
A* HEURISTICS
CS354R 
DR SARAH ABRAHAM



CS354R

A* SEARCH

▸ f(n): The current best estimate for the best path through a 
node: f(n)=g(n)+h(n) 

▸ g(n): current known best cost for getting to a node from 
the start point 

▸ h(n): current estimate for how much more it will cost to 
get from a node to the goal 

▸ Optimality and efficiency depends on h(n)



CS354R

A* IN ACTION

▸ Empty circle are in open set 

▸ Fills circles are in closed set 

▸ Color indicates distance 
from start 

▸ Line is set of nodes with 
lowest cost from start to 
goal



CS354R

HEURISTICS

▸ For A* to be optimal, heuristic must be lower or equal to the true cost 

▸ Property of admissible path-finding algorithms 

▸ The f(n) function must monotonically increase along any path out of the start 
node 

▸ True for almost any admissible heuristic (triangle inequality) 

▸ The lower h(n), the more nodes A* must expand 

▸ A* considers nodes with lower cost first 

▸ If h(n) matches the cost, will only expand best path 

▸ Can combine heuristics if they provide different estimates: 

▸ h(n) = max(h1(n),h2(n),h3(n),…)



CS354R

DISCUSS

▸ What are some potential heuristics for A*?



CS354R

MANHATTAN DISTANCE

▸ Distance on strictly horizontal/vertical path 

▸ Used on grids that allow 4 directions of movement 

▸ Adaptable to hexagonal grids 

▸ Find minimum cost D for moving to neighboring cell 

▸ Heuristic is D * (dx + dy) where dx and dy are distance from node to goal on x and y axis

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

DIAGONAL DISTANCE

▸ Used on grids that allow 8 directions of movement 

▸ D is cost in cardinal directions 

▸ D2 is cost in ordinal directions 

▸ Heuristic is D * (dx + dy) + (D2 - 2 * D) * min(dx, dy) 

▸ Cost of steps that cannot use diagonal plus cost of diagonal steps minus non-
diagonal steps it avoids

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

EUCLIDEAN DISTANCE

▸ Used when units can move at any angle 

▸ Heuristic is straight-line distance 

▸ D * sqrt(dx * dx + dy * dy) 

▸ Shorter than Manhattan or diagonal distance 

▸ Will expand more nodes

(http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html)

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html


CS354R

A* PROBLEMS

▸ Discrete Search 

▸ Must have simple paths to connect waypoints 

▸ Typically use straight segments 

▸ Have to be able to compute cost 

▸ Must know that the object will not hit obstacles 

▸ Unnatural Path Shape 

▸ Infinitely sharp corners 

▸ Jagged paths across grids 

▸ Low Efficiency 

▸ Finding paths in complex environments can be expensive



CS354R

DISCUSS

▸ How can we handle the jagged, unnatural paths A* might 
produce?



CS354R

PATH STRAIGHTENING

▸ Straight paths typically look more plausible than jagged paths, 
particularly through open spaces 

▸ Option 1: After the path is generated, look ahead from each waypoint 
to farthest unobstructed waypoint on the path 

▸ Replaces many segments with one straight path 

▸ Add more connections in waypoint graph (increases cost) 

▸ Option 2: Bias the search toward straight paths 

▸ Segment cost increases if it requires turning a corner 

▸ Reduced efficiency when straight, unsuccessful paths are preferred



CS354R

SMOOTHING WHILE FOLLOWING

▸ Rather than smooth out the path, smooth out the agent’s 
motion along it 

▸ Typically, the agent’s position linearly interpolates 
between the waypoints 

▸ Two primary choices to smooth the motion 

▸ Change the interpolation scheme 

▸ “Chase the point”



CS354R

DIFFERENT INTERPOLATION SCHEMES

▸ View the task as moving a point (the agent) along a curve fitted through the 
waypoints 

▸ We can now apply classic interpolation techniques to smooth the path such 
as splines 

▸ Interpolating splines: 

▸ The curve passes through every waypoint 

▸ Specify the directions at the interpolated points 

▸ Bezier or B-splines: 

▸ May not pass through the points 

▸ Only approximates them



CS354R

INTERPOLATION SCHEMES

(Wolfram Mathworld)

(Wikipedia)
Cubic Interpolation

B-Spline



CS354R

CHASE THE POINT

▸ Instead of tracking along the path, agent chases a target point 
moving along the path 

▸ Start with the target on the path ahead of the agent 

▸ At each step: 

▸ Move the target along the path using linear interpolation 

▸ Move the agent toward the point location, keeping it a 
constant distance away or moving the agent at the same speed 

▸ Works best for driving or flying games



CS354R

CHASE THE POINT DEMO



CS354R

IMPROVING A* EFFICIENCY

▸ Recall, A* is the most efficient optimal algorithm for a given 
heuristic 

▸ Improving efficiency, therefore, means relaxing optimality 

▸ Basic strategy: Use more information about the environment 

▸ Inadmissible heuristics use intuitions about which paths 
are likely to be better 

▸ Bias toward getting close to the goal ahead of exploring 
early unpromising paths



CS354R

INADMISSIBLE HEURISTICS

▸ A* still gives an answer with inadmissible heuristics 

▸ Won’t be optimal (may not explore a node on the 
optimal path because its estimated cost is too high) 

▸ Inadmissible heuristics may be much faster 

▸ Ignore “unpromising” paths earlier in the search 

▸ But not always faster (initially promising paths may be 
dead ends)



CS354R

INADMISSIBLE EXAMPLE

▸ Multiply an admissible heuristic by a constant factor 

▸ What does this do? 

▸ The frontier in A* consists of nodes that have roughly equal 
estimated total cost: f = cost_so_far + estimated_to_go 

▸ Consider two nodes on the frontier: one with f = 1+5, another with f 
= 5+1 

▸ Originally, A* would have expanded these at about the same time 

▸ If we multiply the estimate h(n) by 2, we get: f = 1+10 and f = 5+2 

▸ So now, A* will expand the node that is closer to the goal long 
before the one that is further from the goal



CS354R

HIERARCHICAL PLANNING

▸ Many planning problems can be thought of hierarchically 

▸ To pass this class, I have to do the projects 

▸ To do the projects, I need to go to class, review the material, and start 
early 

▸ To go to class, I need to get to GDC 

▸ Path planning is no exception: 

▸ To go from my current location to slay the dragon, I first need to know 
which rooms I will pass through 

▸ Then I need to know how to pass through each room, around the 
furniture, and so on



CS354R

DOING HIERARCHICAL PLANNING

▸ Define a waypoint graph for the top of the hierarchy 

▸ e.g. Graph with waypoints in doorways (the centers) 

▸ Nodes linked if a clear path exists between them (not necessarily straight) 

▸ For each edge in that graph, define another waypoint graph 

▸ Tells agents how to get between doorway in a room 

▸ Nodes from top level also in this graph 

▸ First plan on the top level (returns a list of rooms to traverse) 

▸ For each room on the list, plan a path across it 

▸ Delays low level planning until required



CS354R

HIERARCHICAL PLANNING EXAMPLE

Plan this first Then plan each room 
(second room shown)



CS354R

HIERARCHICAL PLANNING ADVANTAGES

▸ Search is typically cheaper 

▸ Initial search restricts the number of nodes considered in 
latter searches 

▸ Well-suited to partial planning 

▸ Only plan each piece of path when it’s required 

▸ Averages out cost of path over time avoiding lag when 
movement command issued 

▸ Path more adaptable to dynamic changes in the environment



CS354R

HIERARCHICAL PLANNING ISSUES

▸ Result not optimal 

▸ No information about actual cost of low level is used at top level 

▸ Top level plan locks in nodes that may be poor choices 

▸ Number of nodes at the top level restricted for efficiency 

▸ Cannot include all options available to a full planner 

▸ Solution is to allow lower levels to override higher level 

▸ Textbook example: Plan 2 lower level stages at a time 

▸ Plan from current doorway, through next doorway, to doorway after 

▸ After reaching the next doorway, drop the second half of the path and start 
again



CS354R

PRE-PLANNING

▸ If the set of waypoints is fixed and obstacles don’t move, 
the shortest path between any two never changes 

▸ If it doesn’t change, compute it ahead of time 

▸ This can be done with all-pairs shortest paths algorithms 

▸ Dijkstra’s algorithm run for each start point, or special 
purpose all-pairs algorithms 

▸ How to store the paths?



CS354R

STORING ALL-PAIRS PATHS
▸ Trivial solution is to store the shortest path to every other node in 

every node 

▸ A better way: 

▸ If there is a shortest path from A to B: A-B 

▸ Every shortest path that goes through A on the way to B must use 
A-B 

▸ This holds for any source node: the next step from any node on the 
way to B does not depend on how you got to that node 

▸ Only store the next step out of each node for each possible 
destination



CS354R

EXAMPLE

A B

C D

E

F G

-

B-A

C-A

D-B

E-C

F-C

G-E

A

B

C

D

E

F

G

A-B

-

C-A

D-B

E-D

F-E

G-D

A-C

B-A

-

D-E

E-C

F-C

G-E

A-B

B-D

C-E

-

E-D

F-E

G-D

A-C

B-D

C-E

D-E

-

F-E

G-E

A-C

B-D

C-F

D-E

E-F

-

G-F

A-C

B-D

C-E

D-G

E-G

F-G

-

A B C D E F G

If I’m at:

And I want to go to:

To get from A 
to G: 

+ A-C 

+ C-E 

+ E-G


