Collision Detection and Response

- Physics tells us how forces act on objects
- Collision \textit{detection} tells us when two or more objects interact
- Collision \textit{response} tells us what to do to resolve these interactions
DISCUSS

- How did you approach collision detection and response in A1?
 - Did you detect for multi-object collisions or handle collisions individually?
 - How did you handle response?
 - How does detection of multiple objects change the response?
WHEN DO THINGS COLLIDE?

- For now, let’s just consider a point-plane collision

A plane is fully specified by any point \(P \) on the plane and its normal \(N \) (the cross product of two of its vectors).
THE PLANE EQUATION

The plane equation:

\[(N \cdot P) + D = 0\]

\[N \cdot (P - P_1) = 0\]

\[(N_x, N_y, N_z) \cdot (P_x - P_{1x}, P_y - P_{1y}, P_z - P_{1z}) = 0\]

\[N_x(P_x - P_{1x}) + N_y(P_y - P_{1y}) + N_z(P_z - P_{1z}) = 0\] the constant \(D\)

\[N_xP_x + N_yP_y + N_zP_z - (N_xP_{1x} + N_yP_{1y} + N_zP_{1z}) = 0\]
How do you decide when you’ve crossed a plane?
POINT DISTANCE FROM PLANE

\[d = \frac{N \cdot P_o + D}{\sqrt{N_x^2 + N_y^2 + N_z^2}} \]

- Project vector \((P_o - P) \) onto \(N \) to get length

\[d = (P_o - P) \cdot \frac{N}{\|N\|} \]

- Distance \(d \) is signed relative to \(N \)'s direction
WHAT IS THIS IGNORING?

- ...everything with volume...

- But we’ll come back to rigid bodies in a bit...
WHAT NOW?

- We can detect when a point has passed across a plane boundary
 - How do we respond?
COLLISION RESPONSE

To compute the collision response, we need to consider the normal and tangential components of a particle’s velocity in the direction of N

\[
N_v = (N \cdot V)N
\]

\[
V_T = V - V_N
\]
Restitution represents the amount of kinetic energy retained after a collision between two material types.

- Can also respond by modeling impulse and friction forces.
 - More accurate but also more computationally demanding.
WHEN TO DETECT?

- After Contact (a posteriori)
 - Run simulation
 - “Roll back” if intersection occurs

- Before Contact (a priori)
 - Predict time of collision
 - Update position accordingly

- Resting Contact
 - Two objects are in contact with each other
 - A surprisingly difficult special case

- Advantages and disadvantages?
ROLLBACK RESPONSE

- If an object has a positive distance d_i to plane at start of timestep i, and a negative distance d_{i+1} to plane at start of timestep $i+1$, a collision has occurred during timestep i.
 - Must determine *when* in timestep i collision occurred.
- Backtracking waits for collision to be detected then steps back through timestep.
 - Bisect timestep to approximate collision time.
 - Must run backtracking for all objects to avoid incorrect response.
ROLLBACK RESPONSE CHALLENGES

- Response may not bring object to the other side of a wall
 - Include a velocity check to ensure object leaves wall
- Object can also be moved to just outside the wall
 - May have accuracy issues when applying velocity/force to move object
Adaptive time steps when encountering a collision
- Sweep along object’s trajectory to determine when collision will occur within a timestep
- Reduce time steps to determine when the collision happens and respond accordingly
PREDICTION RESPONSE CHALLENGES

- More initial bookkeeping but saves retroactive computation
- Must pick bounds of sweep with care
 - Possible to miss check if bounds do not match particle velocity
- Must perform iterative timesteps for all simulated objects in the scene
ISSUES WITH LARGE SYSTEMS

- Both responses have performance issues as number of simulated objects grows.
- Must reduce time step for all objects when a collision is about to occur/has occurred for one object even if objects are unrelated.
- Timewarp simulation allows for adaptive time steps only on colliding rigid body and its related bodies:
 - Multibodies
 - Contact bodies
 - Active bodies
WHAT ABOUT RESTING CONTACT?

- Very difficult case!
- Issues with numeric precision and time step continuity
 - i.e. We can almost never zero out forces
- Must check if forces are below some threshold and treat them as zero

https://www.reddit.com/r/GamePhysics/comments/d8o4yt/borderlands_3_i_honestly_shouldve_seen_this_coming
RIGID BODIES

- Particles are limited in terms of simulating real world interactions
 - Need volume to capture more behaviors
- Rigid bodies are an approximation of physically-based volumetric bodies
 - Assume (incorrectly) that their shape cannot be deformed
 - Have a center of mass
 - Have angular velocity
RIGID BODIES AND ROTATION

- Rigid bodies rotate around their center of mass
 - Calculated as the center of the geometry (centroid)
 - Assumes uniform density
- In 2D, rigid body rotations always occur within a plane
 - Can represent orientation as a radian (scalar)
 - Can also represent angular velocity, angular acceleration, moment of inertia, and torque as scalars
- In 3D, rigid body can rotate along any axis
 - Can represent orientation as a quaternion
 - Can represent moment of inertia as a 3x3 matrix but it varies based on orientation (which changes over time)
COLLISION DETECTION FOR RIGID BODIES

- Two stage process: broad and narrow phase
- Broad phase catches potential intersections across all rigid body pairs
- Narrow phase confirms if broad phase candidate pairs actually did collide
Detecting for every polygon in a mesh is inefficient

- Bounding boxes simplify detection
- Use of course-scale versus fine-scale detection can also reduce calculations
- Volumes usually axis-aligned (AABBs) for computation efficiency

Detecting all potential collisions at every time step is also inefficient

- Spatial structures reduce number of checks
- Use of trees limit potential points of contact within a region
BROAD PHASE ALGORITHMS

- Sort and Sweep
 - Choose one axis to project all AABBs onto by beginning and end of volume
 - Check active intervals (where bounding volume has begun but not ended) and add pairs of volumes as candidates for narrow phase detection
 - Can re-sort easily between time steps
 - Can alternate axes to reduce false positives
SORT AND SWEEP
BROAD PHASE ALGORITHMS

- Dynamic Bounding Volumes
 - Binary tree that stores hierarchy of AABBs
 - Object AABBs stored at leaves
 - Can traverse tree to determine candidate pairs for narrow phase
 - Can be rebalanced between timesteps
DYNAMIC BOUNDING VOLUMES
NARROW PHASE

- Determines which of the candidate pairs are intersecting and at what point
- Need a more precise bounding volume than the AABBs for accuracy
 - Enclose object in a convex hull, or smallest shape that completely encloses object with no concavity
- Many algorithms for testing if objects are intersecting, at what point of contact, at what depth etc
SEPARATING AXIS THEOREM

- There should exist at least one axis where orthogonal projections of objects onto axis do not overlap if convex shapes do not intersect
 - Basically if you can create a plane between two 3D shapes, they are not intersecting
- One of many techniques for determining separability in the narrow phase
AN ADDITIONAL NOTE ON CONVEX HULLS

- Sometimes objects need concavity
- Can create a concave object out of several convex hulls (convex decomposition)
 - Can automatically generate group of convex hulls
 - Can have artist manually create convex hulls
CONVEX DECOMPOSITION IN UE4
RESOLVING MULTIPLE COLLISIONS

- Can resolve all collisions simultaneously or handle them sequentially
- Simultaneous Collision Handling
 - Detect and calculate all collisions in a given time step
 - Apply necessary forces to all involved objects
 - Highly parallel
 - Incorrect behavior (does not handle transfer of force)
- Sequential Collision Handling
 - Detect and calculate collisions in a given time step serially
 - Resolve collision then resolve additional collisions caused by changes to the system
 - Done in a single time step
STILL MANY CHALLENGES...

- Both types of collision resolvers can be inaccurate in certain situations
 - Hybrid methods exist but also can have issues
- The point is, simulating physically-based things is inherently inaccurate so must decide how best to balance realism, speed, and tunability
- And we haven’t even talked about the really hard stuff like cloth and hair simulation...
TWEAKING PHYSICS TO MAKE THINGS FUN

Example:

- Elsa's hair flip is commonly considered an animation “error”
- Probably a creative decision because the animation looked better ignoring collisions than respecting them

https://www.youtube.com/watch?v=SxSV9RxG7JM
WHAT ABOUT GAMES?

- Can’t fake things as easily in games!
- Player has control of camera and change the simulation with their actions
 - …and arguably physics glitches are sometimes a feature...

https://www.youtube.com/watch?v=pqiZFuSeUCk
ADDITIONAL RESOURCES

- [https://www.gamasutra.com/view/feature/131834/collision_response_bouncy_.php]
- [https://www.scss.tcd.ie/~manzkem/CS7057/cs7057-1516-09-CollisionResponse-mm.pdf]
- [https://www.merl.com/publications/docs/TR2000-17.pdf]
- [https://roystanross.wordpress.com/2014/05/07/custom-character-controller-in-unity-part-1-collision-resolution/]
- [https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics]
- [https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169]
- [https://www.myphysicslab.com/engine2D/collision-methods-en.html]