
DYNAMIC PATH PLANNING

CS354R 
DR SARAH ABRAHAM



CS354R

DYNAMIC PATH PLANNING
‣ When can the environment change after planning? 

‣ The player does something 

‣ Other agents get in the way 

‣ Solution strategies are highly dependent on the nature of the 
game
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DISCUSS

‣ How can we handle dynamic changes to the game 
environment?
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AVOIDING PLAN CHANGES

‣ Partial planning: Only plan short segments of path 

‣ Stop A* after a path of some length is found, even if the goal is not reached 

‣ Use current best estimated path  

‣ Extreme case: greedy search 

‣ Common case: hierarchical planning, considering low level when needed 

‣ A short path is less likely to change than a long path 

‣ Optimality will be sacrificed 

‣ More even frame times 

‣ Other strategies: 

‣ Wait for the blockage to pass 

‣ Lock the path to other agents (implies priorities)
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RE-PLANNING

‣ If you discover the plan has gone wrong, create a new one 

‣ New plan assumes the dynamic changes are permanent 

‣ Used in conjunction with avoidance strategies 

‣ Re-planning is expensive so avoid doing it 

‣ Avoid generating a plan that will be re-done (partial 
planning in conjunction with re-planning)
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REACTIVE PLANNING

‣ Reactive agent plans only its next step using immediately available information 

‣ Potential field planning example: 

‣ Set up a force field around obstacles (and other agents) 

‣ Set up a gradient field toward the goal 

‣ The agent follows the gradient downhill to the goal, while the force field 
pushes it away from obstacles 

‣ Can also model velocity and momentum (field applies a force) 

‣ Potential field planning is reactive because the agent just looks at the local 
gradient at any instant 

‣ Has been used in real robots for navigating things like hallways
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POTENTIAL FIELD

‣ Red is start point, blue is 
goal 

‣ This used a quadratic field 
strength around the 
obstacles 

‣ Note that the boundaries of 
the world contribute to the 
field
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CREATING THE FIELD

‣ The constant gradient (cost) can be a simple linear gradient 
based on distance from the goal, dgoal: fgoal = k dgoal 

‣ The obstacles contribute a field strength based on the distance 
from their boundary, fi(di) 

‣ Linear, quadratic, exponential, or something else 

‣ Truncate so that field at some distance is zero 

‣ Strength determines how likely the agent is to avoid it 

‣ Add all the sub-fields together to get overall field
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FOLLOWING THE FIELD

‣ At each step, the agent needs to know which direction is “downhill” 

‣ From the cost field, compute a vector field indicating direction of flow 

‣ Compute the gradients of each component and add 

‣ Need partial derivatives in x and y (for 2D planning) 

‣ Best approach is to consider the gradient as an acceleration 

‣ Avoids sharp turns and provides smooth motion 

‣ Higher mass makes large objects turn more slowly 

‣ Easy to make frame-rate independent 

‣ High velocities can cause collisions 

‣ The field is a guide, rather than a true force
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COST AND VECTOR FIELDS

Cost field

Vector field
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FOLLOWING EXAMPLES

No momentum - choose to go to 
neighbor with lowest field 
strength

Momentum - but with linear 
obstacle field strength and moved 
goal
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DISCRETE APPROXIMATION

‣ Compute the field on a grid 

‣ Allows pre-computation of fields that do not change, such as fixed 
obstacles 

‣ Moving obstacles handled as before 

‣ Use discrete gradients 

‣ Look at neighboring cells 

‣ Go to neighboring cell with lowest field value 

‣ Advantages: Faster 

‣ Disadvantages: Space cost and approximate
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POTENTIAL FIELD PROBLEMS

‣ There are many parameters to tune 

‣ Strength of the field around each obstacle 

‣ Function for field strength around obstacle 

‣ Steepness of force toward the goal 

‣ Maximum velocity and mass 

‣ Goals conflict 

‣ High field strength avoids collisions but produces big forces and unnatural 
motion 

‣ Higher mass smoothes paths but increases likelihood of collisions 

‣ Local minima cause problems in general
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BLOOPERS

Field too weak Field too strong
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LOCAL MINIMA EXAMPLE
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THE LOCAL MINIMA PROBLEM

‣ Path planning can be viewed as optimization 

‣ Potential field planning is gradient descent optimization 

‣ Gradient descent can get stuck in local minima 

‣ How to work around local minima? 

‣ Determine if in a local minimum 

‣ Try another path
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OBSTACLE NAVIGATION DEMOS

‣ Potential fields in robotics: 

‣ https://www.youtube.com/watch?v=0frsJq36Wpw 

‣ Local minima example:  

‣ https://www.youtube.com/watch?v=62G78DeQzY8

https://www.youtube.com/watch?v=0frsJq36Wpw
https://www.youtube.com/watch?v=62G78DeQzY8
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WHAT ABOUT NAVIGATING IN 3D?

▸ Does A* work? 

▸ Sure! But we now need to navigate with volumes rather 
than meshes



CS354R

VOLUME NAVIGATION

▸ Nodes are now in volumes rather than along a surface 

▸ Called a voxel grid 

▸ Cells are evenly sized and spaced 

▸ Voxels are flagged as blocking or non-blocking based on 
the underlying geometry 

▸ Movements allowed to any of the non-blocking 
neighboring voxels
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ISSUES?

▸ Path complexity grows exponentially without careful voxel 
management 

▸ i.e. Path is in three dimensions but is fixed and relatively 
constrained 

▸ Voxel granularity tied to both accuracy of pathing and 
complexity of space and time 

▸ How can we fix this?
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OCTREES

▸ Spatial data structure for 
subdividing a space into 
evenly-sized cubes 

▸ Cubes can be subdivided 
independent of 
neighboring cubes 

▸ Increase subdivision for 
areas in need of finer 
granularity
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AUTONOMOUS NAVIGATION

▸ Technique to allow 6 DoF (degrees of freedom) without 
heavy penalty of space and time overhead 

▸ Use of raycasts or volumes to detect upcoming collisions 
with obstacles 

▸ Upon detecting an object:  

▸ Agent applies force to prevent a collision 

▸ Agent rotates relative to the object to continue on 
trajectory
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COMBINING TECHNIQUES

▸ Can combine autonomous navigation with previous “path-
finding” techniques 

▸ Useful in real-world applications like robotics 

▸ Care must be taken with multiple entities 

▸ No shared path or information between agents 

▸ Example: 

‣ https://www.youtube.com/watch?v=ka7Yb_XELAU

https://www.youtube.com/watch?v=ka7Yb_XELAU
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DESIGNING FOR SYSTEM LIMITATIONS
▸ Good design can aid in reducing computation 

▸ Tightly constrained levels are fun but less processing-
intensive in 6 DoF games

Descent (1995)
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PROJECTION-BASED NAVIGATION

▸ Combines a 2D navmesh with sensors 

▸ Agent projected onto the underlying navmesh to perform 
classic A* path-finding 

▸ Use of limited sensors along trajectory detect upcoming 
collisions and adjust position accordingly 

▸ Fewer sensors required as the navmesh is still doing most of the 
pathfinding work 

▸ Types of sensors can be adjusted based on expected agent 
behavior
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FURTHER READING

▸ <https://medium.com/ironequal/pathfinding-like-a-king-
part-1-3013ea2c099> 

▸ <https://medium.com/ironequal/pathfinding-like-a-king-
part-2-4b74588262af>

https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af

