
SOURCE CONTROL
CS354P

DR SARAH ABRAHAM



CS354P

WORKING WITH LARGE SCALE SYSTEMS

▸ Many things that you can ignore in smaller scale development 
become essential in large scale projects


▸ How do I coordinate code submission with team members?


▸ How do I ensure what builds on my system runs for other team 
members?


▸ How do I work with artists, designers, and other non-
programmer contributors?


▸ Game development tends to hit these development challenges 
earlier than other types of software development



CS354P

WHAT IS SOURCE CONTROL?

▸ Allows multiple developers to make changes to a shared 
codebase


▸ Relatively straightforward in the serial case:


▸ I work on the code, share it with you, then you work on the 
code


▸ But becomes more complicated in the concurrent case:


▸ We both work on the code then submit it


▸ Also where is the code?



CS354P

MASTER VERSUS LOCAL COPIES

▸ Need for a “definitive” copy of the code that is somewhere safe


▸ In-house server or cloud solution


▸ Need for “working” copies of the code that can safely be tested 
and modified on a developer’s machine


▸ Even if a working copy of the code breaks, should not take 
down the definitive copy


▸ ...or at the very least we can get the working definitive copy 
back with as little effort as possible



CS354P

GIT

▸ De facto version control system in software development


▸ Has mostly beaten out Subversion in this space


▸ Mercurial is another popular choice but this is also a 
distributed source control manager (DSCM)


▸ Primary benefits of git are that it is small, fast, and safe



CS354P

DISTRIBUTED CONTROL

▸ In a DSCM you access a “clone” of the entire repository rather than 
“checking out” the latest version


▸ Have a full backup at all times


▸ Fewer points of failure


▸ Easier to fix bad commits


▸ No notion of a “central” repository


▸ Everyone’s working copy is the full repository


▸ Supports multiple types of workflows



CS354P

COMMON WORKFLOWS

▸ Centralized Workflow


▸ Developers push changes whenever 
they complete a task


▸ Must integrate other developers’ 
changes before pushing


▸ Integration Manager Workflow


▸ Developers create pull requests for an 
integration manager to push to the repo


▸ Works well with open source projects 
where anyone can submit



CS354P

STORAGE FORMAT

▸ Git stores every commit/file in a hashed document


▸ Every commit is a separate entity that is immutable


▸ Changes stored in reflog as a reference and garbage 
collected after 30 days


▸ Files compressed with zlib to reduce storage size for better 
efficiency



CS354P

WHAT DO YOU DO IN GIT?

▸ Basic operations:


▸ Initialize


▸ Clone


▸ Pull


▸ Commit


▸ Push



CS354P

INITIALIZATION AND CLONING

▸ git init creates a new git repository in current directory


▸ Creates .git subdirectory containing all necessary metadata


▸ HEAD file also created to point to current commit


▸ git clone creates a copy of an existing repository


▸ Usually how you create a local working copy


▸ Creates remote connection called “origin” pointing to 
original repository



CS354P

SETTING UP A WORKING DIRECTORY

▸ Numerous quality of life settings when creating your git repository can be done 
through git configuration and environment variables


▸ Also important to set up a .gitignore file to prevent including unwanted content


▸ Intermediate build data


▸ Final builds


▸ Project or IDE settings


▸ Determining what should be included on a .gitignore varies from engine to 
engine


▸ An example Unreal .gitignore: https://gist.github.com/anveo/
0d3fef240cb1b46178e6


▸ But there are many others!

https://gist.github.com/anveo/0d3fef240cb1b46178e6
https://gist.github.com/anveo/0d3fef240cb1b46178e6


CS354P

PULLING AND PUSHING

▸ git pull runs: 


▸ git fetch to download content from the specified remote 
repository (e.g. origin)


▸ git merge to merge remote content into local merge commit


▸ Must pull before pushing if remote changes do not match local 
changes


▸ git push pushes specified branch to specified remote repository


▸ Possible to use force overriding “upstream” changes but very 
situational -- do not use unless you understand why you’re doing it!



CS354P

COMMITS AND LOCAL REPOSITORY MANAGEMENT

▸ git commit is similar to saving


▸ Creates actual commit from “staged” files


▸ git status shows current changes to working repository


▸ git add includes requested files to staging


▸ Staging allows user to select local changes to commit


▸ git reset can unstage files that should not be staged



CS354P

BRANCHING VERSUS FORKING

▸ Branching allows for multiple “working copies” of the same repository


▸ Powerful tool that allows for multiple types of work flows and 
efficient, clear ticket management


▸ git branch can create, rename and delete branches


▸ Forking gives every developer their own server-side repository


▸ Developers push to their own server-side repository and project 
maintainer can integrate changes as necessary


▸ Useful on large, open source projects with lots of contributors



CS354P

MERGE CONFLICTS

▸ Occur when git cannot resolve the “correct” way to 
integrate changes


▸ Multiple people changed the same line of code


▸ A file was deleted but is being modified locally


▸ Note that a conflict is never on the remote side -- only the 
local side


▸ As frustrating as it may be in the moment, it can always be 
solved!



CS354P

FAILURE TO START MERGE

▸ Cannot initiate merge if there are changes in the working 
area or stages


▸ Local changes can be committed


▸ Local changes can be “stashed” away (git stash)


▸ Can switch, or create branches, or undo changes using 
checkout



CS354P

FAILURE DURING MERGE

▸ Cannot complete a merge due to a conflict between the 
local branch and the branch being merged


▸ Conflict must be resolved by looking through the 
offending file and manually fixing


▸ Must compare <<< current-branch to >>> content-to-
merge and select correct content to keep


▸ Can also abort the merge attempt using abort flag



CS354P

GIT MERGE EXAMPLE

▸ Top <<< section is current branch (HEAD)


▸ Bottom >>> section is what is being merged


▸ === separates the conflicting segments of code (only one segment is 
valid)


▸ Text is generated by git within the file

https://opensource.com/article/20/4/git-merge-conflict

https://opensource.com/article/20/4/git-merge-conflict


CS354P

WHAT ABOUT BINARY DATA?

▸ Git needs to clone every version of every file due to its 
distributed nature


▸ Works well generally


▸ Not so great for large assets


▸ How can we handle this problem?



CS354P

GIT LFS

▸ Git Large File System


▸ Replaces large, binary files in the repository with pointers to assets in an LFS cache


▸ Handled automatically so no need to understand how the pointers work


▸ Essential for working with game engines and other creative projects


▸ Numerous binaries for artists and designers


▸ Levels and other assets are almost always binary data!


▸ Need to install LFS once on the working machine to track all file types that are 
binary data:


▸ https://git-lfs.github.com/

https://git-lfs.github.com/


CS354P

LOCKING FILES

▸ Possible to lock a file meaning on the user holding the files lock can modify it


▸ Prevents distributed work on a given file


▸ More useful for binaries than code


▸ Git LFS allows for locking binary files using --lockable flag when first 
tracking the data type


▸ Must use git lfs on the command line to lock it before modifying and 
unlock it so others can access it


▸ Can also handle file locking through GitLab UI


▸ More info on both here: https://docs.gitlab.com/ee/user/project/file_lock.html

https://docs.gitlab.com/ee/user/project/file_lock.html


CS354P

IS THIS ALL THERE IS TO GIT?

▸ My goodness, no!


▸ Git is...very complex


▸ Many other available commands and flags


▸ All of these are highly situational but if you have a 
problem, likely git has a solution


▸ Best to learn through doing, so don’t be afraid to break 
things!



CS354P

PERFORCE

▸ Industry standard for version control in game industry


▸ Preferred because of its native handling of large binary assets


▸ Perforce is centralized rather than distributed


▸ Notion of one master version copied to individual workspaces


▸ Same idea as git’s Centralized Workflow but some 
implementation differences


▸ Scales well with large databases and cross repository 
dependencies



CS354P

CHECK OUT AND CHECK IN

▸ Developers pick out specific files to checkout, modify, and submit 
back to the repository


▸ Exclusive checkouts ensure only one developer can access a 
given file at a time


▸ Permissions system ensures developers can only access certain 
files


▸ Exclusive checkouts solve problems related to merging binary files 
such as levels when it is difficult or impossible to merge conflicts


▸ But makes workflow sequential so not always ideal



CS354P

STREAMS

▸ Perforce uses “streams” for branching and merging


▸ Developers can switch between them as with branches


▸ Can have merge conflicts when submitting changes but gives 
notice before merge starts


▸ Streams can define rules for how changes can be merged and from 
which streams


▸ Stream type examples:


▸ Release streams are designed to be more stable than its parent


▸ Task streams are lightweight, short-term branches



CS354P

UNREAL AND SOURCE CONTROL

▸ Unreal has built in support for source control


▸ Perforce and SVN supported by default but git works as well


▸ Activate source control via editor preferences


▸ Allows for better check in and out of modified/added assets


▸ Allows hot reloading of changes


▸ Editor-based source control can be used in conjunction with 
command line (or GUI) source control commands



CS354P

DIVERSION

▸ https://www.diversion.dev/


▸ Cloud-based solution that combines the best of both git 
and Perforce


▸ 100GB free storage for up to 5 users


▸ Designed specifically for games and asset management


▸ Feel free to use this for your own projects


▸ ...but we’ll be using git to develop a broader skill base

https://www.diversion.dev/


CS354P

WHAT IS CONTINUOUS INTEGRATION?

▸ Process of automatically building and testing code every 
time changes are committed


▸ Use of unit tests to ensure some degree of correctness


▸ Constant, validated builds helps minimize merge 
conflicts and unexpected behaviors


▸ Helps organize builds at different stages of development


▸ Prevents late-stage issues and keeps pipeline flowing



CS354P

USING CONTINUOUS INTEGRATION

▸ Happens when code is frequently committed to a shared 
repository


▸ Requires:


▸ Well-established work flow


▸ Automatic build scheduling


▸ Relatively fast builds


▸ Unit tests to prevent erroneous code (in theory)



CS354P

CI SYSTEMS

Jenkins

Travis CI


