
COMPILATION AND BUILD 
SYSTEMS

CS354P 
DR SARAH ABRAHAM



CS354P

COMPILING UNREAL

▸ UE5 uses multiple batch files for building 

▸ We are going to assume .bat files for Windows but 
concepts should apply to OSX and Linux scripts 

▸ These files can be run from the graphical interface or via 
command-line 

▸ Only command-line will work with containers, but we’ll 
discuss the GUI systems first



CS354P

UNREAL COMPILING AND BUILDING

▸ UE5 provides a GUI interface for compiling and building 

▸ Works for most local workflows but will not work for 
remote builds 

▸ Compile button will compile all C++ files 

▸ Compile blueprints individually 

▸ Build button will create desired build 

▸ Many options depending on what needs to be built

Compile button



CS354P

BUILD OPTIONS

▸ Options for building include: 

▸ Built Lighting Only 

▸ Build Geometry 

▸ Build Paths 

▸ Build LODs 

▸ Build Texture Streaming 

▸ All of these are expensive graphical operations and don’t need to be 
rerun every time!



CS354P

PACKAGE PROJECT

▸ Project packaging is under Platforms drop down 

▸ Can select target platform, build configurations, 
and settings 

▸ Note that just because your project compiles and 
runs successfully in the editor (PIE), it does not 
mean it will successfully build the stand alone 
binary! 

▸ Must use the Output Logs for debugging 

▸ Leave plenty of time for the build (it will take a 
long time and it may not succeed the first few 
tries)



CS354P

COMMAND-LINE BUILDS

▸ Unreal Automation Tool (UAT) handles building and 
packaging projects and plugins 

▸ BuildCookRun used for building and packaging projects 

▸ BuildPlugin for building and packaging plugins 

▸ Located under Engine/Build/BatchFiles within the UE5 
engine installation 

▸ Note: important to keep track of where both UE5 and 
your projects are located on the file system



CS354P

BUILD COOK RUN

▸ BuildCookRun script “cooks” content for a platform, packages it into native 
distribution format, and deploys (and possibly runs) automatically on device 

▸ UAT not required but very useful 

▸ Build compiles executables for selected platform 

▸ Cook converts assets into readable formats for the target platform 

▸ Stage copies executables and content to a separate staging area 

▸ Package packs project into the platform’s native distribution format 

▸ Deploy builds to the target device 

▸ Run starts the packaged project running on the target platform if necessary



CS354P

BUILDING PLUGINS

▸ Same idea as building a project but a slightly different 
pipeline 

▸ Plugins are collections of code that can be enabled and 
disabled within the Editor per-project 

▸ Can add runtime functionality 

▸ Can modify Engine features 

▸ Can extend Editor UI and modes



CS354P

BUILDING A PIPELINE FOR AUTOMATION

▸ Automation is quite a bit of upfront work 

▸ Must create a system and pipeline to support all developers’ 
workflow 

▸ Smaller projects may have more ad hoc approaches but for 
larger projects, such pipelines become essential 

▸ Third-party developers are common in game dev 

▸ Changes in game direction and features are common 

▸ Employee turnover also really common :(



CS354P

AUTOMATION AND CONTAINERS

▸ Build system must run within multiple computer environments to 
successfully automate 

▸ A “container” includes code, runtime, system tools, system 
libraries and settings etc 

▸ Docker Engine is an example of this 

▸ Containers help to isolate software from its environment, making 
both portability and deployment easier 

▸ Not always necessary but extremely useful for large, complex 
systems



CS354P

SOFTWARE ENVIRONMENTS

▸ Different environments are often used for different types of builds 

▸ Common environments: 

▸ Local 

▸ Development 

▸ QA 

▸ Staging 

▸ Production



CS354P

LOCAL ENVIRONMENT

▸ Also called the Sandbox Environment 

▸ Local workspace for an individual developer 

▸ May be configured to match shared environments 

▸ Developer can experiment and implement without impacting other 
teammates 

▸ Branches often used to allow for work on multiple tickets/features in 
entirely separate ways 

▸ What is the advantage of separating all bug fixes and feature 
implementations?



CS354P

DEVELOPMENT ENVIRONMENT

▸ Shared environment for all project contributors 

▸ Local environment generally matches this environment 

▸ Place that local code is integrated into 

▸ Unit tests help ensure code builds correctly for all other developers 

▸ Various types of branching/streaming schema used to integrate 
developer’s local changes 

▸ How would you use branching in the development environment to 
integrate developer changes?



CS354P

UNIT TESTS

▸ Simplest form of testing to ensure code stability 

▸ Tests basic inputs and outputs of individual functions 

▸ Automatically run every time code is integrated into the 
Development environment 

▸ Try to have as much “coverage” as possible (i.e. test as many 
cases as possible) 

▸ A good start but no guarantees and certainly not sufficient 

▸ What are things you can unit test in a game?



CS354P

QA ENVIRONMENT

▸ Also called Testing Environment 

▸ May be closer to the Production Environment (e.g. build is 
for a console developer’s kit) 

▸ Allows automated and manual tests on the product 

▸ Bugs and other unexpected behaviors 

▸ Initial stress and network testing



CS354P

▸ Matches production environment to allow better 
integration and testing with final services 

▸ Connected to a live backend database 

▸ Running on actual servers 

▸ Builds run on the final platform 

▸ Ensures all deployment configurations are correct 

▸ Allows for more extensive load and network testing

STAGING ENVIRONMENT



CS354P

PRODUCTION ENVIRONMENT

▸ The “live” environment 

▸ In the case of backend servers, it is the code currently running on 
all machines 

▸ In the case of applications, it is the fully vetted code that is ready 
for the final build 

▸ This code should never be modified without extensive testing 
first...unless... 

▸ “Hot fixes” are changes made directly to production code and 
are only done in emergency situations



CS354P

UE5 AUTOMATION TESTING

▸ UE5 does not support any automation testing within UObjects 

▸ Neither visible to Blueprints or the Reflection System 

▸ Run from the console command line in Editor 

▸ Automation tests derive from FAutomationTestBase 

▸ Two basic types: simple and complex 

▸ Create tests by using the appropriate macro and overriding virtual 
functions 

▸ We will discuss these at greater length later in the semester...


