
INTRODUCTION TO GAME AI

CS354R
DR SARAH ABRAHAM

CS354R

WHAT IS AI?
‣ AI is the control of every non-human entity in a game

‣ The other cars in a car game

‣ The opponents and monsters in a shooter

‣ Your units, your enemy’s units and your enemy in a RTS game

‣ But, typically does not refer to passive things that just react to the player
and never initiate action

‣ That’s physics or game logic

‣ e.g blocks in Tetris are not AI, nor is the ball in the game you are doing,
nor is a flag blowing in the wind

‣ It’s a somewhat arbitrary distinction…

CS354R

AI IN THE GAME LOOP

‣ AI is updated as part of the game loop: after user input
and before rendering

‣ There are issues here:

‣ Which AI goes first?

‣ Does the AI run on every frame?

‣ Is the AI synchronized?

CS354R

AI IN THE GAME LOOP

‣ Consider how an AI system might need to interact with
other game systems

‣ https://www.youtube.com/watch?v=7ESipcQunHc

‣ https://www.youtube.com/watch?v=8x9xoxB1DfI

‣ https://youtu.be/6402TvQMPkU?t=8348

https://www.youtube.com/watch?v=7ESipcQunHc
https://www.youtube.com/watch?v=8x9xoxB1DfI
https://youtu.be/6402TvQMPkU?t=8348

CS354R

AI AND ANIMATION

‣ How should AI and animation relate?

‣ Scenario 1: The AI issues an order (move from A to B), and the
animation system controls character accordingly

‣ Scenario 2: The AI controls everything including which animation clip
to play

‣ Controls depend on the AI and animation systems

‣ Is the animation system based on move trees (motion capture),
physics, or something else?

‣ Does the AI handle collision avoidance? Does it do detailed
planning?

CS354R

AI Module

AI UPDATE STEP
‣ Sensing

‣ Determine state of the world

‣ May be very simple - state changes all
come by message

‣ Or complex - figure out what is visible,
where your team is, etc

‣ Thinking

‣ Decide what to do

‣ Acting

‣ Execute on decision

‣ Notify animation and world state

Game
Engine

Sensing

Thinking

Acting

CS354R

AI BY POLLING

‣ The AI gets called at a fixed rate

‣ Sensing: agent looks to see what has changed in the world

‣ Queries what it can see

‣ Checks if its current animation has completed

‣ Thinking: agent decides on an action

‣ Acting: agent acts

‣ Why is this generally inefficient?

CS354R

EVENT DRIVEN AI

‣ Event-driven AI responds to changes in the world

‣ Events sent by message just like the user interface

‣ Example messages:

‣ A certain amount of time has passed, so update yourself

‣ You hear a sound

‣ Someone has entered your field of view

‣ May want hybrid of polling and events depending on situation

CS354R

AI TECHNIQUES

‣ Basic problem: Given the state of the world, what should I do?

‣ A wide range of techniques used in games:

‣ Finite state machines, decision trees, rule-based systems,
neural networks, fuzzy logic, behavior trees

‣ A wider range of solutions in the academic world:

‣ Complex planning systems, logic programming, genetic
algorithms, Bayes-nets

‣ Typically, too slow for games but becoming more common

CS354R

GOALS OF GAME AI

‣ Desirable Characteristics:

‣ Goal driven - the AI decides what it should do, and figures out how to
do it

‣ Reactive - the AI responds to changes in the world

‣ Knowledge intensive - the AI knows a lot about the world, and
embodies knowledge in its own behavior

‣ Characteristic - Embodies a believable, consistent character

‣ Fast and easy development (designer-controlled)

‣ Low CPU and memory usage

‣ Of course, these conflict in almost every way…

CS354R

TWO MEASURES OF COMPLEXITY

‣ Complexity of Execution

‣ How fast does it run when knowledge is added?

‣ How much memory is used when knowledge is added?

‣ Determines the run-time cost of the AI

‣ Complexity of Specification

‣ How hard is it to write the code?

‣ As knowledge is added, how much more code is written?

‣ Determines the development cost, and risk

CS354R

EXPRESSIVENESS
‣ What behaviors can be easily defined, or defined at all?

‣ Propositional logic:

‣ Statements about specific objects in the world (no variables)

‣ Jim is in room7, Jim has the rocket launcher, the rocket launcher does splash damage

‣ Go to room8 if you are in room7 through door14

‣ Predicate Logic:

‣ Allows general statements (using variables)

‣ All rooms have doors

‣ All splash damage weapons can be used around corners

‣ All rocket launchers do splash damage

‣ Go to a room connected to the current room

CS354R

FINITE STATE MACHINES (FSMS)

‣ A set of the agent’s states

‣ Transitions between states triggered by a change in the
world

‣ Represented as a directed graph (edges labeled with the
transition events)

‣ Ubiquitous in computer game AI

‣ You might have seen them in formal language theory or
compilers

CS354R

CONSIDER…

‣ Consider the bot AI of an arena shooter (e.g. Quake). What
do we need in our FSM to capture some of its desired
base behaviors?

CS354R

QUAKE BOT EXAMPLE

‣ Types of behavior to capture:

‣ Wander randomly if no sight or sound of an enemy

‣ When enemy is seen, attack

‣ When enemy is heard, chase

‣ When dead, respawn

‣ When health is low and enemy is seen, retreat

‣ Extensions:

‣ When power-ups are seen, collect

(from John Laird and Mike van Lent’s GDC tutorial)

CS354R

EXAMPLE FSM
‣ States:

‣ E: enemy in sight

‣ S: sound audible

‣ D: dead

‣ Events:

‣ E: see an enemy

‣ S: hear a sound

‣ D: die

‣ Action performed:

‣ On each transition

‣ On each state updated

E

~E

Attack

E,~D

E
D

E

Chase

S,~E,~D
~S

S

S

D

D

Spawn

D

~E,~S,~D

Wander

~E

CS354R

EXAMPLE FSM PROBLEM

‣ States:

‣ E: enemy in sight

‣ S: sound audible

‣ D: dead

‣ Events:

‣ E: see an enemy

‣ S: hear a sound

‣ D: die
Problem: Can’t go directly from attack to chase.
Why not?

D

~E,~S,~D

~E

D

Attack

E,~D
~E

E

E

D

~S

Chase

S,~E,~D

E

S

S

D

Wander

Spawn

CS354R

BETTER EXAMPLE FSM

‣ States:

‣ E: enemy in sight

‣ S: sound audible

‣ D: dead

‣ Events:

‣ E: see an enemy

‣ S: hear a sound

‣ D: die

‣ Extra state to recall whether or not heard a sound while attacking

D

~E,~S,~D

~E

D

E,~S,~D
~E

E
E

D

~S
S,~E,~D

S

S

D

Wander

Spawn

Attack-S

E,S,~D

Chase

E

S

~S

~ED

Attack

CS354R

EXAMPLE FSM WITH RETREAT

• States:

– E: enemy in sight

– S: sound audible

– D: dead

– L: Low health

• Worst case: Each extra state
variable can add 2n extra
states

• n = number of existing
states

Spawn

D

(-E,-S,-L)

Wander

-E,-D,-S,-L

E

-SAttack-E

E,-D,-S,-L

E

Chase

-E,-D,S,-L

S

D

S

D

D

Retreat-E

E,-D,-S,L

L

-E

Retreat-S

-E,-D,S,L

Wander-L

-E,-D,-S,L

Retreat-ES

E,-D,S,L

Attack-ES

E,-D,S,-L

E

E
-E

-L

-S

L

-E E

L
-L

-L

-L

L

D

CS354R

HIERARCHICAL FSMS

‣ What if there is no simple action for a state?

‣ Expand a state into its own FSM, explaining what to do

‣ Some events move you along the same level in the hierarchy, some
move you up a level

‣ When entering a state, choose a state for its child in the hierarchy

‣ Set a default, and always go to that

‣ Or, random choice

‣ Depends on the nature of the behavior!

CS354R

HIERARCHICAL FSM EXAMPLE
‣ All links between top level states still exist

‣ Note: This is not a complete FSM (need more states for wander)

StartTurn Right

Go through Door

Pick up Powerup

Wander Attack

Chase

Spawn

~E

E
~S

S

D

~E

CS354R

NON-DETERMINISTIC MODELS

‣ Adds variety to actions

‣ Have multiple transitions for
the same event

‣ Label each with a probability
that it will be taken

‣ Randomly choose a
transition at run-time

‣ Markov Model: New state
only depends on the
previous state

Attack

Start

Approach

Aim, Jump, Shoot

Aim, Slide Left, Shoot

Aim, Slide Right, Shoot

.2

.3

.2

.3

CS354R

“EFFICIENT” IMPLEMENTATION

‣ Compile into an array of state-name, event

‣ state-namei+1 := array[state-namei, event]

‣ Switch on state-name to call execution logic

‣ Hierarchical

‣ Create array for every FSM

‣ Have stack of states

‣ Classify events according to stack

‣ Update state which is sensitive to current event

‣ Markov: Have array of possible transitions for every (state-name,event) pair,
and choose one at random

event

state

CS354R

FSM ADVANTAGES

‣ Very fast – one array access

‣ Expressive enough for simple behaviors or characters that are
intended to be “dumb”

‣ Can be compiled into compact data structure

‣ Dynamic memory: current state

‣ Static memory: state diagram – array implementation

‣ Can create tools for non-programmers to build behavior

‣ Non-deterministic FSM makes behavior unpredictable

CS354R

FSM DISADVANTAGES

‣ Number of states can grow very fast

‣ Exponentially with number of events: s = 2e

‣ Number of transitions can grow even faster: a = s2

‣ Propositional representation

‣ Difficult to put in “pick up the better powerup”, “attack the closest
enemy”

‣ Expensive to count: Wait until the third time I see enemy, then
attack

‣ Need extra events: First time seen, second time seen, and extra
states to take care of counting

