++11 feature that creates more stable code
with fewer memory leaks

▸ Epic provides a custom implementation of C++11 smart
pointers in their own Smart Pointer Library

CS354P

UE4 SMART POINTER LIBRARY

▸ Unique Pointers solely and explicitly own the object referenced.
Ownership can be transferred but not shared (i.e. no copying)

▸ Shared Pointers allow multiple owners of the object referenced.
Object is reference-counted and deleted when it has no Shared
Pointers or Shared References referencing it

▸ Weak Pointers do not own the object they reference, so object does
not maintain a reference counter. Thus it can become null at any time
(can produce a Shared Pointer for safety during direct usage)

▸ Shared References are like Shared Pointers but can only reference
non-null objects. A Shared Pointer created from a Shared Reference
is guaranteed to not be null

CS354P

NOTE: SMART POINTER LIMITATIONS

▸ Not compatible with UObjects which have a separate memory
management system!

▸ You can use TWeakObjectPtr to create weak object references that
avoid UObject GC though...

▸ Smart Pointers are performant and small (at most 2x a C++ pointer) but
creating and copying them has overhead as does reference counting

▸ Thread-safe Smart Pointers are slower (atomic reference counting) and
must be expressly declared:

▸ e.g. TSharedPtr<T, ESPMode::ThreadSafe>

CS354P

CONCLUSION

▸ C++ is a great language for building in UE5 and other
game engines but not sufficient for all game development
needs

▸ The beauty of C++ is its flexibility and efficiency

▸ The wisdom of C++ development is knowing when and
how to use language features to build for your particular
needs

▸ Know the project goals before building!

CS354P

REFERENCES

▸ <https://docs.unrealengine.com/en-US/Programming/
Introduction/index.html>

▸ <https://docs.unrealengine.com/en-US/Programming/
UnrealArchitecture/Reference/Functions/index.html>

▸ <https://docs.unrealengine.com/en-US/Programming/
UnrealArchitecture/Reference/Properties/Specifiers/
index.html>

https://docs.unrealengine.com/en-US/Programming/Introduction/index.html
https://docs.unrealengine.com/en-US/Programming/Introduction/index.html
https://docs.unrealengine.com/en-US/Programming/Introduction/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Functions/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Functions/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Functions/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html

