
INTERACTING WITH
SIMULATIONS

CS354R
DR SARAH ABRAHAM

CS354R

PHYSICS IN GAMES

▸ Challenges:

▸ Must be able to simulate efficiently with multiple objects

▸ Must maintain stability regardless of player input

CS354R

STATIC AND DYNAMIC OBJECTS
▸ Static objects do not move during the physics simulation

▸ Fewer calculations with simplifying assumptions

▸ No mass — only used for collision detection

▸ Make as many static objects as possible

▸ Dynamic objects have physics, collision detection, and collision response
applied to them

▸ Simulated objects in the scene

▸ Controlled by rigid body dynamics

▸ What about objects the player or game logic controls?

▸ Characters, moving platforms, etc?

CS354R

KINEMATIC OBJECTS

▸ Kinematic objects can move in the simulation but are not
affected by physics

▸ Allows for player controls that are not physically based

▸ Allows for non-physically based objects to kick off
physically based movements in other objects

▸ No mass but can simulate dynamic motions

CS354R

KINEMATIC OBJECTS IN GODOT

▸ CharacterBody allows for user control or animation control over an
object

▸ When moved in an AnimationPlayer, can estimate linear and angular
velocity

▸ Rigid bodies can interact with this motion “correctly”

▸ Can perform collision tests to reconstruct simulated physics interactions:

▸ move_and_collide moves body along a given vector and returns a
KinematicCollision if it collides

▸ move_and_slide moves body along a given vector but will slide
based on outside rigid body motions (returns the linear velocity after
it collides)

CS354R

OTHER USEFUL FUNCTIONS

▸ move_and_slide_with_snap moves the body while keeping
it attached to surface’s slope

▸ test_move checks for collisions without moving the body

▸ Read the documentation here to learn more:

▸ https://docs.godotengine.org/en/4.1/classes/
class_characterbody3d.html

▸ https://docs.godotengine.org/en/4.1/tutorials/physics/
using_character_body_2d.html

https://docs.godotengine.org/en/4.1/classes/class_characterbody3d.html
https://docs.godotengine.org/en/4.1/classes/class_characterbody3d.html
https://docs.godotengine.org/en/4.1/tutorials/physics/using_character_body_2d.html
https://docs.godotengine.org/en/4.1/tutorials/physics/using_character_body_2d.html

CS354R

GODOT PHYSICS

▸ Godot Physics is used for both 2D and 3D physics as of
Godot 4

▸ Previously used Bullet (an open source 3D physics library)

▸ Used extensively in game and robotics applications

▸ Base API is C++

▸ PyBullet is Python library for robotics and AI applications

▸ Godot Physics designed to match Bullet specification

CS354R

BULLET SIMULATOR CLASS EXAMPLE
class Simulator {

protected:

btDefaultCollisionConfiguration*
collisionConfiguration;

btCollisionDispatcher* dispatcher;

btBroadphaseInterface* overlappingPairCache;

btSequentialImpulseConstraintSolver* solver;

btDiscreteDynamicsWorld* dynamicsWorld;

btAlignedObjectArray<btCollisionShape*>
collisionShapes;

 std::deque<GameObject*> objList;

public:

Simulator();

~Simulator();

void addObject(GameObject* o);

bool removeObject(GameObject* o);

void stepSimulation(const float elapsedTime,

int maxSubSteps = 1, const float fixedTimestep =
1.0f/60.0f);

};

Simulator::Simulator() {

 collisionConfiguration = new btDefaultCollisionConfiguration();

 dispatcher = new btCollisionDispatcher(collisionConfiguration);

 overlappingPairCache = new btDbvtBroadphase();

 solver = new btSequentialImpulseConstraintSolver();

 dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,

 overlappingPairCache,

 solver,

 collisionConfiguration);

 dynamicsWorld->setGravity(btVector3(0.0, -0.098, 0.0));

 //Add collision shapes to reuse among rigid bodies

}

void Simulator::addObject (GameObject* o) {

objList.push_back(o);

dynamicsWorld->addRigidBody(o->getBody());

}

CS354R

PHYSICS COLLISION SHAPES

▸ Collision shapes are bounding boxes that define physics objects

▸ Reuse of shapes among collision bodies saves memory

▸ Primitive shapes include spheres, boxes, cylinders, capsules etc

▸ Mesh shapes include convex hulls, convex triangle meshes,
heightfield terrain etc

▸ Primitive shapes provide an efficiency/accuracy tradeoff

▸ Meshes better for arbitrary geometry that requires higher
degree of accuracy

CS354R

SIMULATION WORLD AND OBJECTS

▸ btDefaultCollisionConfiguration defines default setup for memory and
collision

▸ btCollisionDispatcher defines default thread dispatcher (not parallel)

▸ btDbvtBroadphase checks for number of collisions to resolve (can also use
btAxis3Sweep)

▸ btSequentialImpulseConstraintSolver defines default constraint solver
(not parallel)

▸ btDiscreteDynamicsWorld creates a world based on simulation settings

▸ btRigidBody (btCollisionObject) manages collision detection for an
object:

▸ Shape, AABB, and transform

CS354R

INTEGRATING A PHYSICS ENGINE

▸ Physics engine called during
game loop

▸ Runs simulation based on a time
step

▸ Provides updated position and
orientation

CS354R

CONNECTING PHYSICS TO THE GAME LOOP

▸ How do we know when something changes in one or the
other?

▸ What should we do when this change happens?

CS354R

MULTIPLE REPRESENTATIONS
▸ Game Object must have visual and physics-based representation

▸ Visual components:

▸ Transform in scene hierarchy

▸ Artist mesh

▸ Physics-based components:

▸ Transform in physics simulation

▸ Rigid body

▸ Collision shape

▸ Mass

▸ Inertia

CS354R

BULLET MOTIONSTATES

▸ MotionStates provide an interface between the simulation and game
loop

▸ Used for moving objects

▸ Movements in simulation are passed to rendered objects in the
scene

▸ Static objects do not need motion states

▸ Kinematic objects communicate movement from game loop to Bullet

▸ Motion states used in reverse

CS354R

USING MOTIONSTATES

▸ btDefaultMotionState provides basic motion state
functionality

▸ Use motion state to initialize object position when it enters
the simulation (getWorldTransform)

▸ Call motion state during simulation to move body in
rendering world (setWorldTransform)

CS354R

COLLISION CALLBACKS

▸ ContactTest tests object against all other objects and calls
ContactResultCallback

▸ simulator->getWorld()->contactTest(body,
contactCallback);

▸ Implement ContactResultCallback to determine:

▸ Which collisions should result in a hit

▸ What information about the hit to store/use

CS354R

OBJECT SIZE AND MASS

▸ Physics simulations will struggle with very small and very large objects

▸ Bullet size recommendations:

▸ Minimum object size is 20 cm (0.2 units) in Earth gravity

▸ Maximum object size is 5m (5 units) in Earth gravity

▸ Physic simulations will struggle with large mass ratios

▸ Simulations can become unstable when heavy objects rest on light
objects

▸ Bullet mass ratio recommendations:

▸ Keep object mass around 1

CS354R

SIMULATION TIME STEPS
▸ Simulation time steps should be as decoupled as possible from rendering

framerate

▸ Simulation should not slow down or speed up based on framerate

▸ Can decouple by setting simulation to fixed time step

▸ Simulation will remain more stable

▸ Simulation time will not correspond to frame time

▸ Substepping allows physics simulation to adjust to frame rate

▸ If frame time is smaller than physics time step, interpolate but do not
perform physics simulation

▸ If frame time is greater than physics time step, perform multiple physics
time steps to match

CS354R

SUBSTEPPING

http://www.aclockworkberry.com/unreal-engine-substepping/

http://www.aclockworkberry.com/unreal-engine-substepping/

CS354R

GHOST OBJECTS AND RAY CASTS

▸ Ways of detecting interactions without creating collision
responses

▸ Ghost objects have volume and track objects they are in
contact with

▸ Ray casts have direction and track objects they have
intersected

▸ Designed to sense scene objects so that program can
appropriately respond

CS354R

EXAMPLE

▸ https://www.youtube.com/watch?v=qGEpiSRX5ac

https://www.youtube.com/watch?v=qGEpiSRX5ac

CS354R

ADDITIONAL RESOURCES

▸ [https://github.com/bulletphysics/bullet3/blob/master/
docs/Bullet_User_Manual.pdf]

▸ [https://docs.godotengine.org/en/3.1/classes/
class_kinematicbody.html]

▸ [https://docs.godotengine.org/en/3.1/classes/
class_raycast.html]

▸ [http://www.aclockworkberry.com/unreal-engine-
substepping/]

https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://docs.godotengine.org/en/3.1/classes/class_kinematicbody.html
https://docs.godotengine.org/en/3.1/classes/class_kinematicbody.html
https://docs.godotengine.org/en/3.1/classes/class_kinematicbody.html
https://docs.godotengine.org/en/3.1/classes/class_raycast.html
https://docs.godotengine.org/en/3.1/classes/class_raycast.html
https://docs.godotengine.org/en/3.1/classes/class_raycast.html
http://www.aclockworkberry.com/unreal-engine-substepping/
http://www.aclockworkberry.com/unreal-engine-substepping/
http://www.aclockworkberry.com/unreal-engine-substepping/

