
PATH PLANNING
CS354R
DR SARAH ABRAHAM

CS354R

PATH FINDING

▸ Problem Statement: Given a start point A and a goal point B, find a path from A to
B that is clear

▸ Generally want to minimize a cost: distance, travel time

▸ Travel time depends on terrain

▸ May be complicated by dynamic changes: paths being blocked or removed

▸ Very common problem in games:

▸ In FPS: How does the AI get from room to room?

▸ In RTS: User clicks on units, tells them to go somewhere. How do they get
there? How do they avoid each other?

▸ Chase games, sports games, etc

CS354R

SEARCH OR OPTIMIZATION?

▸ Path planning (also called route-finding) can be phrased as a search
problem:

▸ Find a path to the goal B that minimizes Cost(path)

▸ Path planning is also a kind of optimization problem:

▸ Minimize Cost(path) subject to the constraint that path joins A and B

▸ State space is paths joining A and B

▸ The difference is mostly terminology of different communities (AI vs.
Optimization)

▸ Search is normally through a discrete state space

CS354R

BRIEF OVERVIEW OF TECHNIQUES

▸ Discrete algorithms: BFS, Greedy search, A*

▸ Potential fields:

▸ Put a “force field” around obstacles, and follow the “potential
valleys”

▸ Pre-compute plans with dynamic re-planning

▸ Plan as search, but pre-compute answer and modify as required

▸ Special algorithms for special cases:

▸ e.g. Given a fixed start point, fast ways to find paths around
polygonal obstacles

CS354R

GRAPH-BASED ALGORITHMS

▸ Path planning is “point to point” where places in world are connected
through an unoccupied point

▸ Such a search space is complex (space of arbitrary curves)

▸ Necessary to discretize the search space

▸ Restrict the start and goal points to a finite set

▸ Restrict paths to be along lines (or simple curves) joining points

▸ Discretized search space forms a graph

▸ Nodes are points

▸ Edges join nodes reachable along a single curve segment

CS354R

WAYPOINTS

▸ The discrete set of points along a path are called waypoints

▸ How to choose waypoint locations?

▸ How to determine if there’s a simple path between them?

▸ Almost always assume straight lines

▸ Selection depends on game genre and intended experience

CS354R

WHERE WOULD YOU PUT WAYPOINTS?

CS354R

WAYPOINTS BY HAND

▸ Can place waypoints as part of level design

▸ Fine-grain designer control

▸ Time-consuming

▸ Good choice of waypoints can make the AI seem smarter

▸ Many heuristics for good places:

▸ In doorways

▸ Along walls

▸ At other discontinuities in the environments

▸ At corners

▸ What are the advantages/disadvantages of these?

CS354R

WAYPOINTS BY GRID

▸ Place a grid over the world, and put a waypoint at every
open grid-point

▸ Automated method

▸ Potentially implicit to the environment

▸ Perform an edge/world intersection test to decide which
waypoints should be joined

▸ Allows movement between immediate (or maybe
corner) neighbors

CS354R

GRID EXAMPLE

▸ What sorts of environments
will this work for?

▸ What are its advantages?

▸ What are its problems?

CS354R

GRID EXAMPLE

▸ Potential fixes:

▸ Perturb grid to move edges
closer to obstacles

▸ Adjust grid resolution

▸ Joins between outside and
inside waypoints

CS354R

WAYPOINTS FROM POLYGONS

▸ Choose waypoints based
on the floor polygons in
your world

▸ Or use specific polygons
that generate waypoints

▸ How do we go from
polygons to waypoints?

CS354R

WAYPOINTS FROM POLYGONS

!

Add waypoints along polygon wallsWaypoints at the center of polygons

CS354R

WAYPOINTS FROM CORNERS

▸ Place waypoints at every convex corner of the
obstacles

▸ Take into account width of moving objects

▸ Or, compute corners of offset polygons

▸ Connects all corners that see each other

▸ Results in the shortest path

▸ Some unnatural paths may result

▸ Characters will stick to walls

CS354R

WAYPOINTS FROM CORNERS

▸ Note that not every edge
is drawn

▸ Produces very dense
graphs

CS354R

ENTERING AND EXITING THE PATHWAY

▸ Don’t restrict the character to waypoints or graph edges

▸ Not necessarily a problem with grid methods

▸ To enter, find the closest waypoint and move toward that

▸ Or, find a waypoint in the direction of the goal

▸ Or, try all potential starting waypoints and see which gives the
shortest path

▸ To exit, jump off at closest waypoint to goal

▸ Ideally agent can go straight to the goal from waypoint

▸ Best option: Add a temporary waypoint at the precise start/finish point,
and join it to nearby waypoints

CS354R

ENTERING AND EXITING THE PATHWAY

CS354R

WE HAVE A PATH…NOW WHAT?

▸ So…how do we decide which path to take?

CS354R

BEST-FIRST-SEARCH

▸ Search out from start node

▸ Maintain two sets of nodes:

▸ Open nodes - reached nodes that may or may not be on
best path

▸ Closed nodes - best path to these nodes are known

▸ Open nodes sorted by cost

CS354R

BFS IN ACTION

▸ Expand “best” open node

▸ If it’s the goal, we’re done

▸ If not, move the “best” open node to the closed set

▸ Add any nodes reachable from the “best” node to the open set
(unless already there or closed)

▸ Update the cost for nodes reachable from the “best” node

▸ New cost is min(old-cost, cost-through-best)

▸ Repeat

CS354R

EXPANDING FRONTIER

Open nodesClosed nodes Along best path

CS354R

BEST-FIRST-SEARCH PROPERTIES

▸ Precise properties depend on how “best” is defined

▸ But in general:

▸ Will always find any reachable goal

▸ To store the best path:

▸ Keep a pointer in each node n to the previous node along the
best path to n

▸ Update these as nodes are added to the open set and as nodes
are expanded (i.e. whenever the cost changes)

▸ To find path to goal, trace pointers back from goal nodes

CS354R

DEFINING BEST

▸ g(n): The current known best cost for getting to a node from
the start point

▸ Can be computed based on the cost of traversing each
edge along the current shortest path to n

▸ h(n): The current estimate for how much more it will cost to
get from a node to the goal

▸ A heuristic: The exact value is unknown but this is your best
guess

▸ Some algorithms place conditions on this estimate

CS354R

USING G(N) ONLY (BREADTH FIRST SEARCH)

▸ Define “best” according to f(n) = g(n) (shortest known path
from the start to the node)

CS354R

BREADTH FIRST SEARCH

Open nodesClosed nodes Along best path

CS354R

BREADTH FIRST SEARCH

▸ On a grid with uniform cost per edge, frontier
expands in a circle out from the start point

▸ We only use info about distance from start

Open nodesClosed nodes Along best path

CS354R

BREADTH FIRST SEARCH

▸ Is it optimal?

▸ Is the goal node along the shortest path?

▸ Is it efficient?

▸ How many nodes does it explore?

CS354R

USING H(N) ONLY (GREEDY SEARCH)

▸ Define “best” according to f(n) = h(n) (our best guess)

▸ Behavior depends on choice of heuristic

▸ Straight line distance is a good choice

▸ Set the cost for a node with no exit to be infinite

▸ If we expand such a node, our guess of the cost was
wrong

CS354R

GREEDY SEARCH (STRAIGHT-LINE-DISTANCE HEURISTIC)

Open nodesClosed nodes Along best path

CS354R

GREEDY-SEARCH

▸ Is it optimal?

▸ When the goal node is expanded, is it along the shortest
path?

▸ Is it efficient?

▸ How many nodes does it explore?

CS354R

A* SEARCH

▸ f(n): The current best estimate for the best path through a node: f(n)=g(n)+h(n)

▸ This expands nodes according to best estimated total path cost

▸ Is it optimal?

▸ Depends on h(n)

▸ Is it efficient?

▸ Most efficient of any optimal algorithm that uses the same h(n)

▸ A* is the ubiquitous algorithm for path planning in games

▸ Much effort goes into making it fast, and making it produce pretty looking
paths

▸ More articles on it than you can poke a stick at

CS354R

A* SEARCH (STRAIGHT-LINE-DISTANCE HEURISTIC)

Open nodesClosed nodes Along best path

CS354R

A* SEARCH

▸ Note that A* expands
fewer nodes than
breadth-first, but more
than greedy

▸ It’s the price you pay for
optimality

▸ Keys are:

▸ Data structure for a node

▸ Priority queue for sorting open nodes

▸ Nodes track their predecessor to reconstruct path

Open nodesClosed nodes Along best path

CS354R

A * PATHFINDING EXAMPLE

▸ https://www.youtube.com/watch?v=Ju7IxDNbt-4

https://www.youtube.com/watch?v=Ju7IxDNbt-4

