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DECISION TREES
‣ Nodes represent attribute tests 

‣ One child for each outcome 

‣ Leaves represent classifications 

‣ Can have same classification across leaves 

‣ Classify by descending from root to a leaf 

‣ Perform test and descend 

‣ Return leaf’s classification (action)  

‣ Decision tree is a “disjunction of conjunctions of constraints on the attribute values of 
an instance” 

‣ Action if (A and B and C) or (A and ~B and D) or ( … ) … 

‣ Retreat if (low health and see enemy) or (low health and hear enemy) or ( … ) …
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DECISION TREE FOR QUAKE

‣ Just one tree 

‣ Attributes: 
Enemy=<t,f>  
Low=<t,f>  
Sound=<t,f>  
Death=<t,f> 

‣ Actions: Attack, 
Retreat, Chase, Spawn, 
Wander
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DECISION TREE FOR QUAKE

‣ Could add additional trees 

‣ If I’m attacking, which 
weapon should I use? 

‣ If I’m wandering, which way 
should I go? 

‣ Can be thought of as just 
extending given tree 

‣ Or, can share pieces of tree, 
such as a Retreat sub-tree
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COMPARE AND CONTRAST
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DIFFERENT TREES – SAME DECISION
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HANDLING SIMULTANEOUS ACTIONS

‣ Treat each output command as a separate classification problem 

‣ Given inputs should walk => <forward, backward, stop> 

‣ Given inputs should turn => <left, right, none> 

‣ Given inputs should run => <yes, no> 

‣ Given inputs should weapon => <blaster, shotgun…> 

‣ Given inputs should fire => <yes, no> 

‣ Have a separate tree for each command 

‣ If commands are not independent, two options: 

‣ Have a general conflict resolution strategy 

‣ Put dependent actions in one tree
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DECIDING ON ACTIONS

‣ Each time the AI is called: 

‣ Poll each decision tree for current output 

‣ Event driven - only call when state changes 

‣ Need current value of each input attribute 

‣ All sensor inputs describe the state of the world 

‣ Store the state of the environment  

‣ Most recent values for all sensor inputs 

‣ Change state upon receipt of a message 

‣ Or, check validity when AI is updated 

‣ Or, a mix of both (polling and event driven)
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SENSE, THINK, ACT CYCLE

‣ Sense 

‣ Gather input sensor changes 

‣ Update state with new values 

‣ Think 

‣ Poll each decision tree 

‣ Act 

‣ Execute any changes to actions
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BUILDING DECISION TREES

‣ Decision trees can be constructed by hand 

‣ Think of the questions you would ask to decide what to do 

‣ For example: Tonight I can study, play games or sleep. How do I 
make my decision? 

‣ But, decision trees in AI are typically learned: 

‣ Provide examples: many sets of attribute values and resulting 
actions 

‣ Algorithm then constructs a tree from the examples 

‣ Reasoning: We don’t know how to decide on an action, so let the 
computer do the work
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LEARNING DECISION TREES

‣ Decision trees are usually learned by induction 

‣ Generalize from examples 

‣ Induction doesn’t guarantee correct decision trees 

‣ Bias towards smaller decision trees 

‣ Occam’s Razor: Prefer simplest theory that fits the data 

‣ Too expensive to find the very smallest decision tree 

‣ Learning is non-incremental 

‣ Need to store all the examples 

‣ ID3 is the basic learning algorithm 

‣ C4.5 is an updated and extended version
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INDUCTION
‣ If X is true in every example that results in action A, then X must always be true for 

action A 

‣ More examples are better 

‣ Errors in examples cause difficulty 

‣ If X is true in most examples X must always be true 

‣ D3 does a good job of handling errors (noise) in examples 

‣ Note that induction can result in errors 

‣ It may just be coincidence that X is true in all the examples 

‣ Typical decision tree learning determines what tests are always true for each 
action 

‣ Assumes that if those things are true again, then the same action should result 
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LEARNING ALGORITHMS

‣ Recursive algorithms 

‣ Find an attribute test that separates the actions 

‣ Divide the examples based on the test 

‣ Recurse on the subsets 

‣ What does it mean to separate? 

‣ Separation: 

‣ Ideally, there are no actions that have examples in both sets 

‣ Failing that, most actions have most examples in one set 

‣ The thing to measure is entropy - the degree of homogeneity (or lack of it) in a set 

‣ Entropy is also important for compression
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WHERE TO GET EXAMPLES?

‣ Generating examples: 

‣ Programmer/designer provides examples 

‣ Capture an expert player’s actions, and the game state, while they play 

‣ Number of examples needed depends on difficulty of concept 

‣ Difficulty: Number of tests needed to determine the action 

‣ More is always better 

‣ Training set vs. Testing set 

‣ Train on most (75%) of the examples 

‣ Use the rest to validate the learned decision trees by estimating how well 
the tree does on examples it hasn’t seen
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DECISION TREE ADVANTAGES

‣ Simpler, more compact representation 

‣ State is recorded in a memory 

‣ Create “internal sensors” – Enemy-Recently-Sensed 

‣ Easy to create and understand 

‣ Decision trees can be learned
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DECISION TREE DISADVANTAGES

‣ Decision tree engine requires more coding than FSM 

‣ Need as many examples as possible 

‣ Higher CPU cost (but not much higher) 

‣ Learned decision trees may contain errors



CS354R

RULE-BASED SYSTEMS

‣ Rule-based systems let you write the rules 

‣ Decision trees can be converted into rules 

‣ System consists of: 

‣ A rule set - the rules to evaluate 

‣ A working memory - stores state 

‣ A matching scheme - decides which rules are applicable 

‣ A conflict resolution scheme - if more than one rule is applicable, 
decides how to proceed 

‣ What types of games make the most extensive use of rules?
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RULE-BASED SYSTEMS STRUCTURE

Rule Memory
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AI CYCLE

Actions

Sensing

Game

Match

Conflict 
ResolutionAct

Memory

Rule instantiations that 
match working memory

Changes to 
Working Memory

Selected 
Rule
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AGE OF KINGS
; The AI will attack once at 1100 seconds and then again  
; every 1400 sec, provided it has enough defense soldiers. 
  
(defrule 
 (game-time > 1100) 
=> 
 (attack-now) 
 (enable-timer 7 1400)) 
  
(defrule 
 (timer-triggered 7) 
 (defend-soldier-count >= 12) 
=> 
 (attack-now) 
 (disable-timer 7) 
 (enable-timer 7 1400))

Rule

Action
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AGE OF KINGS

▸ What is it doing? (defrule 
 (true) 
=> 
 (enable-timer 4 3600) 
 (disable-self)) 
  
(defrule 
 (timer-triggered 4) 
=> 
 (cc-add-resource food 700) 
 (cc-add-resource wood 700) 
 (cc-add-resource gold 700) 
 (disable-timer 4) 
 (enable-timer 4 2700) 
 (disable-self)) 
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IMPLEMENTING RULE-BASED SYSTEMS

‣ Where does the time go? 

‣ 90-95% goes to Match 

‣ Matching all rules against all of working 
memory each cycle is way too slow 

‣ Key observation 

‣ # of changes to working memory each 
cycle is small 

‣ If conditions, and hence rules, can be 
associated with changes, then we can 
make things fast (event-driven)

Match

Conflict 
ResolutionAct

Memory
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GENERAL CASE

‣ Rules can be arbitrarily complex 

‣ In particular: function calls in conditions and actions 

‣ If we have arbitrary function calls in conditions: 

‣ Run through rules one at a time and test conditions 

‣ Pick the first one that matches (or do something else) 

‣ Time to match depends on: 

‣ Number of rules 

‣ Complexity of conditions 

‣ Number of rules that don’t match
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RESOLVING MULTIPLE MATCHES?

‣ Rule order – pick the first rule that matches 

‣ Makes order of loading important – not good for big systems 

‣ Rule specificity - pick the most specific rule 

‣ Rule importance – pick rule with highest priority 

‣ When a rule is defined, give it a priority number 

‣ Forces a total order on the rules – is right 80% of the time 

‣ Decide Rule 4 [80] is better than Rule 7 [70] 

‣ Decide Rule 6 [85] is better than Rule 5 [75] 

‣ Enforces ordering between all of them
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REDUCING COST OF MATCHING

‣ Save intermediate match information (RETE) 

‣ Memory intensive 

‣ Fast search 

‣ DAGs that represent high-level rule sets 

‣ Tuples of facts matched against hierarchy of rules 

‣ Relevant facts asserted in working memory 

‣ Recompute match for rules affected by change (TREAT) 

‣ Memory efficient 

‣ May be faster than RETE 

‣ Make extensive use of hashing (mapping between memory and tests/rules)
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RULE-BASED SYSTEM: ADVANTAGES

‣ Corresponds to way people often think of knowledge 

‣ Very expressive 

‣ Modular knowledge 

‣ Easier to write and debug compared to decision trees 

‣ More concise than FSMs
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RULE-BASED SYSTEM: DISADVANTAGES

‣ Can be memory intensive 

‣ Can be computationally intensive 

‣ Can be difficult to debug
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FURTHER READING

‣ RETE: 

‣ Forgy, C. L. Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial 
Intelligence, 19(1) 1982, pp. 17-37 

‣ TREAT: 

‣ Miranker, D. TREAT: A new and efficient match algorithm 
for AI production systems. Pittman/Morgan Kaufman, 
1989


