
GUI AND SOUND
CS354R

DR SARAH ABRAHAM



CS354R

GRAPHICAL USER INTERFACES



CS354R

WHAT IS IN A GUI?

▸ Not just art assets!


▸ GUIs display important information for the player:


▸ Character status


▸ Enemy status


▸ Leveling information


▸ Map information


▸ Out of game menus



CS354R

DESIGNING A GUI

▸  GUI layouts should be:


▸ Intuitive to navigate


▸ Intuitive to understand


▸ Intuitive to access


▸  This is harder than it sounds


▸  An entire area of design is dedicated to interaction


▸  You will probably get it wrong the first time


▸  Iterate GUI design via user testing



CS354R

GUI TYPES: MENUS
▸ Outside of game play options, modes, and information

Metal Gear Solid V



CS354R

GUI TYPES: HUDS (HEADS UP DISPLAYS)
▸ In-game persistent display of information

Final Fantasy XIV



CS354R

GUI TYPES: DIEGETIC DISPLAYS

▸ In-game display of information incorporated into world

Dead Space



CS354R

GUI TYPES: GUI-LESS
▸ No in-game display of information — purely contextual

Last Guardian



CS354R

HOW ARE GUIS BUILT?

▸ What are things a GUI must do?


▸ What are things GUIs have?


▸ How should code be structured to support these things?



CS354R

PROGRAMMING A GUI

▸  GUI programming involves:


▸ Adding widgets


▸ Widget layout


▸ Widget appearance


▸ Widget functionality 



CS354R

WIDGETS

▸  Most GUIs are 
inheritance-based


▸ All widgets inherit 
from a common 
object type



CS354R

EXAMPLE: CEGUI WINDOWS

▸  FrameWindow


▸  PushButton


▸  Slider


▸  RadioButton/Checkbox


▸  Editbox


▸  Listbox


▸  Menubar/PopupMenu


▸  Labels



CS354R

CEGUI WINDOW LAYOUT

▸  Parent-child relationship between container widget (window) and nested 
widgets


▸  Child settings/status inherited from parent window


▸ Alpha


▸ Enabled/Disabled


▸ Destruction


▸  Window creation can be done via: 


▸ C++ programming


▸ XML hard-coding


▸ WYSIWYG (what you see is what you get) unified editor (CEED)



CS354R

WYSIWYG EXAMPLE: INTERFACE BUILDER

▸ GUI design system built into 
XCode for Cocoa applications


▸ Auto Layout constraint system 
allows for resolution-
independent layouts


▸ Outlets connect widgets to 
code


▸ Widgets use delegates to 
communicate with view 
controller (MVC model)



CS354R

INTERFACE BUILDER SOURCE
▸ Just a giant XML document…



CS354R

XML STORAGE

▸  Note that XML representation isn’t limited to GUIs


▸  Fast, modular way to load assets and properties


▸  Gives designers handles into the system


▸ Easier to version control than binary representations but 
less optimized


▸  Avoids hard-coding objects into the codebase


▸  Use of WYSIWYGs or scripts avoids hard-coding XML files



CS354R

GUIS IN UNREAL

▸ Slate is Unreal’s custom UI programming framework


▸ Unreal editor is built in Slate


▸ Written in C++


▸ Can customize editor panels or be used in-game


▸ Primarily used for tools-building


▸ UMG (Unreal Motion Graphics) is Unreal’s visual UI authoring tool


▸ Built using Widget Blueprints


▸ Blueprint includes layout mode and event graph mode for 
reacting to inputs



CS354R

HOW CAN WE BE RESOLUTION INDEPENDENT?

▸ Resolve widget placement using constraints


▸ Layout can be treated as a system of linear equations and constraints


▸ Treat as an optimization problem (minimize constraint violations)


▸ Resolve using a linear objective function


▸ Soft constraints (i.e. requested constraints that can be violated if 
necessary to find a solution) can be violated in non-uniform ways


▸ Quadratic objective functions handle error minimization better


▸ Constraint solving can decrease responsiveness


▸ Constraint solving allows for static analysis of violations



CS354R

GODOT AND GUIS

▸ Godot uses Control nodes for GUIs


▸ Have properties for anchor points, bounding rectangle, focus, size, 
margin, and UI theme


▸ Control nodes include UI elements such as Labels, TextureRects, and 
TextureButtons


▸ TextureButtons can change state based on user interactions


▸ Normal, Pressed, Hover, Disabled, Focused


▸ Containers are Control nodes that hold other Control nodes


▸ VBoxContainer/HBoxContainer, GridContainer, CenterContainer, etc



CS354R

GODOT ANCHORS

▸ Anchors define relative position (left, right, top, bottom) to 
parent container


▸ Do this through the UI!



CS354R

CONNECTING SCENES IN GODOT

▸ Godot connects GUI scenes to in-game objects using signals


▸ In-game object emits a signal based on some change property 
(emit_signal)


▸ GUI listens for signal and calls associated function (connect)


▸ Both objects must exist before connection is made (_ready called after 
all nodes loaded)


▸ Can traverse the whole scene graph (tree) to connect in-game object to GUI


▸ Can use get_node() with a relative file path to locate other nodes in the 
scene graph


▸ Can use get_tree() to access overall SceneTree



CS354R

AUDIO AND SOUND

Rez



CS354R

SOUND TYPES: MUSIC 

▸ Background score 
associated with a narrative 
work


▸ Dynamically change with 
scenes to heighten emotion


▸ Non-diegetic (originating 
outside the narrative)

Nier: Automata



CS354R

SOUND TYPES: AMBIENT 

▸ Background noises associated 
with narrative’s scene


▸ Provides auditory context for 
scene’s place and time


▸ Diegetic (originating inside 
the narrative)



CS354R

SOUND TYPES: FX 

▸ Short effects that enhance 
current narrative action


▸ Associated with particular 
objects and events within 
the scene


▸ Diegetic or non-diegetic



CS354R

HOW TO PLAY A SOUND IN GAME?

▸ Sound file must be loaded and buffered before use


▸ Loading and unloading sound can incur a massive 
performance hit if done naively


▸ Time of play is closely tied to player actions and dynamic 
events


▸ Sound mixing is situationally dependent



CS354R

AUDIO MIDDLEWARE

▸ Game engine handles: 


▸ Audio loading 


▸ Audio parameterization (e.g. attenuation, reverb, volume, etc)


▸ Audio hooks into events/triggers


▸ Audio middleware provides GUI for sound designers to configure 
audio samples and events


▸ Tune audio transitions, mixing, etc


▸ Pass final audio and configuration parameters to engine


▸ Notable audio middlewares are FMOD, Wwise, and Fabric



CS354R

SOUND CHALLENGES
▸ Memory management


▸ Audio file format and size tuned based on memory and performance


▸ Memory leaks and/or performance issues related to audio loading/
unloading


▸ Procedural sound


▸ Avoids repetitive SFX and multiple variants of a single audio file


▸ Compose SFX from collection of controllable audio components


▸ Quality sound


▸ Audio is extremely important for player immersion


▸ Usually one of the last things to be put in games



CS354R

SOUND IN GODOT

▸ Godot processes sound via built in audio buses


▸ Audio buses channel sound to speakers


▸ Audio mixed before play


▸ Multiple buses allow for multiple mixes at the same time


▸ Audio stream players send sounds to buses


▸ Godot currently does not support audio synthesizers


▸ Must use memnew() constructor to create streams (or any other 
Object allocations in GDExtension)



CS354R

GODOT AUDIO CONTROLS

Effects
Audio buses



CS354R

REFERENCES

▸ Constraint Solvers for User Interface Layout <https://
pdfs.semanticscholar.org/f95e/
b57e165f7ddf779943fb05f507bef430a779.pdf>


▸ UI Nodes in Godot <https://docs.godotengine.org/en/3.1/
getting_started/step_by_step/
ui_introduction_to_the_ui_system.html>


▸ UI Code in Godot <https://docs.godotengine.org/en/3.1/
getting_started/step_by_step/ui_code_a_life_bar.html>


▸ Godot Audio Buses <https://docs.godotengine.org/en/3.1/tutorials/
audio/audio_buses.html>

https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_code_a_life_bar.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_code_a_life_bar.html
https://docs.godotengine.org/en/3.1/tutorials/audio/audio_buses.html
https://docs.godotengine.org/en/3.1/tutorials/audio/audio_buses.html

