
A* HEURISTICS
CS354R

DR SARAH ABRAHAM



CS354R

A* SEARCH

▸ f(n): The current best estimate for the best path through a 
node: f(n)=g(n)+h(n)


▸ g(n): current known best cost for getting to a node from 
the start point


▸ h(n): current estimate for how much more it will cost to 
get from a node to the goal


▸ Optimality and efficiency depends on h(n)



CS354R

A* IN ACTION

▸ Empty circle are in open set


▸ Fills circles are in closed set


▸ Color indicates distance 
from start


▸ Line is set of nodes with 
lowest cost from start to 
goal



CS354R

HEURISTICS

▸ For A* to be optimal, heuristic must be lower or equal to the true cost


▸ Property of admissible path-finding algorithms


▸ The f(n) function must monotonically increase along any path out of the start 
node


▸ True for almost any admissible heuristic (triangle inequality)


▸ The lower h(n), the more nodes A* must expand


▸ A* considers nodes with lower cost first


▸ If h(n) matches the cost, will only expand best path


▸ Can combine heuristics if they provide different estimates:


▸ h(n) = max(h1(n),h2(n),h3(n),…)



CS354R

DISCUSS

▸ What are some potential heuristics for A*?



CS354R

MANHATTAN DISTANCE

▸ Distance on strictly horizontal/vertical path


▸ Used on grids that allow 4 directions of movement


▸ Adaptable to hexagonal grids


▸ Find minimum cost D for moving to neighboring cell


▸ Heuristic is D * (dx + dy) where dx and dy are distance from node to goal on x and y axis

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

DIAGONAL DISTANCE

▸ Used on grids that allow 8 directions of movement


▸ D is cost in cardinal directions


▸ D2 is cost in ordinal directions


▸ Heuristic is D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)


▸ Cost of steps that cannot use diagonal plus cost of diagonal steps minus non-
diagonal steps it avoids

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

EUCLIDEAN DISTANCE

▸ Used when units can move at any angle


▸ Heuristic is straight-line distance


▸ D * sqrt(dx * dx + dy * dy)


▸ Shorter than Manhattan or diagonal distance


▸ Will expand more nodes

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

A* PROBLEMS

▸ Discrete Search


▸ Must have simple paths to connect waypoints


▸ Typically use straight segments


▸ Have to be able to compute cost


▸ Must know that the object will not hit obstacles


▸ Unnatural Path Shape


▸ Infinitely sharp corners


▸ Jagged paths across grids


▸ Low Efficiency


▸ Finding paths in complex environments can be expensive



CS354R

DISCUSS

▸ How can we handle the jagged, unnatural paths A* might 
produce?



CS354R

PATH STRAIGHTENING

▸ Straight paths typically look more plausible than jagged paths, 
particularly through open spaces


▸ Option 1: After the path is generated, look ahead from each waypoint 
to farthest unobstructed waypoint on the path


▸ Replaces many segments with one straight path


▸ Add more connections in waypoint graph (increases cost)


▸ Option 2: Bias the search toward straight paths


▸ Segment cost increases if it requires turning a corner


▸ Reduced efficiency when straight, unsuccessful paths are preferred



CS354R

SMOOTHING WHILE FOLLOWING

▸ Rather than smooth out the path, smooth out the agent’s 
motion along it


▸ Typically, the agent’s position linearly interpolates 
between the waypoints


▸ Two primary choices to smooth the motion


▸ Change the interpolation scheme


▸ “Chase the point”



CS354R

DIFFERENT INTERPOLATION SCHEMES

▸ View the task as moving a point (the agent) along a curve fitted through the 
waypoints


▸ We can now apply classic interpolation techniques to smooth the path such 
as splines


▸ Interpolating splines:


▸ The curve passes through every waypoint


▸ Specify the directions at the interpolated points


▸ Bezier or B-splines:


▸ May not pass through the points


▸ Only approximates them



CS354R

INTERPOLATION SCHEMES

(Wolfram Mathworld)

(Wikipedia)
Cubic Interpolation

B-Spline



CS354R

CHASE THE POINT

▸ Instead of tracking along the path, agent chases a target point 
moving along the path


▸ Start with the target on the path ahead of the agent


▸ At each step:


▸ Move the target along the path using linear interpolation


▸ Move the agent toward the point location, keeping it a 
constant distance away or moving the agent at the same speed


▸ Works best for driving or flying games



CS354R

CHASE THE POINT DEMO



CS354R

IMPROVING A* EFFICIENCY

▸ Recall, A* is the most efficient optimal algorithm for a given 
heuristic


▸ Improving efficiency, therefore, means relaxing optimality


▸ Basic strategy: Use more information about the environment


▸ Inadmissible heuristics use intuitions about which paths 
are likely to be better


▸ Bias toward getting close to the goal ahead of exploring 
early unpromising paths



CS354R

INADMISSIBLE HEURISTICS

▸ A* still gives an answer with inadmissible heuristics


▸ Won’t be optimal (may not explore a node on the 
optimal path because its estimated cost is too high)


▸ Inadmissible heuristics may be much faster


▸ Ignore “unpromising” paths earlier in the search


▸ But not always faster (initially promising paths may be 
dead ends)



CS354R

INADMISSIBLE EXAMPLE

▸ Multiply an admissible heuristic by a constant factor


▸ What does this do?


▸ The frontier in A* consists of nodes that have roughly equal 
estimated total cost: f = cost_so_far + estimated_to_go


▸ Consider two nodes on the frontier: one with f = 1+5, another with f 
= 5+1


▸ Originally, A* would have expanded these at about the same time


▸ If we multiply the estimate h(n) by 2, we get: f = 1+10 and f = 5+2


▸ So now, A* will expand the node that is closer to the goal long 
before the one that is further from the goal



CS354R

HIERARCHICAL PLANNING

▸ Many planning problems can be thought of hierarchically


▸ To pass this class, I have to do the projects


▸ To do the projects, I need to go to class, review the material, and start 
early


▸ To go to class, I need to get to GDC


▸ Path planning is no exception:


▸ To go from my current location to slay the dragon, I first need to know 
which rooms I will pass through


▸ Then I need to know how to pass through each room, around the 
furniture, and so on



CS354R

DOING HIERARCHICAL PLANNING

▸ Define a waypoint graph for the top of the hierarchy


▸ e.g. Graph with waypoints in doorways (the centers)


▸ Nodes linked if a clear path exists between them (not necessarily straight)


▸ For each edge in that graph, define another waypoint graph


▸ Tells agents how to get between doorway in a room


▸ Nodes from top level also in this graph


▸ First plan on the top level (returns a list of rooms to traverse)


▸ For each room on the list, plan a path across it


▸ Delays low level planning until required



CS354R

HIERARCHICAL PLANNING EXAMPLE

Plan this first Then plan each room 
(second room shown)



CS354R

HIERARCHICAL PLANNING ADVANTAGES

▸ Search is typically cheaper


▸ Initial search restricts the number of nodes considered in 
latter searches


▸ Well-suited to partial planning


▸ Only plan each piece of path when it’s required


▸ Averages out cost of path over time avoiding lag when 
movement command issued


▸ Path more adaptable to dynamic changes in the environment



CS354R

HIERARCHICAL PLANNING ISSUES

▸ Result not optimal


▸ No information about actual cost of low level is used at top level


▸ Top level plan locks in nodes that may be poor choices


▸ Number of nodes at the top level restricted for efficiency


▸ Cannot include all options available to a full planner


▸ Solution is to allow lower levels to override higher level


▸ Textbook example: Plan 2 lower level stages at a time


▸ Plan from current doorway, through next doorway, to doorway after


▸ After reaching the next doorway, drop the second half of the path and start 
again



CS354R

PRE-PLANNING

▸ If the set of waypoints is fixed and obstacles don’t move, 
the shortest path between any two never changes


▸ If it doesn’t change, compute it ahead of time


▸ This can be done with all-pairs shortest paths algorithms


▸ Dijkstra’s algorithm run for each start point, or special 
purpose all-pairs algorithms


▸ How to store the paths?



CS354R

STORING ALL-PAIRS PATHS
▸ Trivial solution is to store the shortest path to every other node in 

every node


▸ A better way:


▸ If there is a shortest path from A to B: A-B


▸ Every shortest path that goes through A on the way to B must use 
A-B


▸ This holds for any source node: the next step from any node on the 
way to B does not depend on how you got to that node


▸ Only store the next step out of each node for each possible 
destination



CS354R

EXAMPLE

A B

C D

E

F G

-

B-A

C-A

D-B

E-C

F-C

G-E

A

B

C

D

E

F

G

A-B

-

C-A

D-B

E-D

F-E

G-D

A-C

B-A

-

D-E

E-C

F-C

G-E

A-B

B-D

C-E

-

E-D

F-E

G-D

A-C

B-D

C-E

D-E

-

F-E

G-E

A-C

B-D

C-F

D-E

E-F

-

G-F

A-C

B-D

C-E

D-G

E-G

F-G

-

A B C D E F G

If I’m at:

And I want to go to:

To get from A 
to G:


+ A-C


+ C-E


+ E-G


