
SOCKET PROGRAMMING
CS354R 
DR SARAH ABRAHAM



CS354R

LECTURE OVERVIEW

‣ Application layer 

‣ Client-server 

‣ Application requirements 

‣ Background 

‣ TCP vs. UDP 

‣ Byte ordering  

‣ Socket I/O 

‣ TCP/UDP server and client 

‣ I/O multiplexing



CS354R

CLIENT-SERVER PARADIGM
Typical network app has two pieces: client and server

application 
transport 
network 
data link 
physical

application 
transport 
network 
data link 
physical

request

reply

‣ Client 

‣ Initiates contact with server 

‣ Typically requests service from server 

‣ Client implemented in browser for 
web, mail reader for e-mail 

‣ Server 

‣ Provides requested service to client 

‣ e.g. Sends web page, delivers e-mail



CS354R

FTP: THE FILE TRANSFER PROTOCOL

‣ Transfer file to/from remote host 

‣ Client/server model 

‣ Client: side that initiates transfer (either to/from remote) 

‣ Server: remote host 

‣ ftp: RFC 959 

‣ ftp server: port 21

file transfer
FTP 
server

FTP 
user 
interface

FTP 
client

local file 
system

remote file 
system

user  
at host



CS354R

SEPARATE CONTROL, DATA CONNECTIONS
‣ Ftp client contacts ftp server at port 

21, specifying TCP as transport 
protocol 

‣ Two parallel TCP connections 
opened: 

‣ Control: exchange commands, 
responses between client and 
server 

‣ Data: file data to/from server 

‣ Out-of-band protocol 

‣ Ftp server maintains “state”: current 
directory, earlier authentication

FTP 
client

FTP 
server

TCP control connection 
port 21

TCP data connection 
port 20



CS354R

FTP COMMANDS, RESPONSES

Sample Commands: 

sent as ASCII text over control 
channel 

USER username 

PASS password 

LIST return list of files in current 
directory 

RETR filename retrieves (gets) file 

STOR filename stores (puts) file 
onto remote host

Sample Return Codes: 

status code and phrase 

331 Username OK, password 
required 

125 data connection already 
open; transfer starting 

425 Can’t open data 
connection 

452 Error writing file



CS354R

TRANSPORT SERVICE REQUIREMENTS

▸ Data loss 

▸ Some apps (e.g. audio) can tolerate loss 

▸ Other apps (e.g. file transfer, telnet) require 100% reliable transfer 

▸ Timing 

▸ Some apps (e.g. games) require low delay to be effective 

▸ Bandwidth 

▸ Some apps (e.g. multimedia) require minimum bandwidth to be 
effective 

▸ Some apps (e.g. “elastic apps”) use whatever bandwidth they can



CS354R

TRANSPORT SERVICE REQUIREMENTS

no loss 
no loss 
no loss 
loss-tolerant 

loss-tolerant 
loss-tolerant 
no loss

elastic 
elastic 
elastic 
audio: 5Kb-1Mb 
video:10Kb-5Mb 
same as above  
few Kbps 
elastic

no 
no 
no 
yes, 100 msec 

yes, few secs 
yes, 100 msec 
yes and no

file transfer 
e-mail 
web documents 
real-time audio/ 
video 
stored audio/video 
interactive games 
financial apps

Application Data loss Bandwidth Time Sensitive



CS354R

PACKET FORMAT



CS354R

PACKET FORMAT



CS354R

NAMES AND ADDRESSES

‣ Each attachment point on Internet is given a unique 
address 

‣ Based on location within network (like phone numbers) 

‣ Humans prefer to deal with names not addresses 

‣ Domain Name Service (DNS) provides mapping of name 
to address 

‣ Name based on administrative ownership of host



CS354R

CONCEPT OF PORT NUMBERS
‣  Port numbers are used to identify “entities” on a host 

‣  Port numbers can be: 

‣  Well-known (port 0-1023) 

‣  Assigned (port 1024-49151) 

‣  Dynamic or private (port 49152-65535) 

‣  Servers/daemons usually use well-known ports 

‣  Any client can identify the server/service 

‣  HTTP = 80, FTP = 21, Telnet = 23, … 

‣  Other common services use assigned ports 

‣  Clients should use dynamic ports 

‣  Assigned by kernel at runtime

TCP/UDP

IP

Ethernet Adapter

NTP 
daemon

Web  
server

port 123 port 80



CS354R

SERVER AND CLIENT
Server and Client exchange messages over the network through a 
common Socket API

TCP/UDP

IP

Ethernet Adapter

Server

TCP/UDP

IP

Ethernet Adapter

Clients

Socket API

hardware

kernel  
space

user  
spaceports



CS354R

WHAT IS A SOCKET?
‣ A socket is a file descriptor that lets an application read/write data from/to the network 

‣ socket returns an integer (socket descriptor) 

‣ fd < 0 indicates that an error occurred 

‣ AF_INET: associates a socket with the Internet protocol family 

‣ SOCK_STREAM: selects the TCP protocol, SOCK_DGRAM: selects the UDP protocol

int fd;        /* socket descriptor */ 
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) } 
 perror(“socket”); 
 exit(1); 
}



CS354R

TCP SERVER

‣ What does a web server need 
to do so that a web client can 
connect to it?

TCP

IP

Ethernet Adapter

Web Server

Port 80



CS354R

SOCKET I/O: SOCKET()

‣ Since web traffic uses TCP, the web server must create a 
socket of type SOCK_STREAM

int fd;  /* socket descriptor */ 

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 

 perror(“socket”); 

 exit(1); 

}



CS354R

SOCKET I/O: BIND()

‣ A socket can be bound to a port

‣ Still not quite ready to communicate with a client...

int fd;    /* socket descriptor */ 
struct sockaddr_in srv; /* used by bind() */ 

/* create the socket */ 
srv.sin_family = AF_INET; /* use the Internet addr family */ 
srv.sin_port = htons(80); /* bind socket ‘fd’ to port 80*/ 

/* bind: a client may connect to any of my addresses */ 
srv.sin_addr.s_addr = htonl(INADDR_ANY); 

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { 
 perror("bind"); exit(1); 
}



CS354R

SOCKET I/O: LISTEN()

‣ listen indicates that the server will accept a connection

‣ Still not quite ready to communicate with a client...

int fd;      /* socket descriptor */ 
struct sockaddr_in srv;    /* used by bind() */ 

/* 1) create the socket */ 
/* 2) bind the socket to a port */ 

if(listen(fd, 5) < 0) {  /* backlog of 5 */ 
 perror(“listen”); 
 exit(1); 
}



CS354R

SOCKET I/O: ACCEPT()
‣ accept blocks waiting for a connection

‣ accept returns a new socket (newfd) with the same properties as the 
original socket (fd) 

‣ newfd < 0 indicates that an error occurred

int fd;    /* socket descriptor */ 
struct sockaddr_in srv;       /* used by bind() */ 
struct sockaddr_in cli;       /* used by accept() */ 
int newfd;         /* returned by accept() */ 
int cli_len = sizeof(cli);       /* used by accept() */ 
/* 1) create the socket */ 
/* 2) bind the socket to a port */ 
/* 3) listen on the socket */ 
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len); 
if(newfd < 0) { 
 perror("accept"); exit(1); 
}



CS354R

SOCKET I/O: ACCEPT() CONTINUED...

▸ How does the server know which client it is? 

▸ cli.sin_addr.s_addr contains the client’s IP address 

▸ cli.sin_port contains the client’s port number 

▸ Now the server can exchange data with the client using read and write on the descriptor 
newfd 

▸ Why does accept need to return a new descriptor?

struct sockaddr_in cli;  /* used by accept() */ 
int newfd;    /* returned by accept() */ 
int cli_len = sizeof(cli); /* used by accept() */ 

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len); 
if(newfd < 0) { 
 perror("accept"); 
 exit(1); 
}



CS354R

SOCKET I/O: READ()

‣ read blocks on data from the client but does not guarantee 
that sizeof(buf) is read

int fd;    /* socket descriptor */ 
char buf[512];   /* used by read() */ 
int nbytes;         /* used by read() */ 

/* 1) create the socket */ 
/* 2) bind the socket to a port */ 
/* 3) listen on the socket */ 
/* 4) accept the incoming connection */ 

if((nbytes = read(newfd, buf, sizeof(buf))) < 0) { 
 perror(“read”); exit(1); 
}



CS354R

TCP CLIENT

‣ How does a web client connect 
to a web server? 

TCP

IP

Ethernet Adapter

2 Web Clients



CS354R

Converting a numerical address to a string:

DEALING WITH IP ADDRESSES
‣ IP Addresses are commonly written as strings (“128.83.144.73”), but 

programs deal with IP addresses as integers.

Converting strings to numerical address:
struct sockaddr_in srv; 

srv.sin_addr.s_addr = inet_addr(“128.83.144.73”); 
if(srv.sin_addr.s_addr == (in_addr_t) -1) { 
 fprintf(stderr, "inet_addr failed!\n"); exit(1); 
}

struct sockaddr_in srv; 
char *t = inet_ntoa(srv.sin_addr); 
if(t == 0) { 

 fprintf(stderr, “inet_ntoa failed!\n”); exit(1); 
}



CS354R

TRANSLATING NAMES TO ADDRESSES

‣ getaddrinfo provides interface to DNS 

‣ Returns addrinfo structs given a host and service 

‣ getnameinfo provides host and service given addrinfo 

‣ Functions are not IPv4 or IPv6 dependent

#include <netdb.h> 

int st; 
struct addrinfo *results; /*ptr to linked list of address info*/  
struct addrinfo hints; 

char *name = “www.cs.utexas.edu”; 
if (st = getaddrinfo(name, “80”, &hints, &results) != 0) { 

 fprintf(stderr, “getaddrinfo failed!\n”); exit(1); 
}



CS354R

SOCKET I/O: CONNECT()

‣ connect allows a client to connect to a server

int fd;    /* socket descriptor */ 
struct sockaddr_in srv;  /* used by connect() */ 

/* create the socket */ 
/* connect: use the Internet address family */ 
srv.sin_family = AF_INET; 
/* connect: socket ‘fd’ to port 80 */ 
srv.sin_port = htons(80); 
/* connect: connect to IP Address “128.2.35.50” */ 
srv.sin_addr.s_addr = inet_addr(“128.83.144.73”); 

if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { 
 perror(”connect"); exit(1); 
}



CS354R

SOCKET I/O: WRITE()

‣ write can be used with a socket

int fd;    /* socket descriptor */ 
struct sockaddr_in srv;  /* used by connect() */ 
char buf[512];   /* used by write() */ 
int nbytes;    /* used by write() */ 

/* 1) create the socket */ 
/* 2) connect() to the server */ 

/* Example: A client could “write” a request to a server */ 
if((nbytes = write(fd, buf, sizeof(buf))) < 0) { 
 perror(“write”); 
 exit(1); 
}



CS354R

TCP CLIENT-SERVER INTERACTION

socket()

bind()

listen()

accept()

write()

read()

read()

TCP Server

close()

socket()

TCP Client

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification

from UNIX Network Programming Volume 1, figure 4.1



CS354R

UDP PROPERTIES

‣ Does not assume any handshake or prior communication 

‣ Stateless protocol with no information/session retention 

‣ Uses datagrams or self-contained packets of information 

‣ No need for prior information exchange



CS354R

UDP SERVER EXAMPLE

▸ What does a UDP server 
need to do so that a UDP 
client can connect to it?

UDP

IP

Ethernet Adapter

NTP 
daemon

Port 123



CS354R

SOCKET I/O: SOCKET()

‣ The UDP server must create a datagram socket… 

‣ socket returns an integer (socket descriptor) 

‣ fd < 0 indicates that an error occurred 

‣ AF_INET associates the socket with the Internet protocol family 

‣ SOCK_DGRAM selects the UDP protocol

int fd;  /* socket descriptor */ 

if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { 
 perror(“socket”); 
 exit(1); 
}



CS354R

SOCKET I/O: BIND()

‣ A socket can be bound to a port

‣ Now the UDP server  is ready to accept packets…

int fd;    /* socket descriptor */ 
struct sockaddr_in srv; /* used by bind() */ 

/* create the socket */ 
/* bind: use the Internet address family */ 
srv.sin_family = AF_INET; 
/* bind: socket ‘fd’ to port 80*/ 
srv.sin_port = htons(80); 
/* bind: a client may connect to any of my addresses */ 
srv.sin_addr.s_addr = htonl(INADDR_ANY); 

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { 
 perror("bind"); exit(1); 
}



CS354R

SOCKET I/O: RECVFROM()

‣ read does not provide the client’s address to the UDP server 

‣ recvfrom receives messages from a socket
int fd;    /* socket descriptor */ 
struct sockaddr_in srv;  /* used by bind() */ 
struct sockaddr_in cli;  /* used by recvfrom() */ 
char buf[512];   /* used by recvfrom() */ 
int cli_len = sizeof(cli);  /* used by recvfrom() */ 
int nbytes;    /* used by recvfrom() */ 
/* 1) create the socket */ 
/* 2) bind to the socket */ 
nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */, 
     (struct sockaddr*) &cli, &cli_len); 
if(nbytes < 0) { 

 perror(“recvfrom”); exit(1); 
}



CS354R

SOCKET I/O: RECVFROM() CONTINUED...

▸ The actions performed by recvfrom 

▸ Returns the number of bytes to read (nbytes) 

▸ Copies nbytes of data into buf 

▸ Returns the address of the client (cli) 

▸ Returns the length of cli (cli_len)

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */, 

     (struct sockaddr*) cli, &cli_len);



CS354R

UDP CLIENT EXAMPLE

▸ How does a UDP client 
communicate with a 
UDP server?

TCP

IP

Ethernet Adapter

2 UDP Clients

ports



CS354R

SOCKET I/O: SENDTO()
‣ write is not allowed 

‣ UDP client does not bind a port number 
‣ Port number is dynamically assigned when the first sendto is called

int fd;    /* socket descriptor */ 
struct sockaddr_in srv;  /* used by sendto() */ 
/* 1) create the socket */ 

/* sendto: send data to IP Address “128.2.35.50” port 80 */ 
srv.sin_family = AF_INET; 
srv.sin_port = htons(80);  
srv.sin_addr.s_addr = inet_addr(“128.83.144.73”); 
nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */, 
     (struct sockaddr*) &srv, sizeof(srv)); 
if(nbytes < 0) { 

 perror(“sendto”); exit(1); 
}



CS354R

UDP CLIENT-SERVER INTERACTION

socket()

bind()

recvfrom()

sendto()

UDP Server

socket()

UDP Client

sendto()

recvfrom()

close()

blocks until datagram 
received from a clientdata request

data reply

from UNIX Network Programming Volume 1, figure 8.1



CS354R

SIDE NOTE: UDP BROADCAST AND MULTICAST

▸ These examples have been point-to-point (one source, one destination) 
sending of data but UDP supports point-to-multipoint (one source, 
multiple destinations) 

▸ May not work in all circumstances and primarily for LANs 

▸ Broadcast only supported in IPV4 

▸ Multicast not supported by all switches and hubs 

▸ Only way to do it across the Internet is with additional work-arounds 

▸ IP Multicast added to IPV4 and fully integrated in IPV6 

▸ Primarily for multimedia content



CS354R

THE UDP SERVER

▸ How can the UDP server 
service multiple ports 
simultaneously?

UDP

IP

Ethernet Adapter

UDP Server

Port 2000Port 3000



CS354R

UDP SERVER: SERVICING TWO PORTS 

‣ What problems does this code have?
int s1;    /* socket descriptor 1 */ 
int s2;    /* socket descriptor 2 */ 

/* 1) create socket s1 */ 
/* 2) create socket s2 */ 
/* 3) bind s1 to port 2000 */ 
/* 4) bind s2 to port 3000 */ 

while(1) { 
 recvfrom(s1, buf, sizeof(buf), ...); 
 /* process buf */ 

 recvfrom(s2, buf, sizeof(buf), ...); 
 /* process buf */ 
}



CS354R

SOCKET I/O: SELECT()

‣ maxfds: number of descriptors to be tested 

‣ descriptors (0, 1, ... maxfds-1) will be tested 

‣ readfds: a set of fds we want to check if data is available 

‣ returns a set of fds ready to read 

‣ if input argument is NULL, not interested in that condition 

‣ writefds: returns a set of fds ready to write 

‣ exceptfds: returns a set of fds with exception conditions

int select(int maxfds, fd_set *readfds, fd_set *writefds,  

      fd_set *exceptfds, struct timeval *timeout); 

FD_CLR(int fd, fd_set *fds);   /* clear the bit for fd in fds */ 
FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */
FD_SET(int fd, fd_set *fds);   /* turn on the bit for fd in fds */
FD_ZERO(fd_set *fds);          /* clear all bits in fds */



CS354R

SOCKET I/O: SELECT()

‣ timeout 

‣ if NULL, wait forever and return only when one of the descriptors is 
ready for I/O 

‣ otherwise, wait up to a fixed amount of time specified by timeout 

‣ if we don’t want to wait at all, create a timeout structure with timer 
value equal to 0

int select(int maxfds, fd_set *readfds, fd_set *writefds,  
      fd_set *exceptfds, struct timeval *timeout); 

struct timeval { 
 long tv_sec;  /* seconds / 
 long tv_usec;  /* microseconds */ 
}



CS354R

SOCKET I/O: SELECT() IN UDP

▸ select allows synchronous I/O multiplexing

int s1, s2;    /* socket descriptors */ 
fd_set readfds;  /* used by select() */ 

/* create and bind s1 and s2 */ 
while(1) { 
 FD_ZERO(&readfds);  /* initialize the fd set */ 
 FD_SET(s1, &readfds); /* add s1 to the fd set */ 
 FD_SET(s2, &readfds); /* add s2 to the fd set */ 

 if(select(s2+1, &readfds, 0, 0, 0) < 0) { 

  perror(“select”); 
  exit(1); 
 } 
 if(FD_ISSET(s1, &readfds)) { 
  recvfrom(s1, buf, sizeof(buf), ...); 
  /* process buf */ 
 } 
 /* do the same for s2 */ 
}



CS354R

SOCKET I/O: SELECT() IN TCP
int fd, next=0;    /* original socket */ 
int newfd[10];    /* new socket descriptors */ 
while(1) { 
 fd_set readfds; 
 FD_ZERO(&readfds);  

    FD_SET(fd, &readfds); 

 /* Now use FD_SET to initialize other newfd’s 
    that have already been returned by accept() */ 

 select(maxfd+1, &readfds, 0, 0, 0); 
 if(FD_ISSET(fd, &readfds)) { 
  newfd[next++] = accept(fd, ...);  
 } 
 /* do the following for each descriptor newfd[n] */ 
 if(FD_ISSET(newfd[n], &readfds)) { 
  read(newfd[n], buf, sizeof(buf)); 
  /* process data */ 
 } 
}



CS354R

EVENT-DRIVEN APPROACHES

‣ Use of asynchronous event notifications 

‣ Potentially faster and more flexible than select 

‣ Provide notifications when events occur on file descriptors 

‣ Designed to handle event loop in a fast, non-blocking way 

‣ Libraries like libevent, libev, libuv, etc



CS354R

BASIC PACKET BUILDING FOR A BUFFER
struct packet { 
 u_int32_t type; 
 u_int16_t length; 
 u_int16_t checksum; 
 u_int32_t address; 
}; 

/* ================================================== */ 
char buf[1024]; 
struct packet *pkt; 

pkt = (struct packet*) buf; 
pkt->type = htonl(1); 
pkt->length = htons(2); 
pkt->checksum = htons(3); 
pkt->address = htonl(4); 



CS354R

EXTENDING FUNCTIONALITY THROUGH PACKETS

‣ Possible to use TCP and UDP to get functionality of both protocols 

‣ Also possible to add packet information and packet handling to 
UDP communication for greater reliability 

‣ e.g. Index checks on packets to verify order and delivery 

‣ System needs and constraints determine how to approach 
problem 

‣ Don’t reinvent TCP 

‣ But maybe a little more reliability is worth latency tradeoffs…



CS354R

PAYLOAD CONSIDERATIONS

▸ What information needs to be in the packet? 

▸ How large is the payload? 

▸ What is the latency of serializing/deserializing the 
payload? 

▸ How often do the server and clients need to know about 
this information? 

▸ Is my payload secure and safe?



CS354R

PACKET INFORMATION

▸ What information is in what packet should be architected 
with care 

▸ Cannot afford to send out the entire world state every 
frame 

▸ Provide initial information about world schema to client 
upon connection 

▸ Provide ongoing updates relative to this schema as the 
world state changes



CS354R

DISCUSS

▸ Consider these client-server network scenarios. What 
should be in the packet? What needs to happen when the 
packet is received? 

▸ A player in an MMO trades with another player 

▸ A player in a battle royale equips a new weapon 

▸ A player in a go game places a stone 

▸ A player in an arena shooter uses a hit scan gun 

▸ A player in an arena shooter uses a ballistic gun



CS354R

PACKET FORMAT

▸ XML and JSON are too verbose for the frequency data is 
being sent 

▸ Text information is not tightly packed 

▸ Ideally use a binary format 

▸ Low latency games may use a custom binary format 
rather than an existing library



CS354R

PROBLEMS WITH MEMCPY

▸ Directly copying the struct data into the packet is very cheap 

▸ Works well on simple projects like what we’re creating where only 4 or 
5 people will play it 

▸ Major issues at a commercial level 

▸ Must ensure cross-platform/cross-compiler support for memory layout 

▸ Must handle endian-ness 

▸ Must handle pointers 

▸ Major security risk if struct data is simply trusted



CS354R

READING AND WRITING PER-FIELD

▸ Create serialization library that reads and writes from the 
struct to the packet 

▸ Need to be able to read/write from every struct type 

▸ Need to be able to read/write into every packet type 

▸ Can additionally perform better bitpacking here to ensure 
good packet properties



CS354R

ADDITIONAL RESOURCES

▸ Gaffer on Games <https://www.gafferongames.com/> 

▸ Tons of in-depth articles on physics, networking, and 
networked physics

https://www.gafferongames.com/

