
OVERVIEW: PHYSICS
CS354P
DR SARAH ABRAHAM

CS354P

ASPECTS OF GAME PHYSICS

▸ Forces applied to objects

▸ World systems and rules

▸ Object interactions

▸ Physical representation of objects

▸ Point masses

▸ Rigid bodies

▸ Soft bodies

▸ Collision detection of objects

CS354P

FORCES APPLIED TO OBJECTS

▸ Many types of forces:

▸ Gravity

▸ Impulses

▸ Drag

▸ Restitution

▸ Springs

▸ etc...

CS354P

FORCES IN ACTION
Kerbal Space Program

Portal 2

Just Cause 3

CS354P

CLASSICAL MECHANICS

▸ Area of physics that explores motion of objects

▸ Relationship between force, trajectories, acceleration,
and mass

▸ Newton’s second law: F = ma

▸ Forces in game engines relate to object velocities and
accelerations (mathematical vectors) and object masses

▸ What else do we need to know to calculate forces?

CS354P

OBJECT REPRESENTATION
▸ Simplest representation of an object is a point mass

▸ Position and mass with no volume (infinitesimally small)

▸ Simplifies physical calculations

▸ Better representation is a rigid body

▸ Object has volume but no deformation

▸ More complex calculations to account for angular position and velocity

▸ Most accurate representation is a soft body

▸ Object has volume and deformation

▸ Much more complex calculations due to no fixed distance between objects

▸ Can be pretty well approximated with a rigid body systems of springs

Point mass particle systems
https://realtimevfx.com/t/unreal-engine-effects-in-marketplace/10088

CS354P

OBJECT REPRESENTATIONS

Rigid bodies

Soft bodies
https://github.com/chrismarch/SoftBodySimulation

https://realtimevfx.com/t/unreal-engine-effects-in-marketplace/10088
https://github.com/chrismarch/SoftBodySimulation

CS354P

COLLISION DETECTION

▸ Detection of collisions is a separate concern from application
of forces

▸ e.g. Collisions can result in an event trigger rather than a
physical interaction

▸ e.g. Forces can be applied to objects that are not collidable

▸ Detecting collisions can be as expensive (or more expensive!)
than applying forces

▸ Why?

CS354P

WHEN TO DETECT?

▸ How do we know when two objects are colliding/about to
collide/have collided?

CS354P

WHEN TO DETECT?

▸ We detect collisions (and current forces) per time step

▸ May be based on frame rate but should not be tied directly to frame rate

▸ Detect object collisions before they occur (a priori)

▸ Will the two objects hit based on their current trajectories in the next
time step?

▸ Detect object collisions after they occur (a posteriori)

▸ Did the two objects hit between the previous time step and the current
time step?

▸ Why can’t we try to detect when a collision happens?

CS354P

UE5 AND PHYSICS

▸ Unreal uses Epic’s Chaos physics engine

▸ NVidia PhysX no longer supported

▸ Many advanced physical features supported in Unreal

▸ Cloth

▸ Fluid

▸ Destruction

▸ We will mostly focus on the basics...

CS354P

PHYSICS BODIES

▸ Simplified 3D meshes that Unreal uses to represent rigid
bodies

▸ Contains related physical and collision information

▸ Uses the FBodyInstance struct to store information

CS354P

PHYSICS PROPERTIES

▸ Simulate Physics determines if
body is simulated or kinematic
(i.e controlled outside of
simulation)

▸ Linear and angular damping are
drag forces

▸ Constraints lock rotations to an axis

▸ And more...

CS354P

COLLISION PROPERTIES

▸ Can generate “Hit” and “Overlap” events
to perform actions after a collision

▸ Type of collision responses based on
object type, collision type, and other
object type

▸ Physics allows for physical simulation

▸ Queries allow for spatial checks
(overlaps, raycasts, sweeps)

▸ Can define additional Object/Trace
Channels for collision response

Custom channels for custom
functionality and handling

CS354P

COLLISION SETTINGS

▸ Collision settings (like
most engine settings)
under Edit -> Project
Settings

▸ Settings stored in
the .ini files found in
the Config folder

▸ Can look through
and edit this in plain
text as well

CS354P

PHYSICS SETTINGS

▸ Physics settings also under
Edit -> Project Settings

▸ Determines
parameterizations for the
physics simulation in Chaos
as well as memory usage/
accuracy

What’s this?

CS354P

PHYSICS TIME STEP

▸ Physics is continuous but our simulations are not

▸ Must approximate physical interactions within a time step

▸ Larger time steps are generally faster but less accurate

▸ Fixed time steps are generally better for stability

▸ How does this relate to frame rate?

CS354P

FRAME RATE AND SUB-STEPPING

▸ We often want physics tied to frame rate to ensure responsiveness but frame rate
is highly variable

▸ Naively connecting time steps to frames may result in physics bugs/
inaccuracies

▸ Solution: sub-stepping divides a frame into smaller physics time steps which
execute each frame

▸ Extra time can roll over to the next frame

▸ Enabling sub-stepping incurs execution overhead but results in better accuracy

▸ Side note: collision callbacks are delayed until the final sub step is finished for
threading efficiency

▸ Thus you can have multiple callbacks for an object executed within a single
frame in FIFO order

CS354P

COLLISION VOLUMES

▸ Collision checking is based on the mesh faces of an object

▸ Must consider how the interactions per-face of an
object’s mesh will impact the collision

▸ Similar problems/solutions in graphics: spatial data
structures, fast intersection tests etc

▸ High level idea: simpler collision volumes means faster
collision checks

CS354P

UNREAL COLLISION VOLUMES

▸ Can compose
collision volumes out
of simple shapes:
boxes, spheres,
capsules

▸ Or generate collision
volumes from a mesh
(simple vs complex)

▸ How should you
decide?

CS354P

STATIC VS SKELETAL MESHES

▸ Static meshes are the standard meshes used to create world geometry

▸ Set of polygons that can be cached in video memory for efficient rendering

▸ Can apply affine transformations (scale, rotate, translate) but not other
vertex manipulations

▸ Skeletal meshes are meshes that have hierarchical controls used to create
characters and other animating objects

▸ Set of polygons manipulated via a skeleton

▸ Vertices move relative to they underlying skeleton based on skinning
algorithm

▸ Can convert skeletal meshes to static meshes to save poses but will not
generally work for dynamic scenes

CS354P

PHYSICS CONSTRAINTS AND DAMPING

▸ Constraints can be used to connect actors in a physically-based way

▸ Constraints are types of joints (ball-and-socket, hinge, etc) but can also be
customized

▸ Physics Constraints can be actors or components

▸ Actors placed into a scene

▸ Components placed into an actor

▸ Can apply a wide range of parameters to emulate different physical behaviors

▸ Can test using “Play” in editor or “Simulate”

▸ Read here for more tutorial information: https://docs.unrealengine.com/en-
US/Engine/Physics/Constraints/index.html

https://docs.unrealengine.com/en-US/Engine/Physics/Constraints/index.html
https://docs.unrealengine.com/en-US/Engine/Physics/Constraints/index.html

CS354P

PHYSICS CONSTRAINTS IN C++
▸ All Blueprint constraints can be done in C++

▸ I’d recommend quick prototyping in Blueprint, building the foundation in
C++, then building the in-game instance in Blueprint based on the C++

▸ ...this may seem round-about, but it will generally result in pretty fast
development cycle, good looking code, and a designer-friendly final
product

▸ Must create and attach static mesh components then create an
FConstraintInstance to set properties in code

▸ Any Blueprint class created from this C++ class will have values set in the C++
constructor

▸ Remember to make the UPROPERTY BlueprintReadWrite if you want
values accessible within the Blueprint

CS354P

PHYSICS CONSTRAINTS C++ EXAMPLE
RootComponent = CreateDefaultSubobject<USceneComponent>(TEXT("RootComponent"));
stableComponent = CreateDefaultSubobject<UStaticMeshComponent>(TEXT("stableComponent"));
bounceComponent = CreateDefaultSubobject<UStaticMeshComponent>(TEXT("bounceComponent"));
stableComponent->AttachToComponent(RootComponent, FAttachmentTransformRules::KeepRelativeTransform);
bounceComponent->AttachToComponent(RootComponent, FAttachmentTransformRules::KeepRelativeTransform);

FConstraintInstance platformConstraintInstance;
FConstraintProfileProperties platformConstraintProperties =
platformConstraintInstance.ProfileInstance;
platformConstraintInstance.SetLinearXMotion(ELinearConstraintMotion::LCM_Limited);
platformConstraintInstance.SetLinearYMotion(ELinearConstraintMotion::LCM_Locked);
platformConstraintInstance.SetLinearZMotion(ELinearConstraintMotion::LCM_Limited);
platformConstraintInstance.ProfileInstance.LinearLimit.Limit = 5.0;
platformConstraintInstance.ProfileInstance.LinearLimit.bSoftConstraint = true;
platformConstraintInstance.ProfileInstance.LinearLimit.Stiffness = 3000.0;
platformConstraintInstance.ProfileInstance.LinearLimit.Restitution = 1.0;
platformConstraintInstance.ProfileInstance.LinearLimit.ContactDistance = 1.0;
platformConstraintInstance.SetAngularSwing1Limit(EAngularConstraintMotion::ACM_Locked, 0);
platformConstraintInstance.SetAngularSwing2Limit(EAngularConstraintMotion::ACM_Limited, 3.0);
platformConstraintInstance.SetAngularTwistLimit(EAngularConstraintMotion::ACM_Locked, 0);
platformConstraintInstance.ProfileInstance.ConeLimit.Stiffness = 100.0;
platformConstraintInstance.ProfileInstance.ConeLimit.Restitution = 1.0;

constraintComponent =
CreateDefaultSubobject<UPhysicsConstraintComponent>(TEXT("platformConstraintComponent"));
constraintComponent->AttachToComponent(stableComponent,
FAttachmentTransformRules::KeepRelativeTransform);
constraintComponent->ConstraintInstance = platformConstraintInstance;
constraintComponent->SetConstrainedComponents(stableComponent, "Stable Component", bounceComponent,
"Bounce Component");

stable component is fixed; bounce
component moves relative to it

Set properties of constraint interactions
(in this case, a bouncy platform)

constraint component connects
the two “physical” pieces

CS354P

PHYSICAL MATERIALS

▸ Unreal uses physical materials to define an object’s
interactions with the world

▸ Can adjust parameterization to be applied to any object
using that material

▸ Can be use in conjunction with regular materials (i.e. the
shaders and lighting models used on objects for
rendering)

CS354P

CLOTH SIMULATION

▸ Unreal uses Chaos Cloth solver to create cloth effects

▸ Uses a particle system with constraints to create cloth-
like movements and collision responses

▸ Unreal allows artists to import cloth asset then paint
“clothiness” onto mesh

▸ Determines how much the individual parts react like
cloth

CS354P

DESTRUCTIBLE ACTORS

▸ Unreal uses Chaos Destruction to create destructible
meshes

▸ Allows static meshes to be broken into dynamic pieces
in a parametrizable way

▸ Works in real time

▸ Can be integrated with Niagra particle system and Audio
Mixer to incorporate VFX and SFX

CS354P

CHAOS CLOTH DEMO
▸ https://youtu.be/un6ZNdcxQIk?si=fEHwhQ0WitotpqD4&t=552

https://youtu.be/un6ZNdcxQIk?si=fEHwhQ0WitotpqD4&t=552

CS354P

CHAOS DESTRUCTION DEMO

▸ https://www.youtube.com/watch?v=XaPECMAKbSI

https://www.youtube.com/watch?v=XaPECMAKbSI

