
GUI AND SOUND
CS354R
DR SARAH ABRAHAM

CS354R

GRAPHICAL USER INTERFACES

CS354R

WHAT IS IN A GUI?

▸ Not just art assets!

▸ GUIs display important information for the player:

▸ Character status

▸ Enemy status

▸ Leveling information

▸ Map information

▸ Out of game menus

CS354R

DESIGNING A GUI

▸ GUI layouts should be:

▸ Intuitive to navigate

▸ Intuitive to understand

▸ Intuitive to access

▸ This is harder than it sounds

▸ An entire area of design is dedicated to interaction

▸ You will probably get it wrong the first time

▸ Iterate GUI design via user testing

CS354R

GUI TYPES: MENUS
▸ Outside of game play options, modes, and information

Metal Gear Solid V

CS354R

GUI TYPES: HUDS (HEADS UP DISPLAYS)
▸ In-game persistent display of information

Final Fantasy XIV

CS354R

GUI TYPES: DIEGETIC DISPLAYS

▸ In-game display of information incorporated into world

Dead Space

CS354R

GUI TYPES: GUI-LESS
▸ No in-game display of information — purely contextual

Last Guardian

CS354R

HOW ARE GUIS BUILT?

▸ What are things a GUI must do?

▸ What are things GUIs have?

▸ How should code be structured to support these things?

CS354R

PROGRAMMING A GUI

▸ GUI programming involves:

▸ Adding widgets

▸ Widget layout

▸ Widget appearance

▸ Widget functionality

CS354R

WIDGETS

▸ Most GUIs are
inheritance-based

▸ All widgets inherit
from a common
object type

CS354R

EXAMPLE: CEGUI WINDOWS

▸ FrameWindow

▸ PushButton

▸ Slider

▸ RadioButton/Checkbox

▸ Editbox

▸ Listbox

▸ Menubar/PopupMenu

▸ Labels

CS354R

CEGUI WINDOW LAYOUT

▸ Parent-child relationship between container widget (window) and nested
widgets

▸ Child settings/status inherited from parent window

▸ Alpha

▸ Enabled/Disabled

▸ Destruction

▸ Window creation can be done via:

▸ C++ programming

▸ XML hard-coding

▸ WYSIWYG (what you see is what you get) unified editor (CEED)

CS354R

WYSIWYG EXAMPLE: INTERFACE BUILDER

▸ GUI design system built into
XCode for Cocoa applications

▸ Auto Layout constraint system
allows for resolution-
independent layouts

▸ Outlets connect widgets to
code

▸ Widgets use delegates to
communicate with view
controller (MVC model)

CS354R

INTERFACE BUILDER SOURCE
▸ Just a giant XML document…

CS354R

XML STORAGE

▸ Note that XML representation isn’t limited to GUIs

▸ Fast, modular way to load assets and properties

▸ Gives designers handles into the system

▸ Easier to version control than binary representations but
less optimized

▸ Avoids hard-coding objects into the codebase

▸ Use of WYSIWYGs or scripts avoids hard-coding XML files

CS354R

GUIS IN UNREAL

▸ Slate is Unreal’s custom UI programming framework

▸ Unreal editor is built in Slate

▸ Written in C++

▸ Can customize editor panels or be used in-game

▸ Primarily used for tools-building

▸ UMG (Unreal Motion Graphics) is Unreal’s visual UI authoring tool

▸ Built using Widget Blueprints

▸ Blueprint includes layout mode and event graph mode for
reacting to inputs

CS354R

HOW CAN WE BE RESOLUTION INDEPENDENT?

▸ Resolve widget placement using constraints

▸ Layout can be treated as a system of linear equations and constraints

▸ Treat as an optimization problem (minimize constraint violations)

▸ Resolve using a linear objective function

▸ Soft constraints (i.e. requested constraints that can be violated if
necessary to find a solution) can be violated in non-uniform ways

▸ Quadratic objective functions handle error minimization better

▸ Constraint solving can decrease responsiveness

▸ Constraint solving allows for static analysis of violations

CS354R

GODOT AND GUIS

▸ Godot uses Control nodes for GUIs

▸ Have properties for anchor points, bounding rectangle, focus, size,
margin, and UI theme

▸ Control nodes include UI elements such as Labels, TextureRects, and
TextureButtons

▸ TextureButtons can change state based on user interactions

▸ Normal, Pressed, Hover, Disabled, Focused

▸ Containers are Control nodes that hold other Control nodes

▸ VBoxContainer/HBoxContainer, GridContainer, CenterContainer, etc

CS354R

GODOT ANCHORS

▸ Anchors define relative position (left, right, top, bottom) to
parent container

▸ Do this through the UI!

CS354R

CONNECTING SCENES IN GODOT

▸ Godot connects GUI scenes to in-game objects using signals

▸ In-game object emits a signal based on some change property
(emit_signal)

▸ GUI listens for signal and calls associated function (connect)

▸ Both objects must exist before connection is made (_ready called after
all nodes loaded)

▸ Can traverse the whole scene graph (tree) to connect in-game object to GUI

▸ Can use get_node() with a relative file path to locate other nodes in the
scene graph

▸ Can use get_tree() to access overall SceneTree

CS354R

AUDIO AND SOUND

Rez

CS354R

SOUND TYPES: MUSIC

▸ Background score
associated with a narrative
work

▸ Dynamically change with
scenes to heighten emotion

▸ Non-diegetic (originating
outside the narrative)

Nier: Automata

CS354R

SOUND TYPES: AMBIENT

▸ Background noises associated
with narrative’s scene

▸ Provides auditory context for
scene’s place and time

▸ Diegetic (originating inside
the narrative)

CS354R

SOUND TYPES: FX

▸ Short effects that enhance
current narrative action

▸ Associated with particular
objects and events within
the scene

▸ Diegetic or non-diegetic

CS354R

HOW TO PLAY A SOUND IN GAME?

▸ Sound file must be loaded and buffered before use

▸ Loading and unloading sound can incur a massive
performance hit if done naively

▸ Time of play is closely tied to player actions and dynamic
events

▸ Sound mixing is situationally dependent

CS354R

AUDIO MIDDLEWARE

▸ Game engine handles:

▸ Audio loading

▸ Audio parameterization (e.g. attenuation, reverb, volume, etc)

▸ Audio hooks into events/triggers

▸ Audio middleware provides GUI for sound designers to configure
audio samples and events

▸ Tune audio transitions, mixing, etc

▸ Pass final audio and configuration parameters to engine

▸ Notable audio middlewares are FMOD, Wwise, and Fabric

CS354R

SOUND CHALLENGES
▸ Memory management

▸ Audio file format and size tuned based on memory and performance

▸ Memory leaks and/or performance issues related to audio loading/
unloading

▸ Procedural sound

▸ Avoids repetitive SFX and multiple variants of a single audio file

▸ Compose SFX from collection of controllable audio components

▸ Quality sound

▸ Audio is extremely important for player immersion

▸ Usually one of the last things to be put in games

CS354R

SOUND IN GODOT

▸ Godot processes sound via built in audio buses

▸ Audio buses channel sound to speakers

▸ Audio mixed before play

▸ Multiple buses allow for multiple mixes at the same time

▸ Audio stream players send sounds to buses

▸ Godot currently does not support audio synthesizers

▸ Must use memnew() constructor to create streams (or any other
Object allocations in GDExtension)

CS354R

GODOT AUDIO CONTROLS

Effects
Audio buses

CS354R

REFERENCES

▸ Constraint Solvers for User Interface Layout <https://
pdfs.semanticscholar.org/f95e/
b57e165f7ddf779943fb05f507bef430a779.pdf>

▸ UI Nodes in Godot <https://docs.godotengine.org/en/3.1/
getting_started/step_by_step/
ui_introduction_to_the_ui_system.html>

▸ UI Code in Godot <https://docs.godotengine.org/en/3.1/
getting_started/step_by_step/ui_code_a_life_bar.html>

▸ Godot Audio Buses <https://docs.godotengine.org/en/3.1/tutorials/
audio/audio_buses.html>

https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://pdfs.semanticscholar.org/f95e/b57e165f7ddf779943fb05f507bef430a779.pdf
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_introduction_to_the_ui_system.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_code_a_life_bar.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/ui_code_a_life_bar.html
https://docs.godotengine.org/en/3.1/tutorials/audio/audio_buses.html
https://docs.godotengine.org/en/3.1/tutorials/audio/audio_buses.html

