CS354R
DR SARAH ABRAHAM

GAME ENGINE ARCHITECTURE

o=
ccene < O Inspect
LE L Tt -
[P P ©
f » Conpleted [>
Eny nmertidyna Tommpanram ® - e TE T Tagn
Env r ertfs nds '\ "CpR Carpenet
Eny artistat 11 — ‘We reed 1o fre MoveComponert arfy ONCE / 4
\'a Firsemave b Target and than check if someang i noar T Get Actar Petation % T
Main mera
ain Ca File Edi e y o TR [
o = hen 0 /
Ry Mades R B Reset
el B ol
q . addpn & Ol tire @ :
oend B T e eg e)
- q i \ I o = -
Assets\ScriptGame\script » Mo bFy B T Sl Une Trace by Gl a1 p- P = IS
: " - . . = Selectn 3 > Xisga + e e [T
File Edit View Search Project Build Run Versig e NS b .
08 Tag s8] Remvie ® \ ® o Pt Vaus z
~ S 1 // NS o | T
e 2 / oyt » >
'] GameControl.cs x || G Ramvie @ i "
]] Actes 1 igne - & Custom Tick
4% scriptPlayer» &% downPress () (g Port S omeceng e NS i \ 5

Ko S

—//using UnityEngine;
using System.Collections;

1=||public class scriptPlayer i—im
bool going, spotReached,
public short direction, © ’Kr ‘ L
movePlayer moveP; GameObj o Gt compiend. [> ===
© Custam Tick

Color colorStart; Color

void Start() {
going = se; north
speed = Globals.pSpeed;
moveP = GetComponent<mdg
gameSFX = GameCbject.Fi
gameBGM = GameCbject.Fi
colorStart = renderer.

»
PPOOT

SR ~

T Cormpiex Taget [self

At 1 g

Debeg Type
aTyee [EERA [Ve conmve wTargetagen |
e e - — =

B As
(¥
-~
~ if (spotReached)
o | if (north){ direction 1 transform.eulerAngles = new Vector
- if (east){ direction transform.eulerAngles = new Vector3 py elements 4 @ =
o if (south){ direction transform.eulerAngles = new Vector
B if (west){ direction transform.eulerAngles = new Vector3
o

spotReached if (steps sfxScript.sndMove () ;

on); steps++; if(steps >= speed)) { steps = spotReached =

else{ of
if (!spotReached) { o
if (Globals.readyP) moveP.Move (direc if(steps >= | speed)) { steps spotReached =

57:59 INS ! Feedback 0=|Ta

CS354R

WHAT IS A GAME ENGINE?

Run-time system > Toolsets

> Low-level architectur . :
ow-level architecture Level editor

3D system > Character and animation editor

v

Physics system * Material creator

v

GUI system > Subsystems

v

Sound system " Run-time object model

v

Networking system

v

Real-time object model updating

* High-level architecture

v

Messaging and event handling

* Game objects

v

Scripting

> Game mechanics

v

Level management and streaming

CS354R

WHAT ARE GAME OBJECTS?

* Anything that has a representation in the game world

* Characters, props, vehicles, projectiles, cameras, trigger
volumes, lights, etc.

* Created/modified by world editor tools
> Object model presented to designers
* Managed at runtime in the runtime engine

> Object model efficiently implemented for players

> What is an architecture model that can accomplish all this?

CS354R

RUN-TIME OBJECT MODEL ARCHITECTURES

> Object-centric

> Objects implemented as class instances

> Object's attributes and behaviors encapsulated within the class(es)
" Property-centric

> Object attributes are implemented as data tables, one per attribute

Game objects are just IDs of some kind

> Properties of an object are distributed across tables associated
with engine systems (keyed by the object’s id)

CS354R

OBJECT-CENTRIC ARCHITECTURES

* Natural taxonomy of game object
types

* Common, generic functionality at
root

> Specific game object types at the
leaves

GameObiject

|

MovableObject

A

DrawableObiject

[

A

PacMan

Ghost

Pellet

A

PowerPellet

Hypothetical PacMan Class Hierarchy

CS354R

MONOLITHIC CLASS HIERARCHIES

> Very intuitive for
small simple cases

* Tend to grow ever
wider and deeper

> Virtually all classes
in the game inherit
from a common
base class

Actor

A

“Brush 1Light
Controller In:/entory
AlController Ammunition
PlayerController Powerups
Weapon
Info
| 4HUD
- Gamelnfo
Pawn Plf:kup
A
Vehicle Ammo
UnrealPawn ArmorPickup
RedeemerWarhead WeaponPickup
Scout Part of object class hierarchy from

Unreal Tournament 2004

CS354R

PROBLEMS WITH MONOLITHIC HIERARCHIES?

> Hard to understand, maintain, and modify classes
* Need to understand a lot of parent classes
> Hard to describe multidimensional taxonomies
* How to classify objects along more than one axis?

> e.g. how would you include an amphibious vehicle?

»ehicle \

‘ LandVehicle WaterVehicle

PN RN

Car Motorcycle Truck Yacht Sailboat Cruiser

CS354R

USE MULTIPLE INHERITANCE?

* There's a reason languages like Java don't support it

> Derived classes often end up with multiple copies of base
class members

* Compiler cannot resolve ambiguities

)h‘de T~

LandVehicle WaterVehicle

'\ /

AmphibiousVehicle

CS354R

MIX-IN CLASSES

> Mix-in classes (stand alone classes with no base class) can
solve deadly diamond problem

> Similar to an interface with implemented methods (traits)
except mix-ins have state (e.g. can store properties)

* Supported natively in many languages

> Can be implemented in C++ using templates

CS354R

MIX-IN EXAMPLE

GameOQObiject
. L. . (transform, refgount)
> AnimatedMixin is a / '
standalone class that iAlﬂimated|\/|iXilﬂE Sy S—— \T .
: rawable rigger
Drawable and Simulated i@nimatonconroleny :

. . : \ /,,x’ (renderable model) (volume)
can use in different, e |
need-specificways pon e .

P y Animated’ . [Simulated
> Another approach is to Y, Lrid body move)
use composition or \ ,
aggregation in addition An|matedW|thPhyS|cs

to inheritance

CS354R

OBSERVATIONS ABOUT INHERITANCE

> Not every set of relationships can be described in a
directed acyclic graph

> Class hierarchies are hard to change
> Functionality drifts upwards

> Specializations pay the memory cost of the functionality in
siblings and cousins

CS354R

OTHER ISSUES WITH INHERITANCE

> Consider a simple generic
GameObject specialized to add
properties for full blown physical
simulation

> What if you want to use physical
simulation on objects that don’t use
skeletal animation?

GameOQObject

A

MovableObject

A

DrawableObiject

A

CollisionObject

A

AnimatedQObject

A

PhysicalObject

CS354R

SHOULD YOU EVER USE INHERITANCE?

* Very hotly debated topic — particularly in game engine
development

" Yes, it is possible to throw it out entirely, but you trade one
set of issues for another, so not always the right answer

" Inheritance works well for logical reasoning about game
objects and taxonomies

> Shallow inheritance with composition can be both
performant and easier to maintain

CS354R

COMPONENTS

> One “"hub” object contains pointers to instances of various
service class instances as needed (e.g. composition).

Transform Meshlnstance
GameOQObject
| 4 Al

AnimationController RigidBody

CS354R

COMPONENT-BASED EXAMPLE (1/2)

class GameObject {

protected:
// My transform (position, rotation, scale)
Transform m transform;
// Standard components
MeshInstance* m pMeshInst;
AnimationController* m pAnimController;
RigidBody* m pRigidBody;

public:

GameObject () {

CS354R

COMPONENT-BASED EXAMPLE (2/2)

GameObject () {
// Assume no components. Derived classes will override
m pMeshInst = nullptr;
m pAnimController = nullptr;
m pRigidBody = nullptr;
}

~GameObject () {
// Automatically delete any components

delete m pMeshInst;
delete m pAnimController;

delete m pRigidBody;

}i

CS354R

COMPONENT-BASED EXAMPLE WITH INHERITANCE (1/2)

class Vehicle : public GameObject {

protected:

// Add some more components specific to vehicles
Chassis* m pChassis;
Engine* m pEngine;
/] ...
public:
Vehicle();

~Vehicle();

CS354R

COMPONENT-BASED EXAMPLE WITH INHERITANCE (2/2)

Vehicle::Vehicle() {
// Construct standard GameObject components
m pMeshInst = new MeshInstance();
m pRigidBody = new RigidBody();
m pAnimController = new AnimationController(*m pMeshInst);
// Construct vehicle-specific components
m pChassis = new Chassis(*this, *m pAnimController);
m pEngine = new Engine(*this);
}

Vehicle: :~Vehicle() {

// Only need to destroy vehicle-specific components
delete m pChassis;

delete m pEngine;

}i

CS354R

USING COMPOSITION

> "Hub” class owns its components and manages their lifetimes (i.e.
creates and destroys them)

* Naive component creation:

>

The GameOQObject class has pointers to all possible components,
initialized to nullptr

Only creates needed components for a given derived class
Destructor cleans up all possible components for convenience

All optional add-on features for derived classes are in component
classes

CS354R

MORE FLEXIBLE (AND COMPLEX) ALTERNATIVE

* Root GameObject
contains a list of generic
components

> Derive specific
components from the
component base class

> Allows arbitrary number
of instances and types of
components

Component

+GetType()

+isType()

GameObiject l‘—'+ReceiveEvent()

+Update()

Transform

RigidBody

AnimationController

Meshlnstance

CS354R

EXAMPLE: UE4 AND UACTORCOMPONENTS

Window Help

Debug

File Edit Asset View

............

*Add Component ~

f KatyaCharacterBP(self)

4 § capsuleComponent (Inherited)
R ArrowComponent (Inherited)
T Outline
™ strike1HitBox (Inherited)
™ strike2HitBox (Inherited)
® specialHitBox (Inherited)
™ interactHitBox (Inherited)
™ mount1HitBox (Inherited)
™ mount2HitBox (Inherited)
& grabPositionComponent (Inherited)
®& mountPositionComponent (Inherited)
& standPositionComponent (Inherited)
& guiComponent (Inherited)
™ vineWhipTargetingBox (Inherited)

@ CharacterMovement (Inherited)
€ gripComponent (Inherited)

€, fsmComponent (Inherited)
M My Blueprint
+addvew - EXTIIY) © -
4Graphs +
D m= EventGraph
4 Functions (32 Overridable) +

#f ConstructionScript

S WO F Z B

Compile Save Browse Find = Class Settings Class Defaults ~ Simulation
ue Viewport f Construction Scrip” = Event Graph

[T resrecie]y i

CS354R

AGGREGATION VERSUS COMPOQSITION

> In composition, child life cycle is managed by parent
object

> Child cannot exist outside of parent object

" In aggregation, child life cycle exists outside of parent
object

> Child exists outside of parent object but can be
associated with parent object

CS354R

EXAMPLE: GODOT AND SCENES

Scene

+ @

O Game

/) CanvasLayer

O Board

O PathFinder

O Encounters
i Feedback
7 Party

O Godette

O Robi

% Camera

https://github.com/razcore-art/godot-open-rpg

https://chrystalgameenginedesign.blogspot.com/2013/12/scene-graphs.html

CS354R

DO WE NEED A GAME OBJECT?

> We can reduce GameObject to an id and a list of its components

> Id is unique to each game object (entity)

> Components of a game object describe properties of that game
object

> Systems run on all their associated components to update game
object

> Basis of Entity-Component-System style architecture

CS354R

PROPERTY-CENTRIC ARCHITECTURES

Think in terms of properties (attributes) of objects rather than in terms of
objects

For each property, build a table containing that property’s values keyed by
object ID

Now you get something like a relational database

* Each property is like a column in a database table whose primary key is
the object ID

Object’s behavior defined by its property types and scripts

" Scripts have a script ID in object’s properties and can be the target of
messages

