CS354R
DR SARAH ABRAHAM

Al DECISION TREES AND RULE
SYSTEMS

CS354R

DECISION TREES

> Nodes represent attribute tests

» One child for each outcome
> Leaves represent classifications

» Can have same classification across leaves
> Classify by descending from root to a leaf

» Perform test and descend

» Return leaf’s classification (action)

» Decision tree is a “disjunction of conjunctions of constraints on the attribute values of
an instance”

» Action if (A and Band C) or(Aand ~BandD)or(...)...

> Retreat if (low health and see enemy) or (low health and hear enemy)or(...)...

CS354R

DECISION TREE FOR QUAKE

» Just one tree

» Attributes:
Enemy=<t,f>
Low=<t,f>
Sound=<t,f>
Death=<t,>

» Actions: Attack,

Retreat, Chase, Spawn,
Wander

D?

4

Spawn

SN N

Retreat

Attack

L?

Wander

N

Retreat

Chase

CS354R

DECISION TREE FOR QUAKE

» Could add additional trees

4

If I'm attacking, which
weapon should | use?

If I'm wandering, which way
should | go?

Can be thought of as just
extending given tree

Or, can share pieces of tree,
such as a Retreat sub-tree

D?

Spawn E?

NN

Retreat| |Attack

L? Wander
VN
Retreat| |[Chase

CS354R

COMPARE AND CONTRAST

Wander

'Ea'Da'Sa'

CS354R

DIFFERENT TREES — SAME DECISION

/\

S?

L?

/

|_?
\f
Retreat ?
t/ \f t/ \f
Attack ||Chase | [Retreat

S\

T

E?

e

D?

LN

N

D?

'/

N

Spawn | (Wander

Spawn

Attack

Spawn

Wander

CS354R

HANDLING SIMULTANEQUS ACTIONS

> Treat each output command as a separate classification problem

» Given inputs should walk => <forward, backward, stop>

» Given inputs should turn => <left, right, none>
» Given inputs should run => <yes, no>

» Given inputs should weapon => <blaster, shotgun...>

» Given inputs should fire => <yes, no>

» Have a separate tree for each command

» If commands are not independent, two options:
» Have a general conflict resolution strategy

» Put dependent actions in one tree

CS354R

DECIDING ON ACTIONS

» Each time the Al is called:

> Poll each decision tree for current output

» Event driven - only call when state changes
» Need current value of each input attribute

» All sensor inputs describe the state of the world
» Store the state of the environment

» Most recent values for all sensor inputs

» Change state upon receipt of a message

» Or, check validity when Al is updated

> Or, a mix of both (polling and event driven)

CS354R

SENSE, THINK, ACT CYCLE

» Sense
» Gather input sensor changes
» Update state with new values
» Think
» Poll each decision tree

» Act

» Execute any changes to actions

Sense

Think

Act

CS354R

BUILDING DECISION TREES

» Decision trees can be constructed by hand
» Think of the questions you would ask to decide what to do

» For example: Tonight | can study, play games or sleep. How do |
make my decision?

» But, decision trees in Al are typically learned:

» Provide examples: many sets of attribute values and resulting
actions

» Algorithm then constructs a tree from the examples

» Reasoning: We don’t know how to decide on an action, so let the
computer do the work

CS354R

LEARNING DECISION TREES

» Decision trees are usually learned by induction
» Generalize from examples
» Induction doesn’t guarantee correct decision trees
» Bias towards smaller decision trees
» Occam’s Razor: Prefer simplest theory that fits the data
» Too expensive to find the very smallest decision tree
» Learning is non-incremental
» Need to store all the examples
» ID3 is the basic learning algorithm

» C4.5 is an updated and extended version

CS354R

INDUCTION

» If X is true in every example that results in action A, then X must always be true for
action A

> More examples are better
» Errors in examples cause difficulty

> If Xis true in most examples X must always be true

» D3 does a good job of handling errors (noise) in examples
> Note that induction can result in errors

> It may just be coincidence that X is true in all the examples

» Typical decision tree learning determines what tests are always true for each
action

» Assumes that if those things are true again, then the same action should result

CS354R

LEARNING ALGORITHMS

» Recursive algorithms
» Find an attribute test that separates the actions
> Divide the examples based on the test
> Recurse on the subsets
» What does it mean to separate?
> Separation:
> ldeally, there are no actions that have examples in both sets
» Failing that, most actions have most examples in one set
> The thing to measure is entropy - the degree of homogeneity (or lack of it) in a set

> Entropy is also important for compression

CS354R

WHERE TO GET EXAMPLES?

» Generating examples:

» Programmer/designer provides examples

» Capture an expert player’s actions, and the game state, while they play
» Number of examples needed depends on difficulty of concept

» Difficulty: Number of tests needed to determine the action

» More is always better
» Training set vs. Testing set

» Train on most (75%) of the examples

» Use the rest to validate the learned decision trees by estimating how well
the tree does on examples it hasn’t seen

CS354R

DECISION TREE ADVANTAGES

» Simpler, more compact representation
» State is recorded in a memory

» Create “internal sensors” - Enemy-Recently-Sensed
» Easy to create and understand

» Decision trees can be learned

CS354R

DECISION TREE DISADVANTAGES

» Decision tree engine requires more coding than FSM
» Need as many examples as possible
» Higher CPU cost (but not much higher)

» Learned decision trees may contain errors

CS354R

RULE-BASED SYSTEMS

» Rule-based systems let you write the rules
» Decision trees can be converted into rules
> System consists of:
» Arule set - the rules to evaluate
» A working memory - stores state
» A matching scheme - decides which rules are applicable

» A conflict resolution scheme - if more than one rule is applicable,
decides how to proceed

» What types of games make the most extensive use of rules?

CS354R

RULE-BASED SYSTEMS STRUCTURE

Program

Rule Memory

Procedural
Knowledge

Long-term

Knowledge

Conflict
Resolution

Working Memory Data

Declarative

Knowledge

Short-term
Knowledge

CS354R

Al CYCLE

Sensing

Game Changes to Rule instantiations that

Working Memory match working memory

Selected Conflict
Act — .
Actions [+ Rule Resolution

CS354R

AGE OF KINGS

; The Al will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
(game-time > 1100) < Rule
=>

(attack-now) }
(enable-timer 7 1400)) ™~ Action

(defrule
(timer-triggered 7)
(defend-soldier-count >= 12)
=>
(attack-now)
(disable-timer 7)
(enable-timer 7 1400))

CS354R

AGE OF KINGS

» What is it doing?

(defrule
(true)

=>
(enable-timer 4 3600)
(disable-self))

(defrule
(timer-triggered 4)
=>
(cc-add-resource food 700)
(cc-add-resource wood 700)
(cc-add-resource gold 700)
(disable-timer 4)
(enable-timer 4 2700)
(disable-self))

CS354R

IMPLEMENTING RULE-BASED SYSTEMS

» Where does the time go?

> 90-95% goes to Match

» Matching all rules against all of working
memory each cycle is way too slow

» Key observation

Conflict
» # of changes to working memory each At Resolution

cycle is small

» If conditions, and hence rules, can be
associated with changes, then we can
make things fast (event-driven)

CS354R

GENERAL CASE

» Rules can be arbitrarily complex

» In particular: function calls in conditions and actions
» If we have arbitrary function calls in conditions:

» Run through rules one at a time and test conditions

» Pick the first one that matches (or do something else)
» Time to match depends on:

» Number of rules

» Complexity of conditions

» Number of rules that don't match

CS354R

RESOLVING MULTIPLE MATCHES?

» Rule order - pick the first rule that matches

» Makes order of loading important - not good for big systems
» Rule specificity - pick the most specific rule
» Rule importance - pick rule with highest priority

» When a rule is defined, give it a priority number

» Forces a total order on the rules - is right 80% of the time

» Decide Rule 4 [80] is better than Rule 7 [70]

» Decide Rule 6 [85] is better than Rule 5 [75]

» Enforces ordering between all of them

CS354R

REDUCING COST OF MATCHING

» Save intermediate match information (RETE)
» Memory intensive
» Fast search
» DAGs that represent high-level rule sets
» Tuples of facts matched against hierarchy of rules
» Relevant facts asserted in working memory
» Recompute match for rules affected by change (TREAT)
» Memory efficient

» May be faster than RETE

» Make extensive use of hashing (mapping between memory and tests/rules)

CS354R

RULE-BASED SYSTEM: ADVANTAGES

» Corresponds to way people often think of knowledge

» Very expressive
» Modular knowledge

» Easier to write and debug compared to decision trees

» More concise than FSMs

CS354R

RULE-BASED SYSTEM: DISADVANTAGES

» Can be memory intensive

» Can be computationally intensive

» Can be difficult to debug

CS354R

FURTHER READING

» RETE:

» Forgy, C. L. Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial
Intelligence, 19(1) 1982, pp. 17-37

» TREAT:

» Miranker, D. TREAT: A new and efficient match algorithm

for Al production systems. Pittman/Morgan Kaufman,
1989

