
INTRODUCTION TO GAME
ENGINES

CS354R
DR SARAH ABRAHAM

CS354R

WHAT IS GAME TECHNOLOGY?

‣ Technology that drives games

‣ Graphics

‣ Physics

‣ GUI

‣ Networking

‣ AI

‣ Sound

‣ Game engine connects these aspects in a coherent, organized manner

CS354R

WHAT THIS COURSE IS NOT

▸ Not a game design course!

▸ Not a game development class (that’s kinda CS354p)

▸ Not an introduction to the basics of C++ (that’s CS354p)

▸ Thus making a game with cool systems is secondary to
creating the engine that drives them

▸ But game features and systems are of course closely
connected to engine implementation…

CS354R

WHAT THIS COURSE IS

▸ A way to interact with a large-scale software system
(specifically a game engine)

▸ An opportunity to build out common game engine
features on top of an existing system

▸ An exploration of game engine features, their function,
and ways to build them

▸ An environment to master team-based development and
clear communication

CS354R

GAME DEVELOPMENT TEAM

▸ System designers decide on game format and behavior

▸ Artists create models, textures, and animations

▸ Level designers create the game spaces and interactions

▸ Audio designers handle sounds

▸ Programmers write code to put everything together and
create tools to make everyone else’s job easier

▸ And others: production, management, marketing, quality
assurance

CS354R

COMMUNICATIONS

▸ We’ll be using Discord for questions and answers to
specific problems, and Discord for class communication/
in-class discussion

▸ Please join the server so you are able to keep up on issues
and ask questions

▸ Students should work together to solve problems before
asking for teacher or TA involvement

▸ Grades and assignments will be done via Canvas

CS354R

BOOKS AND RESOURCES
‣ Recommended “textbook”: “Game Engine Architecture” Jason Gregory

‣ Good exposition of many engine technology and design

‣ Not required but useful

‣ Other useful books:

‣ “Game Programming Gems 1-8”

‣ “3D Game Engine Design” David Eberly (lots of equations, less exposition,
good math background and computer graphics)

‣ Website: www.gamasutra.com

‣ Game developer technical and trade news (articles may be hit or miss)

‣ GDC Vault and Siggraph archives

http://www.gamasutra.com/

CS354R

CLASS EXPECTATIONS

▸ During class we’ll explore key concepts and provide basic background info for
projects

▸ Regular in-class quizzes

▸ Ideally a time for discussion and group exploration

▸ Outside of class you’ll implement this functionality in your game engine

▸ Note that this is a programming-heavy course!

▸ Has a moderately heavy workload according to student reviews

▸ Throughout the course you will encounter new technology and ideas that I
won’t teach directly

▸ This is a “finishing” class to help build job skills in addition to teaching core CS
concepts

CS354R

THINGS I WILL SKIM OVER

▸ Things I will (mostly) assume you know:

▸ 3D graphics concepts and programming

▸ Vectors, matrices, geometric reasoning

▸ C++ programming

▸ Things that are nice to know:

▸ UI toolkits (FLTK, Glut, Qt, Interface Builder, etc)

▸ 3D modeling and texturing (Maya, Substance, ZBrush, etc)

▸ Scripting languages (Lua, Python, etc)

CS354R

GRADING

▸ Projects and reports (no tests)

▸ 6 major projects

▸ Groups of 3 assigned by the TA for projects 2-4

▸ Self-forming groups allowed for the final project

▸ Regular quizzes to check comprehension but are graded
based on attendance

CS354R

GRADING

▸ Groups will be graded as one, but adjustments will be made based on
individual performance

▸ Each group will be evaluated both on the project submissions and
in-between milestones submitted via git

▸ We will use commits to assess how much each group member
contributed to the project if there are group conflicts

▸ For the final project, your team will set its own milestones and goals

▸ You will be graded based on how well you achieve these goals
factoring in degree of difficulty

▸ Each milestone will involve turning in a report

CS354R

WORKING IN GROUPS

▸ Working in groups is an acquired skill and the most important thing you’ll
learn in here!

▸ For some information on group functioning, read http://www-
honors.ucdavis.edu/vohs/index.html

▸ We assign teams — like in industry

▸ Group evaluation exercises throughout the semester will ensure an even
distribution of work (and grades)

▸ You must evaluate teammates (even if only to say nice things about them!)

▸ Low performance and poor team evaluations can result in failing the class

http://www-honors.ucdavis.edu/vohs/index.html
http://www-honors.ucdavis.edu/vohs/index.html

CS354R

PROJECT FORMAT

▸ To help with TA grading, your projects should run on the 3rd floor lab machines

▸ You MUST include

1. Screen capture of your program in action

2. A report documenting key features, where they are implemented in the code
base, screenshots of your key code, and an explanation of your design decisions

▸ Godot projects are annoying to download via Canvas, so you MUST use version control for
submitting your projects

▸ We’ll use GitLab (www.gitlab.com), so make your repos private

▸ You’ll branch a “code-freeze” version for each project/milestone and submit repo
information via Canvas. Any modifications to the code-freeze branch after the project
deadline will deduct from your late slips

▸ Please include clear documentation on how to build your system even if it’s the default
instructions (learning to write good documentation is also a skill)

http://www.gitlab.com

CS354R

THE ENGINE

▸ We will be using Godot for our engine development https://
godotengine.org/

▸ Open source under MIT license

▸ Godot will be built from source (rather than downloading the binary)

▸ We are going to use Godot in the “engine building” way rather than
the “game developer” way

▸ You will be quite familiar with build systems by the end of this class

▸ Even if you develop on a personal machine, make sure your project
and binaries runs on the lab machines

https://godotengine.org/
https://godotengine.org/

CS354R

PROJECT TOOLS

▸ Source code control systems are essential for team projects

▸ Games are asset intensive, so please use git-lfs for handling
binary data

▸ Large software systems inevitably require using libraries and build
systems

▸ Cmake is very common, but Godot uses SCons

▸ SCons uses Python 3 so you may need to adjust your environment
variables

▸ If you have concerns about your code building correctly for the TA,
please check before the submission deadline

CS354R

TOOLS FOR CONTENT CREATION

▸ Models and art are the biggest expense in real games

▸ This course doesn’t require outside art assets, but:

▸ You can use Blender in the lab or other programs on your own
machines

▸ Acknowledge any assets you download/purchase

▸ Assets must be usable in the Linux environment but you can develop
in non-Linux environments

▸ May need to write format converters if you have a good tool that
produces output that you can’t input.

▸ This is a big deal in the real world!

CS354R

QUESTIONS ABOUT THE CLASS POLICIES OR ASSIGNMENTS?

CS354R

INTERACTIVE PROGRAMMING

‣ A game is a user-controlled program

‣ Responsive to user input in real time

‣ Provides constant feedback about its state to help users
understand what is happening

‣ Effective interaction is critical for player immersion

‣ How do we build software to achieve this?

CS354R

EVENT-DRIVEN PROGRAMMING

‣ Everything happens in response to events

‣ Events occur asynchronously with respect to the execution
of the program reacting to the event

‣ Events can come from users or system components

‣ Generated signals or messages sent to a system
component

‣ Events, signals, and messages solve similar problems

CS354R

SYSTEM-GENERATED EVENTS

‣ Consider: Timer events

‣ Application calls a function requesting an event at a
future time (e.g. next time a frame should be drawn)

‣ System provides this event at the requested time

‣ Application checks for and responds to the event (e.g.
drawing the next frame)

CS354R

USER-GENERATED EVENTS

‣ Consider: Button pressed

‣ Controller hardware sends a signal to the computer
(called an interrupt)

‣ The OS responds to the interrupt by converting it to an
item in an “event queue” for the windowing system

‣ Events can be kept in priority order, temporal order, etc

‣ API elements of UI toolkits check and respond to events

‣ What does it mean to check for events?

CS354R

POLLING VS. WAITING

‣ Polling provides a call that returns immediately (non-blocking) to
check if an event is pending

‣ Happens whether or not there is an event

‣ What do you do if there’s not one? Loop to keep checking? Go
off and do something else?

‣ Blocking event functions wait (block) until an event has arrived

‣ Only returns after the event is processed

‣ What happens while your program waits? Does any work get
done? Does the screen freeze up?

CS354R

CALLBACKS

‣ Tell system what to do when a particular type of event arrives

‣ Code is executed automatically when this happens

‣ Most GUI systems operate this way

‣ Application makes a call to the GUI telling it what function to
execute when the event arrives

‣ When a timer event arrives, the system calls a draw function

‣ When the left mouse button is clicked, the system calls the
mouse event function

CS354R

EVENT-RESPONSE CLASSES

‣ Two fundamental kinds of event responses:

‣ Mode change events (cause the system to shift to a
different mode of operation)

‣ Task events (cause the system to perform a specific task
within a mode of operation)

‣ Game software structure reflects this

‣ e.g. menu system is separate from game runtime

CS354R

REAL-TIME EVENT LOOPS

‣ Games and similar interactive systems look like an big infinite loop:

‣ The number of times this loop executes per second is the frame rate
(since each render operation creates a new frame)

‣ Measured in frames per second (fps)

while (1) {

	 process events

	 update state

	 render

}

CS354R

LATENCY AND LAG

‣ Latency is the time it takes from starting to do something to finishing
it

‣ Lag in user interaction is the latency from when a user provides input
to the time they see the response

‣ Controlling lag is extremely important for playability

‣ Distorts causality

‣ Causes motion sickness

‣ Makes it hard to track or target objects

‣ Makes interaction difficult

CS354R

EXAMPLE: INPUT LAG .

 .

 .

process input

update state

render

process input

update state

render

process input

update state

render

 .

 .

{
Frame time

{
Frame time

{
Frame time

Time

Event arrives

}Latency} Lag

CS354R

BRUTE FORCING LAG

1. Pick a frame rate = 1/frame time

2. Do as much as you can in a frame time

▸ Faster algorithms and hardware means more can get
done!

▸ Budgeted resources – graphics, AI, sound, physics,
networking, etc — must now be done in the frame time

▸ Is this necessary for all resources?

CS354R

PRIORITIZING RESOURCES

▸ Priority is to reduce lag between user input and its direct
consequences

▸ Lag between input and other consequences may matter less

▸ Update different parts of the game at different rates

▸ Achieve this by decoupling separable parts of the game

▸ This is where good software engineering practices come in!

▸ Efficient software design, implementation, and algorithms
allow for more content/better graphics/deeper immersion, etc!

