
PARTICLES AND FLOCKING
BEHAVIOR

CS354R

DR SARAH ABRAHAM

CS354R

PARTICLE EFFECTS

CS354R

PARTICLE EFFECTS IN ACTION

Created by Ashif Ali in Niagara (https://cghow.com/members/asif786ali/)

https://cghow.com/members/asif786ali/

CS354R

GENERAL PARTICLE SYSTEMS

▸ Objects are considered point masses with orientation

▸ Simple rules control how the particles move

▸ Particles can be controlled/rendered to simulate different things:

▸ Fireworks

▸ Waterfalls, spray, foam

▸ Explosions (smoke, flame, chunks of debris)

▸ Clouds

▸ Crowds, herds

▸ Widely used in movies as well as games

CS354R

PARTICLE SYSTEM STEP BY STEP

1. Inject new particles into the system and assign individual attributes

▸ There may be one or more sources

▸ Particles might be generated at random (clouds), in a constant stream
(waterfall), or via a script (fireworks)

2. Remove any particles that have exceeded their lifetime

▸ May have a fixed lifetime, or die on some condition

3. Move all the current particles according to their script

▸ Script typically involves neighboring particles and environment

4. Render all the current particles

▸ Many options for rendering (shaders, textures etc)

CS354R

EXAMPLE: ROCKET SMOKE TRAILS

▸ Particles are spawned at a constant rate

▸ They have zero initial velocity, or maybe a small velocity going away
from the rocket

▸ Rules:

▸ Particles can rise or fall (drift with the wind)

▸ Attach a density that grows quickly then falls over time

▸ Extinguish when density becomes small

▸ Render with billboard facing the viewer, scaled according to the
density of the puff

CS354R

SMOKE TRAILS

Extinguished

New

Time

CS354R

PARTICLE EMITTERS

▸ Provide sources for spawning particles

▸ Emitters can specify:

▸ Rate of particle emission

▸ Shape of particle emission

▸ Direction of particle emission

▸ Can also specify parameterization of individual particle
properties

CS354R

EXAMPLE: OBJECT FRACTURING

▸ System starts when the target is hit

▸ Target is broken into pieces and a particle is assigned to each piece

▸ Each particle gets an initial velocity away from the center of the
explosion

▸ Particle rules:

▸ Move ballistically unless there is a collision

▸ Computer rigid body rotation or generate random rotation

▸ Resolve collisions by reflecting the velocity about the contact normal

▸ Rendering draws the appropriate piece of target at the particle’s location

CS354R

OBJECT FRACTURING

Laurent Renaud (http://cgcookie.com/max/2009/08/18/creating-an-exploding-planet/)

http://cgcookie.com/max/2009/08/18/creating-an-exploding-planet/

CS354R

HOW TO FRACTURE?

▸ Voronoi commonly used

▸ Can be done in realtime or using pre-
processing

▸ Voronoi partitions created by seeding the
surface of a plane (or a 3D space) with
points

▸ Every point along the surface (or in the
3D space) associated with the closest
seeded point

▸ Voronoi useful in procedural techniques
more generally as well!

CS354R

VISUALIZING PARTICLES

▸ Particles can be visualized in a number of ways

▸ Billboarding (applying a texture to an individual particle)

▸ Point shaders (applying a shader to an individual
particle)

▸ Mesh shaders (applying a shader to a mesh based on
the particle positions)

▸ Post processing (applying a post processing effect in
screen space to represent particles)

CS354R

VISUALIZING PARTICLES

DC Assets (https://www.unrealengine.com/marketplace/en-US/product/scifi-particle-pack)

https://www.unrealengine.com/marketplace/en-US/product/scifi-particle-pack

CS354R

PARTICLES IN GAMES

▸ They’re everywhere!

▸ https://www.youtube.com/watch?v=6_NsaYtooQA

https://www.youtube.com/watch?v=6_NsaYtooQA

CS354R

PARTICLE MANAGEMENT

▸ Particle systems should include some sort of pool for
resource management

▸ Particle lifespans relatively short

▸ Particles should be reused as much as possible

▸ Good caching helps with particle system efficiency

▸ Particle systems well-suited to parallelization

▸ Can be implemented in conjunction with multi-threading/
multi-core/GPUs

CS354R

FLOCKING BEHAVIOR

‣ Particles can also model flocks, swarms, crowds etc

(https://portraitsofwildflowers.wordpress.com/2011/12/10/grackles-revisited/)

https://portraitsofwildflowers.wordpress.com/2011/12/10/grackles-revisited/

CS354R

FLOCKING MODELS (REYNOLDS ’87)

▸ Potential fields are most often used in avoiding collisions between the members of
a group

▸ Member pushes on its neighbors to keep from colliding

▸ Additional rules for groups can be defined (result is flocking, herding, schooling,
etc)

▸ Each rule contributes a desired direction, which are combined in some way to
come up with the acceleration

▸ The aim is to obtain emergent behavior:

▸ Define simple rules on individuals that interact to give interesting global
behavior

▸ e.g individual birds form a flock, but we never explicitly specify a leader, or
shape, or speed

CS354R

FLOCKING RULES ILLUSTRATED

Separation: fly away
away from neighbors
that are “too close”

Alignment: steer
toward average
velocity

Cohesion: steer
toward average
position

Avoidance: steer
away from
obstacles

CS354R

FLOCKING RULES EXPLANATION

▸ Separation: Try to avoid running into local flock-mates

▸ Works just like potential fields

▸ Normally, use a perception volume to limit visible flock-mates

▸ Alignment: Try to fly in same direction as local flock-mates

▸ Gets everyone flying in the same direction

▸ Cohesion: Try to move toward the average position of local flock-mates

▸ Spaces everyone out evenly, and keep boundary members toward the group

▸ Avoidance: Try to avoid obstacles

▸ Just like potential fields!

CS354R

BALANCING FLOCKING

▸ Consider commands as accelerations

▸ Give a weight to each desire

▸ e.g. high for avoidance, low for cohesion

▸ Option 1: Apply in order of highest weight, until a max
acceleration is reached

▸ Ensures that high priority things happen

▸ Option 2: Take weighted sum and truncate acceleration

▸ Makes sure some part of everything happens

CS354R

FLOCKING DEMO

▸ https://www.youtube.com/watch?v=rN8DzlgMt3M

Craig Reynolds (Boids ’87)

https://www.youtube.com/watch?v=rN8DzlgMt3M
https://www.youtube.com/watch?v=rN8DzlgMt3M

CS354R

FLOCKING EVALUATION

▸ Advantages:

▸ Complex behavior from simple rules

▸ Many types of behavior can be expressed with different rules
and parameters

▸ Disadvantages:

▸ Can be difficult to set parameters to achieve desired result

▸ All the problems of potential fields regarding strength of
forces

CS354R

BEYOND BOIDS

▸ Flocking behaviors vary based on the agents being simulated

▸ Adjusting the rules (or evaluation of rules) allows for greater
variety in simulation

Cyberpunk 2077

CS354R

ANOTHER EXAMPLE…

Mythic Ocean (https://www.youtube.com/watch?v=dHriVqfqDMI)

https://www.youtube.com/watch?v=dHriVqfqDMI

CS354R

MAKING IT FAST

▸ Comparing a large number of agents/particles gets
expensive

▸ How can we reduce the cost of these interactions?

CS354R

SPATIAL DATA STRUCTURES

▸ Data indexed by spatial location (e.g. location or
polygons)

▸ Multitude of uses in video games!

▸ Visibility - What can I see?

▸ Ray intersections - What did the player just shoot?

▸ Collision detection - Did the player just hit a wall?

▸ Proximity queries - Where is the nearest power-up?

CS354R

USING DECOMPOSITIONS

▸ Geometric queries are expensive

▸ Reduce the cost with fast, approximate queries that eliminate distant
(or hidden) objects

▸ Trees with a containment property allow us to do this

▸ The cell of a parent completely contains all the cells of its children

▸ If a query fails for the cell, we know it will fail for all its children

▸ If the query succeeds, we try for the children

▸ If we get to a leaf, we do the expensive query

CS354R

SPATIAL DECOMPOSITIONS

▸ Partition space into regions, or cells, of some type

▸ Octrees (Quadtrees): Axis aligned, regularly spaced planes
cut space into cubes (squares)

▸ Kd-trees: Axis aligned planes cut space into rectilinear
regions

▸ BSP trees: Arbitrarily aligned planes cut space into convex
regions

▸ BVHs: Geometry hierarchically arranged within the tree

CS354R

OCTREE

▸ Root node represents a cube containing entire world

▸ Each node has eight children nodes

▸ Quadtree is for 2D decompositions - root is square and four
children are sub-squares

▸ Objects assigned to nodes in one of two
common ways:

▸ All objects are in leaf nodes

▸ Each object is in the leaf that partially
contains it

CS354R

QUADTREE EXAMPLE CONSTRUCTION

CS354R

FRUSTUM CULLING WITH OCTREES

▸ Eliminate objects that do not intersect the view
frustum

▸ Have a test that succeeds if a cell may be visible

▸ Test corners of cell against each clip plane

▸ Starting with the root node cell, perform the test

▸ If it fails, nothing inside the cell is visible

▸ If it succeeds, something inside the cell
might be visible

▸ Recurse for each child of a visible cell

(Lighthouse3

CS354R

OTHER COMMON TESTS

▸ Interference Testing (which cells an object collides with)

▸ Ray Intersection Testing (which cells a ray intersects)

CS354R

OCTREE PROBLEMS

▸ Octrees become very
unbalanced if the objects
are far from a uniform
distribution

▸ Problem is the requirement
that cube always be
equally split amongst
children

A bad octree case

CS354R

SOLUTION: KD-TREE
1

2 3

4 5 6 7

8
9 10 11 12 13

1

3

4

5

6

7

8

9

10

11

12

132

CS354R

KD-TREE

▸ Properties

▸ Node represents a rectilinear region (faces are axis-aligned)

▸ Node associated with an axis-aligned plane that cuts its region into two

▸ Cut planes can be different in different sub-trees at the same level

▸ Applications

▸ Ideal when axis-aligned planes cut space into meaningful cells

▸ View frustum culling extends trivially to kd-tress

▸ Often used as data structures for other algorithms (e.g. visibility/rendering)

CS354R

BSP TREES
‣ Binary Space Partition trees

‣ Sequence of cuts that divide a region of space into two

‣ Cutting planes can be of any orientation

‣ Generalization of kd-trees (kd-tree is an axis-aligned BSP tree)

‣ Divides space into convex cells

‣ Industry standard for spatial subdivision in many game environments

‣ General enough to handle most common environments

‣ Easy enough to manage and understand

‣ Big performance gains

CS354R

BSP EXAMPLE

‣ Notes:

‣ Splitting planes end when they intersect their parent node’s planes

‣ Internal node labeled with planes, leaf nodes with regions

1

42

3 75

BA out8

D out

6

C out

1
2

3

4

5
6

78

outA

out

BC

D

CS354R

CHOOSING SPLITTING PLANES
▸ Goals:

▸ Trees with few cells

▸ Planes that are mostly opaque (best for visibility calculations)

▸ Objects not split across cells

▸ Some heuristics:

▸ Choose planes that are also polygon planes

▸ Choose large polygons first

▸ Choose planes that don’t split many polygons

▸ Choose planes that evenly divide the data

▸ User selects or otherwise guides the splitting process

▸ Random choice of splitting planes doesn’t do too badly!

CS354R

BSPS IN GAMES
▸ BSP trees can partition space as you would with an octree or kd-tree

▸ Leaf nodes are cells with lists of objects

▸ Cells typically correspond to “rooms” but don’t have to

▸ Fast visibility and ray-trace queries

▸ Polygons used in the partitioning are defined by the level designer

▸ A brush is a region of space that contributes planes to the BSP

▸ Artists lay out brushes, then populate them with objects

▸ Additional planes may be specified

▸ Sky planes for outdoor scenes to block off visibility

▸ Planes defined to block sight-lines, but not visible themselves

CS354R

BSP BRUSHES IN UNREAL

▸ Used for level block out

▸ CSGs (constructive solid geometries)
generated to form planes

▸ Stored and efficiently rendered using a BSP

CS354R

BOUNDING VOLUME HIERARCHIES

▸ BVHs have a bounding volume for each object

▸ Spheres, AABBs etc

▸ Parent bounds bound their children’s bounds

▸ Children bounds the same type as their parent’s

▸ Fixed or variable number of children per node

▸ No notion of cells

CS354R

BVH EXAMPLE

CS354R

FURTHER READING

▸ Flocks, Herds, and Schools: a Distributed Behavioral
Model (http://www.cs.toronto.edu/~dt/siggraph97-
course/cwr87/)

▸ Particle Systems (https://natureofcode.com/book/
chapter-4-particle-systems/)

http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/
http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/
http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/
https://natureofcode.com/book/chapter-4-particle-systems/
https://natureofcode.com/book/chapter-4-particle-systems/
https://natureofcode.com/book/chapter-4-particle-systems/

