
PATH PLANNING
CS354R

DR SARAH ABRAHAM



CS354R

PATH FINDING

▸ Problem Statement: Given a start point A and a goal point B, find a path from A to 
B that is clear


▸ Generally want to minimize a cost: distance, travel time


▸ Travel time depends on terrain


▸ May be complicated by dynamic changes: paths being blocked or removed


▸ Very common problem in games:


▸ In FPS: How does the AI get from room to room?


▸ In RTS: User clicks on units, tells them to go somewhere. How do they get 
there? How do they avoid each other?


▸ Chase games, sports games, etc



CS354R

SEARCH OR OPTIMIZATION?

▸ Path planning (also called route-finding) can be phrased as a search 
problem:


▸ Find a path to the goal B that minimizes Cost(path)


▸ Path planning is also a kind of optimization problem:


▸ Minimize Cost(path) subject to the constraint that path joins A and B


▸ State space is paths joining A and B


▸ The difference is mostly terminology of different communities (AI vs. 
Optimization)


▸ Search is normally through a discrete state space



CS354R

BRIEF OVERVIEW OF TECHNIQUES

▸ Discrete algorithms: BFS, Greedy search, A*


▸ Potential fields:


▸ Put a “force field” around obstacles, and follow the “potential 
valleys”


▸ Pre-compute plans with dynamic re-planning


▸ Plan as search, but pre-compute answer and modify as required


▸ Special algorithms for special cases:


▸ e.g. Given a fixed start point, fast ways to find paths around 
polygonal obstacles



CS354R

GRAPH-BASED ALGORITHMS

▸ Path planning is “point to point” where places in world are connected 
through an unoccupied point


▸ Such a search space is complex (space of arbitrary curves)


▸ Necessary to discretize the search space


▸ Restrict the start and goal points to a finite set


▸ Restrict paths to be along lines (or simple curves) joining points


▸ Discretized search space forms a graph


▸ Nodes are points


▸ Edges join nodes reachable along a single curve segment



CS354R

WAYPOINTS

▸ The discrete set of points along a path are called waypoints


▸ How to choose waypoint locations?


▸ How to determine if there’s a simple path between them?


▸ Almost always assume straight lines


▸ Selection depends on game genre and intended experience



CS354R

WHERE WOULD YOU PUT WAYPOINTS?



CS354R

WAYPOINTS BY HAND

▸ Can place waypoints as part of level design


▸ Fine-grain designer control


▸ Time-consuming


▸ Good choice of waypoints can make the AI seem smarter


▸ Many heuristics for good places:


▸ In doorways


▸ Along walls


▸ At other discontinuities in the environments 


▸ At corners


▸ What are the advantages/disadvantages of these?



CS354R

WAYPOINTS BY GRID

▸ Place a grid over the world, and put a waypoint at every 
open grid-point


▸ Automated method


▸ Potentially implicit to the environment


▸ Perform an edge/world intersection test to decide which 
waypoints should be joined


▸ Allows movement between immediate (or maybe 
corner) neighbors



CS354R

GRID EXAMPLE

▸ What sorts of environments 
will this work for?


▸ What are its advantages?


▸ What are its problems?



CS354R

GRID EXAMPLE

▸ Potential fixes:


▸ Perturb grid to move edges 
closer to obstacles


▸ Adjust grid resolution


▸ Joins between outside and 
inside waypoints



CS354R

WAYPOINTS FROM POLYGONS

▸ Choose waypoints based 
on the floor polygons in 
your world


▸ Or use specific polygons 
that generate waypoints


▸ How do we go from 
polygons to waypoints?



CS354R

WAYPOINTS FROM POLYGONS

!

Add waypoints along polygon wallsWaypoints at the center of polygons



CS354R

WAYPOINTS FROM CORNERS

▸ Place waypoints at every convex corner of the 
obstacles


▸ Take into account width of moving objects


▸ Or, compute corners of offset polygons


▸ Connects all corners that see each other


▸ Results in the shortest path


▸ Some unnatural paths may result


▸ Characters will stick to walls



CS354R

WAYPOINTS FROM CORNERS

▸ Note that not every edge 
is drawn


▸ Produces very dense 
graphs



CS354R

ENTERING AND EXITING THE PATHWAY

▸ Don’t restrict the character to waypoints or graph edges


▸ Not necessarily a problem with grid methods


▸ To enter, find the closest waypoint and move toward that


▸ Or, find a waypoint in the direction of the goal


▸ Or, try all potential starting waypoints and see which gives the 
shortest path


▸ To exit, jump off at closest waypoint to goal 


▸ Ideally agent can go straight to the goal from waypoint


▸ Best option: Add a temporary waypoint at the precise start/finish point, 
and join it to nearby waypoints



CS354R

ENTERING AND EXITING THE PATHWAY



CS354R

WE HAVE A PATH…NOW WHAT?

▸ So…how do we decide which path to take?



CS354R

DIJKSTRA’S ALGORITHM?

▸ Requires placing all nodes into one of two sets: visited and 
unvisited


▸ Not possible on infinite graphs


▸ Intensive memory requirements for large graphs


▸ Uniform-Cost-Search starts by placing only the starting 
node into a priority queue of “visited” nodes


▸ Expand the “frontier” of visited nodes to determine cost 
of neighboring nodes



CS354R

BEST-FIRST-SEARCH

▸ Search out from start node


▸ Maintain two sets of nodes:


▸ Open nodes - visited nodes that may or may not be on 
best path


▸ Closed nodes - best path to these nodes are known


▸ Open nodes sorted by cost



CS354R

BFS IN ACTION 

▸ Expand “best” open node


▸ If it’s the goal, we’re done


▸ If not, move the “best” open node to the closed set


▸ Add any nodes reachable from the “best” node to the open set 
(unless already there or closed)


▸ Update the cost for nodes reachable from the “best” node


▸ New cost is min(old-cost, cost-through-best)


▸ Repeat



CS354R

EXPANDING FRONTIER

Open nodesClosed nodes Along best path



CS354R

BEST-FIRST-SEARCH PROPERTIES

▸ Precise properties depend on how “best” is defined


▸ But in general:


▸ Will always find any reachable goal


▸ To store the best path:


▸ Keep a pointer in each node n to the previous node along the 
best path to n


▸ Update these as nodes are added to the open set and as nodes 
are expanded (i.e. whenever the cost changes)


▸ To find path to goal, trace pointers back from goal nodes



CS354R

DEFINING BEST

▸ g(n): The current known best cost for getting to a node from 
the start point


▸ Can be computed based on the cost of traversing each 
edge along the current shortest path to n


▸ h(n): The current estimate for how much more it will cost to 
get from a node to the goal


▸ A heuristic: The exact value is unknown but this is your best 
guess


▸ Some algorithms place conditions on this estimate



CS354R

USING G(N) ONLY (BREADTH FIRST SEARCH)

▸ Define “best” according to f(n) = g(n) (shortest known path 
from the start to the node)



CS354R

BREADTH FIRST SEARCH

Open nodesClosed nodes Along best path



CS354R

BREADTH FIRST SEARCH

▸ On a grid with uniform cost per edge, frontier 
expands in a circle out from the start point


▸ We only use info about distance from start

Open nodesClosed nodes Along best path



CS354R

BREADTH FIRST SEARCH

▸ Is it optimal?


▸ Is the goal node along the shortest path?


▸ Is it efficient?


▸ How many nodes does it explore?



CS354R

USING H(N) ONLY (GREEDY SEARCH)

▸ Define “best” according to f(n) = h(n) (our best guess)


▸ Behavior depends on choice of heuristic


▸ Straight line distance is a good choice


▸ Set the cost for a node with no exit to be infinite


▸ If we expand such a node, our guess of the cost was 
wrong



CS354R

GREEDY SEARCH (STRAIGHT-LINE-DISTANCE HEURISTIC)

Open nodesClosed nodes Along best path



CS354R

GREEDY-SEARCH

▸ Is it optimal?


▸ When the goal node is expanded, is it along the shortest 
path?


▸ Is it efficient?


▸ How many nodes does it explore?



CS354R

A* SEARCH

▸ f(n): The current best estimate for the best path through a node: f(n)=g(n)+h(n)


▸ This expands nodes according to best estimated total path cost


▸ Is it optimal?


▸ Depends on h(n)


▸ Is it efficient?


▸ Most efficient of any optimal algorithm that uses the same h(n)


▸ A* is the ubiquitous algorithm for path planning in games


▸ Much effort goes into making it fast, and making it produce pretty looking 
paths


▸ More articles on it than you can poke a stick at



CS354R

A* SEARCH (STRAIGHT-LINE-DISTANCE HEURISTIC)

Open nodesClosed nodes Along best path



CS354R

A* SEARCH

▸ Note that A* expands 
fewer nodes than 
breadth-first, but more 
than greedy


▸ It’s the price you pay for 
optimality

▸ Keys are:


▸ Data structure for a node


▸ Priority queue for sorting open nodes


▸ Nodes track their predecessor to reconstruct path

Open nodesClosed nodes Along best path



CS354R

A * PATHFINDING EXAMPLE

▸ https://www.youtube.com/watch?v=Ju7IxDNbt-4

https://www.youtube.com/watch?v=Ju7IxDNbt-4

