
GAME ENGINE ARCHITECTURE

CS354R

DR SARAH ABRAHAM

MODERN GAME
ENGINES

CS354R

WHAT IS A GAME ENGINE?
‣ Run-time system

‣ Low-level architecture

‣ 3D system

‣ Physics system

‣ GUI system

‣ Sound system

‣ Networking system

‣ High-level architecture

‣ Game objects

‣ Game mechanics

‣ Toolsets

‣ Level editor

‣ Character and animation editor

‣ Material creator

‣ Subsystems

‣ Run-time object model

‣ Real-time object model updating

‣ Messaging and event handling

‣ Scripting

‣ Level management and streaming

CS354R

WHAT ARE GAME OBJECTS?
‣ Anything that has a representation in the game world

‣ Characters, props, vehicles, projectiles, cameras, trigger
volumes, lights, etc.

‣ Created/modified by world editor tools

‣ Object model presented to designers

‣ Managed at runtime in the runtime engine

‣ Object model efficiently implemented for players

‣ What is an architecture model that can accomplish all this?

CS354R

RUN-TIME OBJECT MODEL ARCHITECTURES

‣ Object-centric

‣ Objects implemented as class instances

‣ Object’s attributes and behaviors encapsulated within the class(es)

‣ Property-centric

‣ Object attributes are implemented as data tables, one per attribute

‣ Game objects are just IDs of some kind

‣ Properties of an object are distributed across tables associated
with engine systems (keyed by the object’s id)

CS354R

OBJECT-CENTRIC ARCHITECTURES

‣ Natural taxonomy of game object
types

‣ Common, generic functionality at
root

‣ Specific game object types at the
leaves

GameObject

MovableObject

DrawableObject

PacMan Ghost Pellet

PowerPellet

Hypothetical PacMan Class Hierarchy

CS354R

MONOLITHIC CLASS HIERARCHIES

‣ Very intuitive for
small simple cases

‣ Tend to grow ever
wider and deeper

‣ Virtually all classes
in the game inherit
from a common
base class

Part of object class hierarchy from
Unreal Tournament 2004

Actor

Brush

Controller

Info

Pawn

Vehicle

UnrealPawn

RedeemerWarhead

Scout

AIController

PlayerController

GameInfo

…

…

…

…

Light

Inventory

HUD

Pickup

Ammo

ArmorPickup

WeaponPickup

Ammunition

Powerups

Weapon

…

…

…

…

CS354R

PROBLEMS WITH MONOLITHIC HIERARCHIES?
‣ Hard to understand, maintain, and modify classes

‣ Need to understand a lot of parent classes

‣ Hard to describe multidimensional taxonomies

‣ How to classify objects along more than one axis?

‣ e.g. how would you include an amphibious vehicle?
Vehicle

LandVehicle

Car Motorcycle Truck

WaterVehicle

Yacht Sailboat Cruiser

CS354R

USE MULTIPLE INHERITANCE?
‣ NOOOO!!!!!

‣ There’s a reason languages like Java don’t support it

‣ Derived classes often end up with multiple copies of base
class members

‣ Compiler cannot resolve ambiguities
Vehicle

LandVehicle

AmphibiousVehicle

WaterVehicle

CS354R

MIX-IN CLASSES

‣ Mix-in classes (stand alone classes with no base class) can
solve deadly diamond problem

‣ Similar to an interface with implemented methods (traits)
except mix-ins have state (e.g. can store properties)

‣ Supported natively in many languages

‣ Can be implemented in C++ using templates

CS354R

MIX-IN EXAMPLE

‣ AnimatedMixin is a
standalone class that
Drawable and Simulated
can use in different,
need-specific ways

‣ Another approach is to
use composition or
aggregation in addition
to inheritance

Drawable

(renderable model)

Simulated

(rigid body model)

Trigger

(volume)

GameObject

(transform, refcount)

AnimatedMixin

(animation controller)

Animated

AnimatedWithPhysics

CS354R

OBSERVATIONS ABOUT INHERITANCE

‣ Not every set of relationships can be described in a
directed acyclic graph

‣ Class hierarchies are hard to change

‣ Functionality drifts upwards

‣ Specializations pay the memory cost of the functionality in
siblings and cousins

CS354R

OTHER ISSUES WITH INHERITANCE

‣ Consider a simple generic
GameObject specialized to add
properties for full blown physical
simulation

‣ What if you want to use physical
simulation on objects that don’t use
skeletal animation?

GameObject

MovableObject

DrawableObject

CollisionObject

AnimatedObject

PhysicalObject

CS354R

SHOULD YOU EVER USE INHERITANCE?

‣ Very hotly debated topic — particularly in game engine
development

‣ Yes, it is possible to throw it out entirely, but you trade one
set of issues for another, so not always the right answer

‣ Inheritance works well for logical reasoning about game
objects and taxonomies

‣ Shallow inheritance with composition can be both
performant and easier to maintain

CS354R

COMPONENTS

‣ One “hub” object contains pointers to instances of various
service class instances as needed (e.g. composition).

GameObject

Transform

AnimationController

MeshInstance

RigidBody

CS354R

COMPONENT-BASED EXAMPLE (1/2)

class GameObject {

protected:

 // My transform (position, rotation, scale)

 Transform m_transform;

 // Standard components

 MeshInstance* m_pMeshInst;

 AnimationController* m_pAnimController;

 RigidBody* m_pRigidBody;

public:

 GameObject() {

...

CS354R

COMPONENT-BASED EXAMPLE (2/2)
 GameObject() {

 // Assume no components. Derived classes will override

 m_pMeshInst = nullptr;

 m_pAnimController = nullptr;

 m_pRigidBody = nullptr;

 }

 ~GameObject() {  
 // Automatically delete any components

 delete m_pMeshInst;

 delete m_pAnimController;

 delete m_pRigidBody;

};

CS354R

COMPONENT-BASED EXAMPLE WITH INHERITANCE (1/2)
class Vehicle : public GameObject {

protected:

 // Add some more components specific to vehicles

 Chassis* m_pChassis;

 Engine* m_pEngine;

 // ...

public:

 Vehicle();

~Vehicle();

CS354R

COMPONENT-BASED EXAMPLE WITH INHERITANCE (2/2)
Vehicle::Vehicle() {

 // Construct standard GameObject components

 m_pMeshInst = new MeshInstance();

 m_pRigidBody = new RigidBody();

 m_pAnimController = new AnimationController(*m_pMeshInst);

 // Construct vehicle-specific components

 m_pChassis = new Chassis(*this, *m_pAnimController);

 m_pEngine = new Engine(*this);

 }

Vehicle::~Vehicle() {

 // Only need to destroy vehicle-specific components

 delete m_pChassis;

 delete m_pEngine;

 }

};

CS354R

USING COMPOSITION

‣ “Hub” class owns its components and manages their lifetimes (i.e.
creates and destroys them)

‣ Naive component creation:

‣ The GameObject class has pointers to all possible components,
initialized to nullptr

‣ Only creates needed components for a given derived class

‣ Destructor cleans up all possible components for convenience

‣ All optional add-on features for derived classes are in component
classes

CS354R

MORE FLEXIBLE (AND COMPLEX) ALTERNATIVE

‣ Root GameObject
contains a list of generic
components

‣ Derive specific
components from the
component base class

‣ Allows arbitrary number
of instances and types of
components

GameObject

Transform

RigidBody

AnimationController

MeshInstance

Component

+GetType()

+isType()

+ReceiveEvent()

+Update()

CS354R

EXAMPLE: UE4 AND UACTORCOMPONENTS

CS354R

AGGREGATION VERSUS COMPOSITION

‣ In composition, child life cycle is managed by parent
object

‣ Child cannot exist outside of parent object

‣ In aggregation, child life cycle exists outside of parent
object

‣ Child exists outside of parent object but can be
associated with parent object

CS354R

EXAMPLE: GODOT AND SCENES

https://github.com/razcore-art/godot-open-rpg

https://chrystalgameenginedesign.blogspot.com/2013/12/scene-graphs.html

CS354R

DO WE NEED A GAME OBJECT?

‣ We can reduce GameObject to an id and a list of its components

‣ Id is unique to each game object (entity)

‣ Components of a game object describe properties of that game
object

‣ Systems run on all their associated components to update game
object

‣ Basis of Entity-Component-System style architecture

CS354R

PROPERTY-CENTRIC ARCHITECTURES

‣ Think in terms of properties (attributes) of objects rather than in terms of
objects

‣ For each property, build a table containing that property’s values keyed by
object ID

‣ Now you get something like a relational database

‣ Each property is like a column in a database table whose primary key is
the object ID

‣ Object’s behavior defined by its property types and scripts

‣ Scripts have a script ID in object’s properties and can be the target of
messages

