
DYNAMIC PATH PLANNING

CS354R
DR SARAH ABRAHAM

CS354R

DYNAMIC PATH PLANNING
‣ When can the environment change after planning?

‣ The player does something

‣ Other agents get in the way

‣ Solution strategies are highly dependent on the nature of the
game

CS354R

DISCUSS

‣ How can we handle dynamic changes to the game
environment?

CS354R

AVOIDING PLAN CHANGES

‣ Partial planning: Only plan short segments of path

‣ Stop A* after a path of some length is found, even if the goal is not reached

‣ Use current best estimated path

‣ Extreme case: greedy search

‣ Common case: hierarchical planning, considering low level when needed

‣ A short path is less likely to change than a long path

‣ Optimality will be sacrificed

‣ More even frame times

‣ Other strategies:

‣ Wait for the blockage to pass

‣ Lock the path to other agents (implies priorities)

CS354R

RE-PLANNING

‣ If you discover the plan has gone wrong, create a new one

‣ New plan assumes the dynamic changes are permanent

‣ Used in conjunction with avoidance strategies

‣ Re-planning is expensive so avoid doing it

‣ Avoid generating a plan that will be re-done (partial
planning in conjunction with re-planning)

CS354R

REACTIVE PLANNING

‣ Reactive agent plans only its next step using immediately available information

‣ Potential field planning example:

‣ Set up a force field around obstacles (and other agents)

‣ Set up a gradient field toward the goal

‣ The agent follows the gradient downhill to the goal, while the force field
pushes it away from obstacles

‣ Can also model velocity and momentum (field applies a force)

‣ Potential field planning is reactive because the agent just looks at the local
gradient at any instant

‣ Has been used in real robots for navigating things like hallways

CS354R

POTENTIAL FIELD

‣ Red is start point, blue is
goal

‣ This used a quadratic field
strength around the
obstacles

‣ Note that the boundaries of
the world contribute to the
field

CS354R

CREATING THE FIELD

‣ The constant gradient (cost) can be a simple linear gradient
based on distance from the goal, dgoal: fgoal = k dgoal

‣ The obstacles contribute a field strength based on the distance
from their boundary, fi(di)

‣ Linear, quadratic, exponential, or something else

‣ Truncate so that field at some distance is zero

‣ Strength determines how likely the agent is to avoid it

‣ Add all the sub-fields together to get overall field

CS354R

FOLLOWING THE FIELD

‣ At each step, the agent needs to know which direction is “downhill”

‣ From the cost field, compute a vector field indicating direction of flow

‣ Compute the gradients of each component and add

‣ Need partial derivatives in x and y (for 2D planning)

‣ Best approach is to consider the gradient as an acceleration

‣ Avoids sharp turns and provides smooth motion

‣ Higher mass makes large objects turn more slowly

‣ Easy to make frame-rate independent

‣ High velocities can cause collisions

‣ The field is a guide, rather than a true force

CS354R

COST AND VECTOR FIELDS

Cost field

Vector field

CS354R

FOLLOWING EXAMPLES

No momentum - choose to go to
neighbor with lowest field
strength

Momentum - but with linear
obstacle field strength and moved
goal

CS354R

DISCRETE APPROXIMATION

‣ Compute the field on a grid

‣ Allows pre-computation of fields that do not change, such as fixed
obstacles

‣ Moving obstacles handled as before

‣ Use discrete gradients

‣ Look at neighboring cells

‣ Go to neighboring cell with lowest field value

‣ Advantages: Faster

‣ Disadvantages: Space cost and approximate

CS354R

POTENTIAL FIELD PROBLEMS

‣ There are many parameters to tune

‣ Strength of the field around each obstacle

‣ Function for field strength around obstacle

‣ Steepness of force toward the goal

‣ Maximum velocity and mass

‣ Goals conflict

‣ High field strength avoids collisions but produces big forces and unnatural
motion

‣ Higher mass smoothes paths but increases likelihood of collisions

‣ Local minima cause problems in general

CS354R

BLOOPERS

Field too weak Field too strong

CS354R

LOCAL MINIMA EXAMPLE

CS354R

THE LOCAL MINIMA PROBLEM

‣ Path planning can be viewed as optimization

‣ Potential field planning is gradient descent optimization

‣ Gradient descent can get stuck in local minima

‣ How to work around local minima?

‣ Determine if in a local minimum

‣ Try another path

CS354R

OBSTACLE NAVIGATION DEMOS

‣ Potential fields in robotics:

‣ https://www.youtube.com/watch?v=0frsJq36Wpw

‣ Local minima example:

‣ https://www.youtube.com/watch?v=62G78DeQzY8

https://www.youtube.com/watch?v=0frsJq36Wpw
https://www.youtube.com/watch?v=62G78DeQzY8

CS354R

WHAT ABOUT NAVIGATING IN 3D?

▸ Does A* work?

▸ Sure! But we now need to navigate with volumes rather
than meshes

CS354R

VOLUME NAVIGATION

▸ Nodes are now in volumes rather than along a surface

▸ Called a voxel grid

▸ Cells are evenly sized and spaced

▸ Voxels are flagged as blocking or non-blocking based on
the underlying geometry

▸ Movements allowed to any of the non-blocking
neighboring voxels

CS354R

ISSUES?

▸ Path complexity grows exponentially without careful voxel
management

▸ i.e. Path is in three dimensions but is fixed and relatively
constrained

▸ Voxel granularity tied to both accuracy of pathing and
complexity of space and time

▸ How can we fix this?

CS354R

OCTREES

▸ Spatial data structure for
subdividing a space into
evenly-sized cubes

▸ Cubes can be subdivided
independent of
neighboring cubes

▸ Increase subdivision for
areas in need of finer
granularity

CS354R

AUTONOMOUS NAVIGATION

▸ Technique to allow 6 DoF (degrees of freedom) without
heavy penalty of space and time overhead

▸ Use of raycasts or volumes to detect upcoming collisions
with obstacles

▸ Upon detecting an object:

▸ Agent applies force to prevent a collision

▸ Agent rotates relative to the object to continue on
trajectory

CS354R

COMBINING TECHNIQUES

▸ Can combine autonomous navigation with previous “path-
finding” techniques

▸ Useful in real-world applications like robotics

▸ Care must be taken with multiple entities

▸ No shared path or information between agents

▸ Example:

‣ https://www.youtube.com/watch?v=ka7Yb_XELAU

https://www.youtube.com/watch?v=ka7Yb_XELAU

CS354R

DESIGNING FOR SYSTEM LIMITATIONS
▸ Good design can aid in reducing computation

▸ Tightly constrained levels are fun but less processing-
intensive in 6 DoF games

Descent (1995)

CS354R

PROJECTION-BASED NAVIGATION

▸ Combines a 2D navmesh with sensors

▸ Agent projected onto the underlying navmesh to perform
classic A* path-finding

▸ Use of limited sensors along trajectory detect upcoming
collisions and adjust position accordingly

▸ Fewer sensors required as the navmesh is still doing most of the
pathfinding work

▸ Types of sensors can be adjusted based on expected agent
behavior

CS354R

FURTHER READING

▸ <https://medium.com/ironequal/pathfinding-like-a-king-
part-1-3013ea2c099>

▸ <https://medium.com/ironequal/pathfinding-like-a-king-
part-2-4b74588262af>

https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-1-3013ea2c099
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af
https://medium.com/ironequal/pathfinding-like-a-king-part-2-4b74588262af

