CS354R DR SARAH ABRAHAM A* HEURISTICS

A* SEARCH

- $f(n):$ The current best estimate for the best path through a node: $f(n)=g(n)+h(n)$
- $g(n)$: current known best cost for getting to a node from the start point
- $h(n)$: current estimate for how much more it will cost to get from a node to the goal
- Optimality and efficiency depends on $h(n)$

A* IN ACTION

- Empty circle are in open set
- Fills circles are in closed set
- Color indicates distance from start
- Line is set of nodes with lowest cost from start to goal

HEURISTICS

- For A* to be optimal, heuristic must be lower or equal to the true cost
- Property of admissible path-finding algorithms
- The $f(n)$ function must monotonically increase along any path out of the start node
- True for almost any admissible heuristic (triangle inequality)
- The lower $h(n)$, the more nodes A^{*} must expand
- A^{*} considers nodes with lower cost first
- If $h(n)$ matches the cost, will only expand best path
- Can combine heuristics if they provide different estimates:
- $h(n)=\max (h 1(n), h 2(n), h 3(n), \ldots)$

DISCUSS

-What are some potential heuristics for A*?

MANHATTAN DISTANCE

- Distance on strictly horizontal/vertical path
- Used on grids that allow 4 directions of movement
- Adaptable to hexagonal grids
- Find minimum cost D for moving to neighboring cell
- Heuristic is $D^{*}(d x+d y)$ where $d x$ and dy are distance from node to goal on x and y axis

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

DIAGONAL DISTANCE

- Used on grids that allow 8 directions of movement
- D is cost in cardinal directions
- D2 is cost in ordinal directions
- Heuristic is $D^{*}(d x+d y)+(D 2-2 \text { * } D)^{*} \min (d x, d y)$
- Cost of steps that cannot use diagonal plus cost of diagonal steps minus nondiagonal steps it avoids

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

EUCLIDEAN DISTANCE

- Used when units can move at any angle
- Heuristic is straight-line distance
- D * sqrt(dx * dx + dy * dy)
- Shorter than Manhattan or diagonal distance
- Will expand more nodes

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

A* PROBLEMS

- Discrete Search
- Must have simple paths to connect waypoints
- Typically use straight segments
- Have to be able to compute cost
- Must know that the object will not hit obstacles
- Unnatural Path Shape
- Infinitely sharp corners
- Jagged paths across grids
- Low Efficiency
- Finding paths in complex environments can be expensive

DISCUSS

- How can we handle the jagged, unnatural paths A* might produce?

PATH STRAIGHTENING

- Straight paths typically look more plausible than jagged paths, particularly through open spaces
- Option 1: After the path is generated, look ahead from each waypoint to farthest unobstructed waypoint on the path
- Replaces many segments with one straight path
- Add more connections in waypoint graph (increases cost)
- Option 2: Bias the search toward straight paths
- Segment cost increases if it requires turning a corner
- Reduced efficiency when straight, unsuccessful paths are preferred

SMOOTHNG WHILE FOLLOWING

- Rather than smooth out the path, smooth out the agent's motion along it
- Typically, the agent's position linearly interpolates between the waypoints
- Two primary choices to smooth the motion
- Change the interpolation scheme
, "Chase the point"

DIFFERENT INTERPOLATION SCHEMES

- View the task as moving a point (the agent) along a curve fitted through the waypoints
- We can now apply classic interpolation techniques to smooth the path such as splines
- Interpolating splines:
- The curve passes through every waypoint
- Specify the directions at the interpolated points
- Bezier or B-splines:
- May not pass through the points
- Only approximates them

INTERPOLATION SCHEMES

Cubic Interpolation

(Wolfram Mathworld)

CHASE THE POINT

- Instead of tracking along the path, agent chases a target point moving along the path
- Start with the target on the path ahead of the agent
- At each step:
- Move the target along the path using linear interpolation
- Move the agent toward the point location, keeping it a constant distance away or moving the agent at the same speed
- Works best for driving or flying games

CHASE THE POINT DEMO

IMPROVING A* EFFICIENCY

- Recall, A^{*} is the most efficient optimal algorithm for a given heuristic
- Improving efficiency, therefore, means relaxing optimality
- Basic strategy: Use more information about the environment
- Inadmissible heuristics use intuitions about which paths are likely to be better
- Bias toward getting close to the goal ahead of exploring early unpromising paths

INADMISSIBLE HEURISTICS

- A* still gives an answer with inadmissible heuristics
- Won't be optimal (may not explore a node on the optimal path because its estimated cost is too high)
- Inadmissible heuristics may be much faster
- Ignore "unpromising" paths earlier in the search
- But not always faster (initially promising paths may be dead ends)

INADMISSIBLE EXAMPLE

- Multiply an admissible heuristic by a constant factor
-What does this do?
- The frontier in A* consists of nodes that have roughly equal estimated total cost: $f=$ cost_so_far + estimated_to_go
- Consider two nodes on the frontier: one with $f=1+5$, another with f $=5+1$
- Originally, A* would have expanded these at about the same time
- If we multiply the estimate $h(n)$ by 2 , we get: $f=1+10$ and $f=5+2$
- So now, A* will expand the node that is closer to the goal long before the one that is further from the goal

HIERARCHICAL PLANNING

- Many planning problems can be thought of hierarchically
- To pass this class, I have to do the projects
- To do the projects, I need to go to class, review the material, and start early
- To go to class, I need to get to GDC
- Path planning is no exception:
- To go from my current location to slay the dragon, I first need to know which rooms I will pass through
- Then I need to know how to pass through each room, around the furniture, and so on

DOING HIERARCHICAL PLANNING

- Define a waypoint graph for the top of the hierarchy
- e.g. Graph with waypoints in doorways (the centers)
- Nodes linked if a clear path exists between them (not necessarily straight)
- For each edge in that graph, define another waypoint graph
- Tells agents how to get between doorway in a room
- Nodes from top level also in this graph
- First plan on the top level (returns a list of rooms to traverse)
- For each room on the list, plan a path across it
- Delays low level planning until required

HIERARCHICAL PLANNING EXAMPLE

Plan this first

Then plan each room (second room shown)

HIERARCHICAL PLANNING ADVANTAGES

- Search is typically cheaper
- Initial search restricts the number of nodes considered in latter searches
- Well-suited to partial planning
- Only plan each piece of path when it's required
- Averages out cost of path over time avoiding lag when movement command issued
- Path more adaptable to dynamic changes in the environment

HIERARCHICAL PLANNING ISSUES

- Result not optimal
- No information about actual cost of low level is used at top level
- Top level plan locks in nodes that may be poor choices
- Number of nodes at the top level restricted for efficiency
- Cannot include all options available to a full planner
- Solution is to allow lower levels to override higher level
- Textbook example: Plan 2 lower level stages at a time
- Plan from current doorway, through next doorway, to doorway after
- After reaching the next doorway, drop the second half of the path and start again

PRE-PLANNING

- If the set of waypoints is fixed and obstacles don't move, the shortest path between any two never changes
- If it doesn't change, compute it ahead of time
- This can be done with all-pairs shortest paths algorithms
- Dijkstra's algorithm run for each start point, or special purpose all-pairs algorithms
- How to store the paths?

STORING ALL-PAIRS PATHS

- Trivial solution is to store the shortest path to every other node in every node
- A better way:
- If there is a shortest path from A to $B: A-B$
- Every shortest path that goes through A on the way to B must use A-B
- This holds for any source node: the next step from any node on the way to B does not depend on how you got to that node
- Only store the next step out of each node for each possible destination

EXAMPLE

If I'm at:

	A	B	C	D	E	F	G
A	-	A-B	A-C	A-B	A-C	A-C	A-C
B	B-A	-	B-A	B-D	B-D	B-D	B-D
C	C-A	C-A	-	C-E	C-E	C-F	C-E
D	D-B	D-B	D-E	-	D-E	D-E	D-G
E	E-C	E-D	E-C	E-D	-	E-F	E-G
F	F-C	F-E	F-C	F-E	F-E	-	F-G
G	G-E	G-D	G-E	G-D	G-E	G-F	-

To get from A
to G:
+ A-C
+ C-E
+ E-G

