
INTERACTIVE ANIMATIONS

CS354R
DR SARAH ABRAHAM

CS354R

REMEMBER SCENE HIERARCHIES?

CS354R

MANY TYPES OF HIERARCHIES

CS354R

ANIMATION

▸ The above examples are all articulated models:

▸ Rigid parts (bones)

▸ Connected by joints

▸ They can be animated by specifying the joint angles (or
other display parameters) as functions of time.

▸ Direct control of joints

▸ Inverse kinematics (IK)

CS354R

DIRECT CONTROL OF JOINTS

▸ Model has “T” or “Y” or “A” pose

▸ Defines rest orientation of bones/
joints

▸ Includes skin weights specifying joint
influence on each polygon

▸ Specify target pose by changing bone
orientation and position in world space

▸ Map between default pose and target
pose to update position of polygons

https://sketchfab.com/salmonax

https://sketchfab.com/salmonax

CS354R

FORWARD KINEMATICS

CS354R

INVERSE KINEMATICS

▸ Inverse kinematics take the target pose and compute all
necessary joints along the chain to reach that pose

▸ Forward kinematics are easier to compute but harder to
reason about

▸ Inverse kinematics are more natural to reason about but
harder to compute

CS354R

DEFINING TARGET POSES
▸ Skeleton must include kinematic chains along parts of hierarchy with

joint dependencies

▸ e.g. Dependency extends from shoulder to wrist

▸ Each kinematic chain has an end effector to target different positions
(or orientations)

▸ New position of end effector updates all joints along kinematic chain

▸ May be possible to solve analytically but usually solved approximately
and iteratively

▸ Minimization problem: get end effector as close to target position as
possible

CS354R

INVERSE KINEMATICS EXAMPLE

CS354R

JACOBIAN TECHNIQUE

▸ A Jacobian matrix is a matrix of first-order partial derivatives of system

▸ Describes changes in end effector position based on changes in joint angle

▸ Jacobian inverse allows computation of joint angles from changes in end
effectors

▸ Goal is to perform small, iterative changes to joint angles using Jacobian to
reach target position

▸ Must calculate Jacobian

▸ Numerically or analytically

▸ Must approximate inverse

▸ Pseudo-inverse or transpose

CS354R

CYCLIC COORDINATE DESCENT

▸ Iterative optimization algorithm used to reduce error or find minimum
of function

▸ Minimize distance between end effector and target position

▸ Individually adjusts joint angles starting at last link and working
backward

▸ Determine joint-to-end-effector vector and target-to-end effector
vectors

▸ Can determine angle between them (or amount to rotate) using dot
product

▸ Can determine direction to rotate using cross product

CS354R

LOCAL MINIMA

▸ Issue with all optimization algorithms

▸ Solution finds a local (but incorrect) minima and is unable to
continue descent toward global minima

▸ In CCD, bones do not consider other bones — only distance
to optimal position

▸ Leads to “tangling” (bones placed in optimal positions
but do not respect chain)

▸ Placing rotational constraints on joints reduces these
errors but cannot fully correct for it

CS354R

FABRIK

▸ Forward and Backward Reaching Inverse Kinematics

▸ Iterative method to find joint position on a line rather than
considering joint angles

▸ Determine if target is reachable (i.e. distance from root to target is
less than total length of chain)

▸ Move end effector to target position (within tolerance) and
recalculate positions of previous joints

▸ Move root joint back to its initial position and recalculate positions
of all child joints

CS354R

IK IN GAMES

▸ Emphasis on stability and speed

▸ Inverse Jacobian common in film but too slow for games

▸ CCD has unwanted pathologies

▸ FABRIK is extremely efficient, simple to implement, and
looks good

▸ Can also apply FABRIK with joint constraints and to
hierarchies with multiple end effectors

CS354R

HOW DO WE ANIMATE?

CS354R

KEY-FRAME ANIMATION

▸ Use of key-frame animation.

▸ Each joint specified at various key
frames

▸ System does interpolation or in-
betweening

▸ In addition to joint control, we must
have:

▸ Key frame interpolation (e.g. splines)

▸ A good interactive system

▸ Animator skill

CS354R

INTERPOLATION
▸ Fills in positions/angles between the start and end positions given in the key

frame

▸ Linear and cubic interpolations commonly used

▸ Simple to calculate and small number of points required

Linear Cubic

CS354R

SPLINES

▸ Compose complex, high-degree curves out of simpler, low-degree
piecewise curves

▸ Easier to reason about mathematically

▸ More controllable for artists

▸ Faster to calculate

▸ Can control curve’s smoothness

▸ Smoothness describes how many of a function’s derivatives are continuous

▸ Usually only need C2 continuity, or continuity in the second derivative

▸ May want lower continuity for artistic purposes

CS354R

PUTTING IT TOGETHER

▸ Humble ideas…

▸ https://www.youtube.com/watch?v=DRYhorZDVyw

▸ Lead to much bigger ideas…

▸ https://www.youtube.com/watch?v=D9dC6-nivyk

https://www.youtube.com/watch?v=DRYhorZDVyw
https://www.youtube.com/watch?v=D9dC6-nivyk

CS354R

WHAT ABOUT THESE THINGS?

CS354R

SOFT BODIES
▸ Treats objects as deformable

▸ Shape of object can change

▸ Accurate simulation is more computationally intensive

▸ Finite element simulation breaks system into smaller, solvable
subdomains that can be reassembled

▸ Mostly faked in games

▸ Rigid bodies in a lattice can fake slime, cloth, etc

▸ Godot Phyiscs does support soft bodies but more commonly
used in pre-simulated objects

CS354R

DEFORMATION AND FRACTURE IN GAMES

https://www.youtube.com/watch?v=ly64-Bn7i4k

https://www.youtube.com/watch?v=ly64-Bn7i4k

CS354R

CONNECTING ANIMATION TO CODE

▸ Animations must transition based on player actions

▸ Use of animation state machines

▸ Track what animation states transition into other
animation states

▸ Track player interactions and state that can trigger these
transitions

▸ Artists can blend between animations for a more seamless
transition

CS354R

ANIMATION STATE MACHINES IN GODOT

CS354R

REFERENCES

▸ [https://medium.com/unity3danimation/analytical-jacobian-ik-
cb3df86edf00]

▸ [http://www.ryanjuckett.com/programming/cyclic-coordinate-
descent-in-2d/]

▸ [http://www.andreasaristidou.com/publications/papers/FABRIK.pdf]

▸ [http://graphics.berkeley.edu/papers/Parker-RTD-2009-08/Parker-
RTD-2009-08.pdf]

▸ [https://godotengine.org/article/godot-gets-new-animation-tree-
state-machine]

https://medium.com/unity3danimation/analytical-jacobian-ik-cb3df86edf00
https://medium.com/unity3danimation/analytical-jacobian-ik-cb3df86edf00
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/
http://www.andreasaristidou.com/publications/papers/FABRIK.pdf
http://graphics.berkeley.edu/papers/Parker-RTD-2009-08/Parker-RTD-2009-08.pdf
http://graphics.berkeley.edu/papers/Parker-RTD-2009-08/Parker-RTD-2009-08.pdf
https://godotengine.org/article/godot-gets-new-animation-tree-state-machine
https://godotengine.org/article/godot-gets-new-animation-tree-state-machine

