
NETWORKING OVERVIEW
CS354R

DR SARAH ABRAHAM



CS354R

NETWORKING FOR GAMES

▸ Networking required for multi-
player games


▸ In persistent games, state remains 
regardless whether anyone is 
playing


▸ In transient games, state exists 
only while people are playing


▸ Client-server versus P2P models



CS354R

NETWORKING CONCERNS

▸ Four primary concerns in building networked games:


▸ Latency: How long does it take for state to be transmitted


▸ Reliability: How often is data lost or corrupted


▸ Bandwidth: How much data can be transmitted in a 
given time


▸ Security: How is the gameplay protected from tampering


▸ All of these considerations interact and require tradeoffs…



CS354R

LATENCY IN GAMES

▸ Latency is the time between when the user acts and when they see the result


▸ Arguably most important aspect of a game network


▸ Too much latency makes gameplay hard to understand (cannot associate 
cause to effect)


▸ Latency is not the same as bandwidth


▸ A freeway has higher bandwidth (number of lanes) than a country road, 
but the latency (speed limit) can be the same


▸ Excess bandwidth can reduce the variance in latency, but cannot reduce the 
minimum latency (queuing theory)



CS354R

SOURCES OF LATENCY

▸ Frame rate latency


▸ Data goes out/in from the network layer once per frame


▸ User interaction only sampled once per frame


▸ Network protocol latency


▸ Time for OS to put/get data on physical network


▸ Transmission latency


▸ Time for data to be transmitted to the receiver


▸ Processing latency


▸ Time for the server (or client) to compute response 

▸ You cannot make any of these sources go away!


▸ You don’t even have control over some of them!



CS354R

SIDE NOTE: AMDAHL’S LAW

▸ Formula for theoretical speed up in latency based on 
improved resources

▸ Basically it says additional 
resources won’t help 
performance if you have 
bottlenecks with fixed 
latency

Slatency(s) =
1

(1 − p) + p
s

where s is speed up benefit and 
p is portion of task benefitted



CS354R

REDUCING LATENCY
▸ Frame rate latency:


▸ Increase the frame rate (faster graphics, AI, physics, etc)


▸ Network protocol latency:


▸ Send less stuff


▸ Switch to a protocol with lower latency


▸ Transmission latency:


▸ Send less stuff


▸ Upgrade your physical network


▸ Processing latency:


▸ Make your server faster


▸ Have more servers



CS354R

BUT…

▸ The sad fact is, networking researchers and practitioners 
are almost never concerned with latency


▸ Many (non-game) applications can handle higher 
latency


▸ When have you heard a DSL/Cable ad promising lower 
latency?



CS354R

WORKING WITH LATENCY
▸ Hide latency, rather than reduce it


▸ Any technique will introduce some form of error 


▸ Impossible to provide immediate, accurate information


▸ Option 1: Sacrifice game-play:


▸ Deliberately introduce lag into local player’s experience to allow time to 
deal with the network


▸ Option 2: Sacrifice accurate information: 


▸ Show approximate positions


▸ Ignore the lag by showing “old” information about other players


▸ Guess where the other players are now



CS354R

LATENCY EXAMPLE: EVE ONLINE

▸ https://youtu.be/TLqb-m1ZZUA?t=194


▸ https://io9.gizmodo.com/5980387/how-the-battle-of-asakai-became-one-of-
the-largest-space-battles-in-video-game-history

https://youtu.be/TLqb-m1ZZUA?t=194
https://io9.gizmodo.com/5980387/how-the-battle-of-asakai-became-one-of-the-largest-space-battles-in-video-game-history
https://io9.gizmodo.com/5980387/how-the-battle-of-asakai-became-one-of-the-largest-space-battles-in-video-game-history


CS354R

DEAD RECKONING

▸ Use prediction to move objects even when their positions are not 
precisely known


▸ Client maintains precise state for local objects


▸ Client receives updates of the position of other players, along 
with velocity or acceleration information


▸ Non-local positions extrapolated


▸ Within a client-server model, each player runs their own version of 
the game (replication), while the server maintains absolute authority


▸ Reduces the appearance of lag



CS354R

FIXING EXTRAPOLATION ERRORS

▸ New position, velocity, and acceleration data for other players arrives


▸ This doesn’t agree with their position in your local version


▸ Two options:


▸ Jump to the correct position


▸ Interpolate the two positions over some period


▸ Path will never be exact, but will reasonably match

Your Guess

Actual
Extrapolations from new data

New Data

Target Path



CS354R

NETWORK RELIABILITY CONSIDERATIONS

▸ Does everything need to be completely reliable in games?


▸ Are all aspects of reliability equally important?



CS354R

NETWORK RELIABILITY

‣ Protocol can attempt to ensure every packet is delivered


‣ Incurs costs in terms of latency and bandwidth


‣ Other protocols try less hard to ensure delivery


‣ Won’t tell you if packets get lost


‣ Latency and bandwidth requirements are lower



CS354R

NETWORK RELIABILITY

‣ Other aspects of reliability:


‣ Error checking: do the right bits arrive?


‣ Order consistency: do things arrive in the order they 
were sent?



CS354R

RELIABILITY REQUIREMENTS

▸ What information must be reliable?


▸ Data that has no chance to recapture if it goes missing


▸ Discrete changes in game state


▸ Information about payments, joining, dropping etc


▸ What information does not need to be reliable?


▸ Information that rapidly goes out of date


▸ Information that is sent frequently


▸ Note that data that goes out of date quickly is sent more often


▸ Big payoffs for reducing the cost of sending



CS354R

INTERNET PROTOCOLS

▸ Only two internet protocols are widely deployed and useful for games:


▸ TCP/IP (Transmission Control Protocol/Internet Protocol) is most 
commonly used


▸ UDP (User Datagram Protocol) is also widely deployed and used


▸ Other protocols exist:


▸ Proprietary standards


▸ Broadcast and Multicast are standard protocols with some useful 
properties, but not widely deployed


▸ If the ISPs don’t provide it, you can’t use it



CS354R

TCP/IP OVERVIEW
▸ Advantages:


▸ Guaranteed packet delivery


▸ Ordered packet delivery


▸ Packet checksum checking (some error checking)


▸ Transmission flow control


▸ Disadvantages:


▸ Point-to-point transport


▸ Bandwidth and latency overhead


▸ Packets may be delayed to preserve order


▸ Uses:


▸ For data that must be reliable, or requires one of the other properties


▸ Games that can tolerate latency



CS354R

UDP OVERVIEW
▸ Advantages:


▸ Packet-based (works with the Internet)


▸ Low overhead in bandwidth and latency


▸ Immediate delivery (no wait for ordering)


▸ Point-to-point and point-to-multipoint connection


▸ Disadvantages:


▸ No reliability guarantees


▸ No ordering guarantees


▸ Packets can be corrupted


▸ Can cause problems with some firewalls


▸ Uses:


▸ Data that is sent frequently and goes out of date quickly



CS354R

CHOOSING A PROTOCOL

▸ Decide on the requirements and find the protocol to match


▸ Can use both protocols in the same game


▸ You can also design your own “protocol” by designing the 
contents of packets


▸ Add cheat detection or error correction, for instance


▸ Wrap protocol inside TCP/IP or UDP 


▸ Not actually a true protocol!



CS354R

REDUCING BANDWIDTH DEMANDS

▸ Bandwidth is plentiful these days…


▸ But it becomes an issue with large environments


▸ Smaller packets reduce both bandwidth and latency


▸ Be smart about what you put in your payload and how!


▸ Dead reckoning reduces bandwidth demands by sending state 
less frequently


▸ What’s another way to reduce bandwidth and latency?


▸ Think open worlds/MMOs...



CS354R

AREA OF INTEREST MANAGEMENT

▸ Area of interest management is the networking equivalent of visibility 
check


▸ Only send data to the people who need it


▸ Doesn’t work if network doesn’t know where everyone is


▸ Area-of-interest schemes employed in client-server environments:


▸ Server has complete information


▸ Server decides who needs to receive what information


▸ Only sends information to those who need it


▸ Two approaches: grid and aura methods



CS354R

GRID AND AURA METHODS

▸ Grid methods break the world into a grid


▸ Associate information with cells


▸ Associate players with cells


▸ Only send information to players in the same (or neighboring) cells


▸ Aura methods associates an aura with each piece of information


▸ Only send information to players that intersect the aura


▸ Players need to find out all the information about an entered space regardless 
of when that information last changed


▸ Why might this be tricky?



CS354R

CONSIDER…

▸ A player opens a door in a multiplayer game


▸ What needs to be replicated to the other players?


▸ When should these things be replicated to other 
players?



CS354R

SECURITY

▸ Basic rule of security: treat all clients as malicious and adversarial!


▸ The data clients send to server should not be trusted


▸ P2P model inherently unsafe


▸ In client-server model, server should verify all incoming packets from 
client


▸ Limit entry-points and communication between server and client


▸ Remember:


▸ Players might just be malicious…


▸ But they could also be organized crime!



CS354R

SECURITY EXAMPLE: DARK SOULS

▸ https://www.youtube.com/watch?v=9cF1DvOiiUA

https://www.youtube.com/watch?v=9cF1DvOiiUA


CS354R

SECURITY EXAMPLE: COUNTER STRIKE GO

▸ https://kotaku.com/top-counter-strike-players-caught-in-
big-cheating-scand-1662810816

https://kotaku.com/top-counter-strike-players-caught-in-big-cheating-scand-1662810816
https://kotaku.com/top-counter-strike-players-caught-in-big-cheating-scand-1662810816


CS354R

SECURITY CONSIDERATIONS

▸ What are some of the game-specific things we should be 
checking on server side to prevent malicious/cheating 
behaviors?



CS354R

NETWORKING IN FIGHTING GAMES

▸ Fighting games have specific requirements in terms of 
networking


▸ Work well as peer-to-peer connections


▸ Send packets of input data to be processed on remote 
machine


▸ What makes networked fighting games hard?



CS354R

PACKET LATENCY AND PROCESSING

▸ Packets take time to reach destination but contain frame-
sensitive data


▸ Input must be timely and ordered to correctly match 
behavior on sender’s side


▸ Computers run at different speeds and may drop frames


▸ Computer performance for one player impacts how 
actions are processed


▸ What do we need to ensure to have a good play experience?



CS354R

CONSISTENCY OF VIEWS

▸ Both players must have a consistent view of the world with 
consistent frames in the world


▸ Two ways of working with this:


▸ Input delay


▸ Rollback



CS354R

INPUT DELAY

▸ Delay both player inputs by same frame amount


▸ Calculate frame delay based on players’ ping


▸ Only run input when input for that frame has been received


▸ Send multiple frame inputs per frame packet to reduce waiting on specific 
frame data


▸ Pros:


▸ Relatively simple and cheap to calculate


▸ Ensures both players share same frame times


▸ Cons:


▸ Feels terrible



CS354R

ROLLBACK

▸ System predicts remote player’s inputs and rolls back when new input 
is received


▸ Possible to combine rollback with input delay


▸ Reduces teleporting and sudden state changes


▸ GGPO (Good Game Peace Out) is the middleware solution for fighting 
game netcode created by fighting game players


▸ Uses rollback


▸ Now licensed by most major fighting games


▸ Developers now working for Riot



CS354R

NETWORKING IN GODOT

▸ Godot allows for high-level networking through MultiplayerPeer 
interface


▸ Inherits from PacketPeer, which performs serialization of packets


▸ ENetMultiplayerPeer is high-level implementation


▸ Must associate networking object with the SceneTree


▸ Based on how networking object is initialized, parts of the Scene 
Tree will either be a server or a client


▸ Check if server or client with is_network_server()


▸ Clients connected with unique id that can be retrieved through the 
SceneTree



CS354R

SCENE INSTANCING

▸ Each player needs own scene object that is connected to 
the SceneTree of every other player


▸ Load in self to local SceneTree


▸ Load in remote players to local SceneTree


▸ Can name remote players’ scene nodes after their 
unique id


▸ Scene instancing in GDExtension follows a similar process



CS354R

WHAT NEXT?

▸ Players have connected and are instanced to all other 
players — what next?



CS354R

RPCS IN GDSCRIPT
▸ Remote Procedure Calls used to communicate between peers


▸ RPCs used to call programs in a different address space


▸ Address space can be another machine


▸ Allows for calls to be the same locally and across the network


▸ Godot has RPC functionality built into Node objects through a highlevel multiplayer API


▸ Uses the @rpc annotation in GDScript


@rpc([annotations])

func my_rpc_call():

▸ Call function as an rpc using Callable

my_rpc_call.rpc() //Calls on every peer

my_rpc_call.rpc_id() //Calls on a specific peer with id



CS354R

RPCS IN GDEXTENSION

▸ Bind function that will be called using an RPC


▸ ClassDB::bind_method(D_METHOD("myFunction"), 
&MyClass::myFunction);

▸ Set annotations for RPC using rpc_config before making RPC call


▸ rpc_config(“myFunction”, myConfigDictionary);

▸ myConfigDictionary will contain all necessary key-value pairs for 
RPC call


▸ Use rpc call to send bound function with arguments


▸ rpc(“myFunction”, myFunctionArguments);



CS354R

RPC ANNOTATIONS
▸ Godot provides modes to specify how methods are called by RPCs (by default, methods are 

disabled for RPC calls)


▸ Basic parameters for RPC annotations/config are:


▸ Mode:


▸ Authority (only multiplayer authority can call remotely)


▸ Any Peer (clients allowed to call remotely)


▸ Sync:


▸ Call Remote (not called by local peer)


▸ Call Local (can be called by local peer)


▸ Transfer Mode:


▸ Unreliable (no acknowledgement, can arrive out of order)


▸ Reliable (resent until packet acknowledged, must arrive in order)


▸ Unreliable Ordered (no acknowledgement but packets received in order sent)



CS354R

MODE CONFIGURATION

▸ GDScript uses text strings, GDExtension/plugins use RPCMode enum


▸ Disabled: by default (RPC_MODE_DISABLED)


▸ RPC calls not accepted by method or property


▸ Authority: “authority” (RPC_MODE_AUTHORITY)


▸ Remote calls only accepted by the multiplayer authority (server 
by default)


▸ Any Peer: “any_peer” (RPC_MODE_ANY_PEER)


▸ Calls accepted from all remote peers



CS354R

SYNCHRONIZATION CONFIGURATION

▸ GDScript uses text strings, GDExtension/plugins uses 
booleans


▸ Remote call: “call_remote”


▸ Function will be called on all remote peers


▸ Local call: “call_local”


▸ Function called on the local peer



CS354R

TRANSFER CONFIGURATION

▸ GDScript uses text strings, GDExtension/plugins use TransferMode enum


▸ Reliable: “reliable” (TRANSFER_MODE_RELIABLE)


▸ Requires resending if out of order or packets are lost. Use sparingly


▸ Unreliable: “unreliable”  (TRANSFER_MODE_UNRELIABLE)


▸ No acknowledgement or resend attempts. Use for non-critical data


▸ Unreliable Ordered: “unreliable_ordered” 
(TRANSFER_MODE_UNRELIABLE_ORDERED)


▸ Receives packets in order by ignoring late packets. Useful for 
positional data



CS354R

NOTE: MULTIPLAYER PEER

▸ Mid-level object that provides an interface to multiple C++ 
implementations


▸ Extends PacketPeer to hand serialization, setting peers and transfer 
modes, and detecting peer connects/disconnects


▸ Godot provides three implementations:


▸ ENetMultiplayerPeer (ENet)


▸ WebRTCMultiplayerPeer (WebRTC)


▸ WebSocketPeer (WebSocket)


▸ High level Multiplayer API uses this object but MultiplayerPeer can be 
extended to handle specific networking needs



CS354R

CONSIDER THESE SCENARIOS...

▸ A player performs a jump


▸ A player is hit by ground spikes


▸ A player attacks another player


1. Where is action initiated?


2. How is action processed?


3. What view of the action do the server/clients need?



CS354R

USEFUL RPC DOCUMENTATION

▸ RPC specification for Nodes here: https://
docs.godotengine.org/en/4.1/classes/class_node.html


▸ Multiplayer API documentation here: https://
docs.godotengine.org/en/stable/classes/
class_multiplayerapi.html


▸ Multiplayer Peer documentation here: https://
docs.godotengine.org/en/stable/classes/
class_multiplayerpeer.html

https://docs.godotengine.org/en/4.1/classes/class_node.html
https://docs.godotengine.org/en/4.1/classes/class_node.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html


CS354R

RESOURCES

▸ <http://mauve.mizuumi.net/2012/07/05/understanding-
fighting-game-networking.html>


▸ <https://docs.godotengine.org/en/3.1/tutorials/
networking/high_level_multiplayer.html>


▸ <https://github.com/devonh/Godot-engine-tutorial-demos/
tree/master/2018/07-30-2018-multiplayer-high-level-api>


▸ <https://mrminimal.gitlab.io/2018/07/26/godot-dedicated-
server-tutorial.html>

http://mauve.mizuumi.net/2012/07/05/understanding-fighting-game-networking.html
http://mauve.mizuumi.net/2012/07/05/understanding-fighting-game-networking.html
https://docs.godotengine.org/en/3.1/tutorials/networking/high_level_multiplayer.html
https://docs.godotengine.org/en/3.1/tutorials/networking/high_level_multiplayer.html
https://github.com/devonh/Godot-engine-tutorial-demos/tree/master/2018/07-30-2018-multiplayer-high-level-api
https://github.com/devonh/Godot-engine-tutorial-demos/tree/master/2018/07-30-2018-multiplayer-high-level-api
https://mrminimal.gitlab.io/2018/07/26/godot-dedicated-server-tutorial.html
https://mrminimal.gitlab.io/2018/07/26/godot-dedicated-server-tutorial.html

