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WHAT IS A GAME ENGINE?
‣ Run-time system


‣ Low-level architecture


‣ 3D system


‣ Physics system


‣ GUI system


‣ Sound system


‣ Networking system


‣ High-level architecture 


‣ Game objects 


‣ Game mechanics

‣ Toolsets 


‣ Level editor 


‣ Character and animation editor 


‣ Material creator 


‣ Subsystems 


‣ Run-time object model 


‣ Real-time object model updating 


‣ Messaging and event handling 


‣ Scripting 


‣ Level management and streaming



CS354R

WHAT ARE GAME OBJECTS?
‣ Anything that has a representation in the game world


‣ Characters, props, vehicles, projectiles, cameras, trigger 
volumes, lights, etc.


‣ Created/modified by world editor tools


‣ Object model presented to designers


‣ Managed at runtime in the runtime engine


‣ Object model efficiently implemented for players

‣ What is an architecture model that can accomplish all this?
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RUN-TIME OBJECT MODEL ARCHITECTURES

‣ Object-centric


‣ Objects implemented as class instances


‣ Object’s attributes and behaviors encapsulated within the class(es)


‣ Property-centric


‣ Object attributes are implemented as data tables, one per attribute


‣  Game objects are just IDs of some kind


‣ Properties of an object are distributed across tables associated 
with engine systems (keyed by the object’s id)
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OBJECT-CENTRIC ARCHITECTURES

‣ Natural taxonomy of game object 
types


‣ Common, generic functionality at 
root


‣ Specific game object types at the 
leaves

GameObject

MovableObject

DrawableObject

PacMan Ghost Pellet

PowerPellet

Hypothetical PacMan Class Hierarchy
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MONOLITHIC CLASS HIERARCHIES

‣ Very intuitive for 
small simple cases


‣ Tend to grow ever 
wider and deeper


‣ Virtually all classes 
in the game inherit 
from a common 
base class

Part of object class hierarchy from 
Unreal Tournament 2004

Actor

Brush

Controller

Info

Pawn

Vehicle

UnrealPawn

RedeemerWarhead

Scout

AIController

PlayerController

GameInfo

…

…

…

…

Light

Inventory

HUD

Pickup

Ammo

ArmorPickup

WeaponPickup

Ammunition

Powerups

Weapon

…

…

…

…
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PROBLEMS WITH MONOLITHIC HIERARCHIES?
‣ Hard to understand, maintain, and modify classes


‣ Need to understand a lot of parent classes


‣ Hard to describe multidimensional taxonomies


‣ How to classify objects along more than one axis?


‣ e.g. how would you include an amphibious vehicle?
Vehicle

LandVehicle

Car Motorcycle Truck

WaterVehicle

Yacht Sailboat Cruiser
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USE MULTIPLE INHERITANCE?
‣ NOOOO!!!!!


‣ There’s a reason languages like Java don’t support it


‣ Derived classes often end up with multiple copies of base 
class members


‣ Compiler cannot resolve ambiguities
Vehicle

LandVehicle

AmphibiousVehicle

WaterVehicle
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MIX-IN CLASSES

‣ Mix-in classes (stand alone classes with no base class) can 
solve deadly diamond problem


‣ Similar to an interface with implemented methods (traits) 
except mix-ins have state (e.g. can store properties)


‣ Supported natively in many languages


‣ Can be implemented in C++ using templates
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MIX-IN EXAMPLE

‣ AnimatedMixin is a 
standalone class that 
Drawable and Simulated 
can use in different, 
need-specific ways


‣ Another approach is to 
use composition or 
aggregation in addition 
to inheritance

Drawable


(renderable model)

Simulated


(rigid body model)

Trigger


(volume)

GameObject

(transform, refcount)

AnimatedMixin


(animation controller)

Animated

AnimatedWithPhysics
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OBSERVATIONS ABOUT INHERITANCE

‣ Not every set of relationships can be described in a 
directed acyclic graph


‣ Class hierarchies are hard to change


‣ Functionality drifts upwards


‣ Specializations pay the memory cost of the functionality in 
siblings and cousins
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OTHER ISSUES WITH INHERITANCE

‣ Consider a simple generic 
GameObject specialized to add 
properties for full blown physical 
simulation


‣ What if you want to use physical 
simulation on objects that don’t use 
skeletal animation?

GameObject

MovableObject

DrawableObject

CollisionObject

AnimatedObject

PhysicalObject
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SHOULD YOU EVER USE INHERITANCE?

‣ Very hotly debated topic — particularly in game engine 
development


‣ Yes, it is possible to throw it out entirely, but you trade one 
set of issues for another, so not always the right answer


‣ Inheritance works well for logical reasoning about game 
objects and taxonomies


‣ Shallow inheritance with composition can be both 
performant and easier to maintain
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COMPONENTS

‣ One “hub” object contains pointers to instances of various 
service class instances as needed (e.g. composition).

GameObject

Transform

AnimationController

MeshInstance

RigidBody
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COMPONENT-BASED EXAMPLE (1/2)

class GameObject {

protected:

    //  My transform (position, rotation, scale)

    Transform m_transform;

    // Standard components

    MeshInstance* m_pMeshInst;

    AnimationController* m_pAnimController;

    RigidBody* m_pRigidBody;

public:

    GameObject() {

...
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COMPONENT-BASED EXAMPLE (2/2)
   GameObject() {

        // Assume no components. Derived classes will override

        m_pMeshInst = nullptr;

        m_pAnimController = nullptr;

        m_pRigidBody = nullptr;

    }

    ~GameObject() {  
        // Automatically delete any components

        delete m_pMeshInst;

        delete m_pAnimController;

        delete m_pRigidBody;

};
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COMPONENT-BASED EXAMPLE WITH INHERITANCE (1/2)
class Vehicle : public GameObject {

protected:

    // Add some more components specific to vehicles

    Chassis* m_pChassis;

    Engine*  m_pEngine;

    // ...

public:

 Vehicle();

~Vehicle();
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COMPONENT-BASED EXAMPLE WITH INHERITANCE (2/2)
Vehicle::Vehicle() {

        // Construct standard GameObject components

        m_pMeshInst = new MeshInstance();

        m_pRigidBody = new RigidBody();

        m_pAnimController = new AnimationController(*m_pMeshInst);

        // Construct vehicle-specific components

        m_pChassis = new Chassis(*this, *m_pAnimController);

        m_pEngine = new Engine(*this);

    }

Vehicle::~Vehicle() {

        // Only need to destroy vehicle-specific components

        delete m_pChassis;

        delete m_pEngine;

    }

};
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USING COMPOSITION

‣ “Hub” class owns its components and manages their lifetimes (i.e. 
creates and destroys them)


‣ Naive component creation:


‣ The GameObject class has pointers to all possible components, 
initialized to nullptr


‣ Only creates needed components for a given derived class


‣ Destructor cleans up all possible components for convenience


‣ All optional add-on features for derived classes are in component 
classes
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MORE FLEXIBLE (AND COMPLEX) ALTERNATIVE

‣ Root GameObject 
contains a list of generic 
components


‣ Derive specific 
components from the 
component base class


‣ Allows arbitrary number 
of instances and types of 
components

GameObject

Transform

RigidBody

AnimationController

MeshInstance

Component


+GetType()


+isType()


+ReceiveEvent()


+Update()



CS354R

EXAMPLE: UE4 AND UACTORCOMPONENTS
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AGGREGATION VERSUS COMPOSITION

‣ In composition, child life cycle is managed by parent 
object


‣ Child cannot exist outside of parent object


‣ In aggregation, child life cycle exists outside of parent 
object


‣ Child exists outside of parent object but can be 
associated with parent object
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EXAMPLE: GODOT AND SCENES

https://github.com/razcore-art/godot-open-rpg

https://chrystalgameenginedesign.blogspot.com/2013/12/scene-graphs.html
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DO WE NEED A GAME OBJECT?

‣ We can reduce GameObject to an id and a list of its components


‣ Id is unique to each game object (entity)


‣ Components of a game object describe properties of that game 
object


‣ Systems run on all their associated components to update game 
object


‣ Basis of Entity-Component-System style architecture
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PROPERTY-CENTRIC ARCHITECTURES

‣ Think in terms of properties (attributes) of objects rather than in terms of 
objects


‣ For each property, build a table containing that property’s values keyed by 
object ID


‣ Now you get something like a relational database


‣ Each property is like a column in a database table whose primary key is 
the object ID


‣ Object’s behavior defined by its property types and scripts


‣ Scripts have a script ID in object’s properties and can be the target of 
messages


