CS354R DR SARAH ABRAHAM

AI BEHAVIOR TREES AND FUZZY LOGIC

FSMS AND DECISION TREES

- FSMs become unwieldy in larger, more complex cases
 - Need a simpler, more understandable solution to create compelling, believable Al
- Decision trees become difficult to construct in larger, more complex cases
 - Learned decision trees can help but learning is unpredictable
- Is it possible to combine the expressiveness and nuance of an FSM with a tree structure?

BEHAVIOR TREES

- Widely adopted AI system for NPCs in scenarios that work for FSMs and decision trees
- Tree structure allows for more efficient debugging and engineering
- Stateful representation allows for a range of emergent behaviors

BEHAVIOR TREE STRUCTURE

- Tree nodes represent behaviors
- Nodes can have children that represent subtasks
 - Children assigned priority
- Nodes evaluated from root
- At each level, node given a priority based on conditions
- Selected behavior node runs any subtasks
- On next tree evaluation, starts at highest priority node

BEHAVIOR TREES IN ACTION

- 1. Traversal starts from root on start
- 2. Children evaluated in order of priority
- 3. If all conditions are met:
 - 1. Node set to "Running"
 - 2. Node runs its subtasks
- 4. If conditions not met:
 - 1. Node set to "Failed"
- 5. Upon completion of task:
 - 1. Node set to "Completed"
- 6. Upon completion of all tasks:
 - 1. Tree evaluation restarted

SEQUENCES AND SELECTORS

- Nodes used to organize behaviors
- Sequence nodes will find and execute child nodes that are not "complete" in order
 - Children will fail or run sequentially
 - If a child fails, the parent sequence will fail
- Selector nodes are like sequence nodes but will continue to check child nodes if previous children have failed
 - Parent selector succeeds if any child succeeds

BEHAVIOR TREE EXAMPLE

BEHAVIOR TREE EXAMPLE

BEHAVIOR TREE EXAMPLE

BEHAVIOR TREE EXAMPLE: HALO

 Halo 2 first game to discuss use of behavior trees at GDC 2005

BEHAVIOR TREES PROPERTIES

- Behavior persistent across multiple Al loops
- Uses ordering of conditions and responses to emulate human reason
- Allows complex behavior with simpler designer control than a FSM
- Idea extensible to more complex systems such as "Utility Trees" (what Killzone 2 and F.E.A.R use)

UTILITY THEORY

- Realistic and varied AI is too complex for highly designed systems like FSMs and behavior trees
- Utility Theory provides simpler way to design and extend AI
- Uses a "utility" score to determine "best" action
 - Score based on value of action (desire) and probability of achieving it
 - Model game values along a function to determine score
- Provides "fuzzy logic" like solution with more potential for emergent behavior
 - Al is making a "best guess"

APPLYING UTILITIES

UTILITY AI IN GAMES

- **Sims**
- Killzone 2
- F.E.A.R
- Civilization
- Quake (modern)
- etc...

BEHAVIOR TREE VS UTILITY

Action	Scorer	Score
Move to Enemy	Distance to Enemy	0-100
	Gun is not loaded	-100
Fire at Enemy	Proximity to Enemy < 50	75
	Cannot make it to cover	50
	Gun is not loaded	-125
Move to Cover	Is not in cover	50
	Proximity to Cover < 50	50
Load	Gun is not loaded	75
	Is in cover	50
	Gun is loaded	-125

HOW TO POPULATE TREES?

- Data-driven or code-driven
 - Determines whether behaviors encoding into actual data structures or built out of imported data
- Useful tools in both pipelines: standard file format (i.e. XML), custom data parser, standard scripting language (e.g. Lua or Python)

FUZZY LOGIC

- Philosophical approach
 - Decisions based on "degree of truth"
 - Is not a method for reasoning under uncertainty that's probability
- Crisp Facts distinct boundaries
- Fuzzy Facts imprecise boundaries
- Probability incomplete facts
- Example Scout reporting an enemy
 - "Two tanks at grid NV 54" (Crisp)
 - "A few tanks at grid NV 54" (Fuzzy)
 - "There might be 2 tanks at grid NV 54 (Probabilistic)

APPLY TO COMPUTER GAMES

- Can have different characteristics of players
 - Strength: strong, medium, weak
 - Aggressiveness: meek, medium, nasty
 - If meek and attacked, run away fast
 - If medium and attacked, run away slowly
 - If nasty and strong and attacked, attack back
- Control of a vehicle
 - Should slow down when close to car in front
 - Should speed up when far behind car in front
- Provides smoother transitions not a sharp boundary

FUZZY SETS

- Provides a way to write symbolic rules with terms like "medium" but evaluate them in a quantified way
- Classical set theory: An object is either in or not in the set
- Fuzzy sets have a smooth boundary
 - Not completely in or out somebody 6ft is "80% in the tall set" tall
- Fuzzy set theory
 - An object is in a set by matter of degree
 - ▶ 1.0 => in the set
 - \rightarrow 0.0 => not in the set
 - ▶ 0.0 < object < 1.0 => partially in the set

EXAMPLE FUZZY VARIABLE

- Each function tells us how much we consider a character in the set if it has a particular aggressiveness value
- Or, how much truth to attribute to the statement: "The character is nasty (or meek, or neither)?"

FUZZY SET OPERATIONS: COMPLEMENT

The degree to which you believe something is **not** in the set is 1.0 minus the degree to which you believe it is in the

FUZZY SET: INTERSECTION (AND)

- If you have x degree of faith in statement A, and y degree of faith in statement B, how much faith do you have in the statement A and B?
 - e.g how much faith in "that person is about 6' high and tall"

FUZZY SET: INTERSECTION (AND)

- Assumption: Membership in one set does not affect membership in another
- Take the *min* of your beliefs in each individual statement
- Also works if statements are about different variables
 - Dangerous and injured belief is the min of the degree to which you believe they are dangerous and injured

FUZZY SET: UNION (OR)

- If you have x degree of faith in statement A, and y degree of faith in statement B, how much faith do you have in the statement A or B?
 - e.g. how much faith in "that person is about 6' high or tall"

FUZZY SET: UNION (OR)

- Take the *max* of your beliefs in each individual statement
- Also works if statements are about different variables
 - Dangerous or injured belief is the max of the degree to which you believe they are dangerous or injured

FUZZY RULES

- If our distance to the car in front is small, and the distance is decreasing slowly, then decelerate quite hard"
 - Fuzzy variables in blue
 - Fuzzy sets in red
- We have a certain belief in the truth of the condition, and hence a certain strength of desire for the outcome
- Multiple rules may match to some degree, so we require a means to arbitrate and choose a particular goal -defuzzification

FUZZY RULES EXAMPLE

- Rules for controlling a car:
 - Variables are distance to car in front, delta is how fast it's changing, and acceleration is how to apply it
 - Sets are:
 - Very small, small, perfect, big, very big (distance)
 - Shrinking fast, shrinking, stable, growing, growing fast (delta)
 - Brake hard, slow down, none, speed up, floor it (acceleration)
 - Rules for every combination of distance and delta sets define acceleration set

SET DEFINITIONS

INSTANCE

- Distance could be considered small or perfect
- Delta could be stable or growing
- What is acceleration?

MATCHING

- Relevant rules are:
 - If distance is small and delta is growing, maintain speed
 - If distance is small and delta is stable, slow down
 - If distance is perfect and delta is growing, speed up
 - If distance is perfect and delta is stable, maintain speed
- For first rule, "distance is small" has 0.75 truth, and "delta is growing" has 0.3 truth
 - So the truth of the AND is 0.3
- Other rule strengths are 0.6, 0.1 and 0.1

FUZZY INFERENCE

For each rule, clip action fuzzy set by belief in rule

DEFUZZIFICATION EXAMPLE

- Three actions (sets) we have reason to believe we should take, and each action covers a range of values (accelerations)
- Two options in going from current state to a single value:
 - Mean of Max: Take the rule we believe most strongly, and take the (weighted) average of its possible values
 - Center of Mass: Take all the rules we partially believe, and take their weighted average
- In this example, we slow down either way, but we slow down more with Mean of Max
 - Mean of max is cheaper, but center of mass exploits more information

EVALUATION OF FUZZY LOGIC

- Does not necessarily lead to non-determinism
- Advantages
 - Allows use of continuous valued actions while still writing "crisp" rules can accelerate to different degrees
 - Allows use of "fuzzy" concepts such as medium
 - Biggest impact is for control problems
 - Can avoid discontinuities (but not always)
- Disadvantages
 - Sometimes results are unexpected and hard to debug
 - Additional computational overhead
 - Other ways to get continuous functions

SIDE NOTE: NEURAL NETWORKS

- Inspired by natural decision making structures (real nervous systems and brains)
- If you connect lots of simple decision making pieces together, they can make more complex decisions
 - Compose simple functions to produce complex functions
- Take multiple numeric input variables
- Produce multiple numeric output values
- Threshold outputs to turn them into discrete values
- Map discrete values onto classes, and you have a classifier!
- Also work as approximation functions

NEURAL NETWORK FOR QUAKE

- Four input perceptron
 - One input for each condition
- Four perceptron hidden layer
 - Fully connected
- Five output perceptron
 - One output for each action
 - Choose action with highest output
 - Or, probabilistic action selection
 - Choose at random weighted by output

NEURAL NETWORKS IN GAMES AS AI

- Forza
- Supreme Commander 2
- Black & White

NEURAL NETWORKS IN GAMES: THE FUTURE

- Deep learning may not be ideal for the AI in games, but it can assist with streamlining the asset pipeline
 - Animations
 - Generated assets
 - etc...
- Example: Deep Learning for Combat Animations:
 - https://80.lv/articles/ea-studies-the-use-of-deep-learning-for-combatanimations/
- Example: Deep Reinforcement Learning for Racing:
 - https://www.nature.com/articles/s41586-021-04357-7

NEURAL NETWORKS EVALUATION

- Advantages
 - Handle errors well
 - Graceful degradation
 - Can learn novel solutions
 - Learning during play might be possible
- Disadvantages
 - Can't understand how or why the learned network works
 - Examples must match real problems
 - Need many examples
 - Learning takes lots of processing

REFERENCES

- Nguyen, H. T. and Walker, E. A. A First Course in Fuzzy Logic, CRC Press, 1999.
- Rao, V. B. and Rao, H. Y. C++ Neural Networks and Fuzzy Logic, IGD Books Worldwide, 1995.
- McCuskey, M. Fuzzy Logic for Video Games, in Game Programming Gems, Ed.
 Deloura, Charles River Media, 2000, Section 3, pp. 319-329.
- https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/ Behavior_trees_for_Al_How_they_work.php>
- <u>Are_Behavior_Trees_a_Thing_of_the_Past.php</u>>
- <u><http://www.gameaipro.com/GameAIPro/</u>
 <u>GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf></u>