
AI DECISION TREES AND RULE
SYSTEMS

CS354R
DR SARAH ABRAHAM

CS354R

DECISION TREES
‣ Nodes represent attribute tests

‣ One child for each outcome

‣ Leaves represent classifications

‣ Can have same classification across leaves

‣ Classify by descending from root to a leaf

‣ Perform test and descend

‣ Return leaf’s classification (action)

‣ Decision tree is a “disjunction of conjunctions of constraints on the attribute values of
an instance”

‣ Action if (A and B and C) or (A and ~B and D) or (…) …

‣ Retreat if (low health and see enemy) or (low health and hear enemy) or (…) …

CS354R

DECISION TREE FOR QUAKE

‣ Just one tree

‣ Attributes:
Enemy=<t,f>
Low=<t,f>
Sound=<t,f>
Death=<t,f>

‣ Actions: Attack,
Retreat, Chase, Spawn,
Wander

f

D?

Spawn E?

L? S?

WanderRetreat Attack L?

t

t

f

f

Retreat Chase

t

t

t

f

f

CS354R

DECISION TREE FOR QUAKE

‣ Could add additional trees

‣ If I’m attacking, which
weapon should I use?

‣ If I’m wandering, which way
should I go?

‣ Can be thought of as just
extending given tree

‣ Or, can share pieces of tree,
such as a Retreat sub-tree

f

D?

Spawn E?

L? S?

WanderRetreat Attack L?

t

t

f

f

Retreat Chase

t

t

t

f

f

CS354R

COMPARE AND CONTRAST

Spawn
D
(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-SAttack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

CS354R

DIFFERENT TREES – SAME DECISION
S?

L?

E? E?

Retreat

ft
L?

Retreat

Chase

E?

Attack D?

WanderSpawn

D?

AttackSpawn

D?

WanderSpawn

t

t t

t

t

t

t t

f

f f

f

f

f

f f

CS354R

HANDLING SIMULTANEOUS ACTIONS

‣ Treat each output command as a separate classification problem

‣ Given inputs should walk => <forward, backward, stop>

‣ Given inputs should turn => <left, right, none>

‣ Given inputs should run => <yes, no>

‣ Given inputs should weapon => <blaster, shotgun…>

‣ Given inputs should fire => <yes, no>

‣ Have a separate tree for each command

‣ If commands are not independent, two options:

‣ Have a general conflict resolution strategy

‣ Put dependent actions in one tree

CS354R

DECIDING ON ACTIONS

‣ Each time the AI is called:

‣ Poll each decision tree for current output

‣ Event driven - only call when state changes

‣ Need current value of each input attribute

‣ All sensor inputs describe the state of the world

‣ Store the state of the environment

‣ Most recent values for all sensor inputs

‣ Change state upon receipt of a message

‣ Or, check validity when AI is updated

‣ Or, a mix of both (polling and event driven)

CS354R

SENSE, THINK, ACT CYCLE

‣ Sense

‣ Gather input sensor changes

‣ Update state with new values

‣ Think

‣ Poll each decision tree

‣ Act

‣ Execute any changes to actions

Sense

Think

Act

CS354R

BUILDING DECISION TREES

‣ Decision trees can be constructed by hand

‣ Think of the questions you would ask to decide what to do

‣ For example: Tonight I can study, play games or sleep. How do I
make my decision?

‣ But, decision trees in AI are typically learned:

‣ Provide examples: many sets of attribute values and resulting
actions

‣ Algorithm then constructs a tree from the examples

‣ Reasoning: We don’t know how to decide on an action, so let the
computer do the work

CS354R

LEARNING DECISION TREES

‣ Decision trees are usually learned by induction

‣ Generalize from examples

‣ Induction doesn’t guarantee correct decision trees

‣ Bias towards smaller decision trees

‣ Occam’s Razor: Prefer simplest theory that fits the data

‣ Too expensive to find the very smallest decision tree

‣ Learning is non-incremental

‣ Need to store all the examples

‣ ID3 is the basic learning algorithm

‣ C4.5 is an updated and extended version

CS354R

INDUCTION
‣ If X is true in every example that results in action A, then X must always be true for

action A

‣ More examples are better

‣ Errors in examples cause difficulty

‣ If X is true in most examples X must always be true

‣ D3 does a good job of handling errors (noise) in examples

‣ Note that induction can result in errors

‣ It may just be coincidence that X is true in all the examples

‣ Typical decision tree learning determines what tests are always true for each
action

‣ Assumes that if those things are true again, then the same action should result

CS354R

LEARNING ALGORITHMS

‣ Recursive algorithms

‣ Find an attribute test that separates the actions

‣ Divide the examples based on the test

‣ Recurse on the subsets

‣ What does it mean to separate?

‣ Separation:

‣ Ideally, there are no actions that have examples in both sets

‣ Failing that, most actions have most examples in one set

‣ The thing to measure is entropy - the degree of homogeneity (or lack of it) in a set

‣ Entropy is also important for compression

CS354R

WHERE TO GET EXAMPLES?

‣ Generating examples:

‣ Programmer/designer provides examples

‣ Capture an expert player’s actions, and the game state, while they play

‣ Number of examples needed depends on difficulty of concept

‣ Difficulty: Number of tests needed to determine the action

‣ More is always better

‣ Training set vs. Testing set

‣ Train on most (75%) of the examples

‣ Use the rest to validate the learned decision trees by estimating how well
the tree does on examples it hasn’t seen

CS354R

DECISION TREE ADVANTAGES

‣ Simpler, more compact representation

‣ State is recorded in a memory

‣ Create “internal sensors” – Enemy-Recently-Sensed

‣ Easy to create and understand

‣ Decision trees can be learned

CS354R

DECISION TREE DISADVANTAGES

‣ Decision tree engine requires more coding than FSM

‣ Need as many examples as possible

‣ Higher CPU cost (but not much higher)

‣ Learned decision trees may contain errors

CS354R

RULE-BASED SYSTEMS

‣ Rule-based systems let you write the rules

‣ Decision trees can be converted into rules

‣ System consists of:

‣ A rule set - the rules to evaluate

‣ A working memory - stores state

‣ A matching scheme - decides which rules are applicable

‣ A conflict resolution scheme - if more than one rule is applicable,
decides how to proceed

‣ What types of games make the most extensive use of rules?

CS354R

RULE-BASED SYSTEMS STRUCTURE

Rule Memory

Working Memory

Program

Procedural
Knowledge

Long-term
Knowledge

Data

Declarative
Knowledge

Short-term
Knowledge

Match

Conflict
Resolution

Act

CS354R

AI CYCLE

Actions

Sensing

Game

Match

Conflict
ResolutionAct

Memory

Rule instantiations that
match working memory

Changes to
Working Memory

Selected
Rule

CS354R

AGE OF KINGS
; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
 (game-time > 1100)
=>
 (attack-now)
 (enable-timer 7 1400))

(defrule
 (timer-triggered 7)
 (defend-soldier-count >= 12)
=>
 (attack-now)
 (disable-timer 7)
 (enable-timer 7 1400))

Rule

Action

CS354R

AGE OF KINGS

▸ What is it doing? (defrule
 (true)
=>
 (enable-timer 4 3600)
 (disable-self))

(defrule
 (timer-triggered 4)
=>
 (cc-add-resource food 700)
 (cc-add-resource wood 700)
 (cc-add-resource gold 700)
 (disable-timer 4)
 (enable-timer 4 2700)
 (disable-self))

CS354R

IMPLEMENTING RULE-BASED SYSTEMS

‣ Where does the time go?

‣ 90-95% goes to Match

‣ Matching all rules against all of working
memory each cycle is way too slow

‣ Key observation

‣ # of changes to working memory each
cycle is small

‣ If conditions, and hence rules, can be
associated with changes, then we can
make things fast (event-driven)

Match

Conflict
ResolutionAct

Memory

CS354R

GENERAL CASE

‣ Rules can be arbitrarily complex

‣ In particular: function calls in conditions and actions

‣ If we have arbitrary function calls in conditions:

‣ Run through rules one at a time and test conditions

‣ Pick the first one that matches (or do something else)

‣ Time to match depends on:

‣ Number of rules

‣ Complexity of conditions

‣ Number of rules that don’t match

CS354R

RESOLVING MULTIPLE MATCHES?

‣ Rule order – pick the first rule that matches

‣ Makes order of loading important – not good for big systems

‣ Rule specificity - pick the most specific rule

‣ Rule importance – pick rule with highest priority

‣ When a rule is defined, give it a priority number

‣ Forces a total order on the rules – is right 80% of the time

‣ Decide Rule 4 [80] is better than Rule 7 [70]

‣ Decide Rule 6 [85] is better than Rule 5 [75]

‣ Enforces ordering between all of them

CS354R

REDUCING COST OF MATCHING

‣ Save intermediate match information (RETE)

‣ Memory intensive

‣ Fast search

‣ DAGs that represent high-level rule sets

‣ Tuples of facts matched against hierarchy of rules

‣ Relevant facts asserted in working memory

‣ Recompute match for rules affected by change (TREAT)

‣ Memory efficient

‣ May be faster than RETE

‣ Make extensive use of hashing (mapping between memory and tests/rules)

CS354R

RULE-BASED SYSTEM: ADVANTAGES

‣ Corresponds to way people often think of knowledge

‣ Very expressive

‣ Modular knowledge

‣ Easier to write and debug compared to decision trees

‣ More concise than FSMs

CS354R

RULE-BASED SYSTEM: DISADVANTAGES

‣ Can be memory intensive

‣ Can be computationally intensive

‣ Can be difficult to debug

CS354R

FURTHER READING

‣ RETE:

‣ Forgy, C. L. Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial
Intelligence, 19(1) 1982, pp. 17-37

‣ TREAT:

‣ Miranker, D. TREAT: A new and efficient match algorithm
for AI production systems. Pittman/Morgan Kaufman,
1989

