
FAST SHADING
CS354R
DR SARAH ABRAHAM

CS354R

EXTREME LOD

‣ What can a mesh turn into at its most distant LOD?

CS354R

BILLBOARDS

‣ A billboard is extreme Level of Detail (LOD),
reducing all the geometry to one or more
textured polygons

‣ Also considered a form of image-based
rendering

‣ Questions in designing billboards:

‣ How are they generated?

‣ How are they oriented?

‣ Also called sprites, but a sprite normally
stays aligned parallel to the image plane

CS354R

HOW TO GENERATE BILLBOARDS?

‣ By hand – a skilled artist does the work

‣ Paints color and alpha

‣ May generate a sequence of textures for animating

‣ Automatically:

‣ Render a complex model and capture the image

‣ Alpha detected by looking for background pixels in the
image

‣ Blend out alpha at the boundary for good anti-aliasing

CS354R

HOW TO CONFIGURE BILLBOARDS?

‣ The billboard polygons can be laid out in different ways

‣ Single rectangle

‣ Two rectangles at right angles

‣ Several rectangles about a common axis

‣ Several rectangles stacked

‣ Issues are:

‣ What sorts of billboards are good for what sorts of objects?

‣ How is the billboard oriented with respect to the viewer?

CS354R

SINGLE POLYGON BILLBOARDS

‣ The billboard consists of a single textured polygon

‣ It must be pointed at the viewer, or it would disappear
when viewed from the side

‣ Point Sprites:

‣ Billboard rotated about a central point that faces the
camera

‣ Axis Billboards:

‣ Billboard aligned along an axis (arbitrary or axis-aligned)

CS354R

ALIGNING A BILLBOARD

‣ Billboard has a known forward vector F that points out
from the face

‣ Billboard has an “up” or axis vector A

‣ Camera has a view direction V

‣ How can we realign F to face V?

CS354R

ALIGNMENT ABOUT AXIS

‣ A is billboard axis, V is viewer direction.
From current forward F move to
desired forward D

‣ Calculate D

‣ Compute angle γ between F and D

‣ Significant shortcut if A is the z axis,
and F points along the x axis

()AVAD ××=

!
!
"

#
$
$
%

& •
= −

DF
DF1cosγ

!!
"

#
$$
%

&
= −

x

y

V
V1tanγ

CS354R

MULTI-POLYGON BILLBOARDS

‣ Use two polygons at right angles:

‣ No alignment with viewer

‣ What is this good for?

‣ Use more polygons for better appearance

‣ Rendering options: Blended or just depth buffered

CS354R

VIEW DEPENDENT BILLBOARDS

‣ What if the object is not rotationally symmetric?

‣ Appearance should change from different viewing angles

‣ This can be done with billboards:

‣ Compute multiple textures corresponding to different views

‣ Keep polygon fixed but vary texture according to viewer direction

‣ Interpolate with texture blending between the two nearest views

‣ Use 3D textures and hardware texture filtering to achieve good results

‣ Polygons are typically fixed, restricting the viewing angles

‣ Use more polygons that each have a set of views associated with it

CS354R

VIEW DEPENDENT BILLBOARDS

(Nvidia)

CS354R

IMPOSTOR EXAMPLE

‣ Another methods uses slices from the original volume and
blends them

CS354R

BILLBOARDING IN ACTION

‣ Fire in…pretty much any game

‣ Tomb Raider <https://youtu.be/U-Lx9IuwwXc?t=218>

‣ You can probably also catch some of the billboarding used
for low-res LODs if you pay attention to objects in the
distance

‣ But particle effects are very frequently billboarded even
at high resolutions

https://youtu.be/U-Lx9IuwwXc?t=218

CS354R

ADDITIONAL OPTIMIZATIONS

‣ How do we optimize geometry in scenes besides using
LODs?

CS354R

REDUCING GEOMETRY

‣ Assume we are living in a polygon mesh world

‣ Several strategies exist, with varying degrees of difficulty,
reductions in complexity, and quality trade-offs:

‣ Reduce the amount of data sent per triangle, but keep the
number of triangles the same

‣ Reduce the number of triangles by ignoring things that
you know the viewer can’t see – visibility culling

‣ Reduce the number of triangles in view by reducing the
quality (maybe) of the models – level of detail (LOD)

CS354R

COMPRESSING MESHES

‣ Base case: Three vertices per triangle with full vertex data (color,
texture, normal etc)

‣ Much of this data is redundant:

‣ Triangles share vertices

‣ Vertices share colors and normals

‣ Vertex data may be highly correlated

‣ Compression strategies seek to avoid sending redundant data

‣ Impacts memory bandwidth, but not too much else

‣ A concern for transmitting models over a network

CS354R

COMPRESSION OVERVIEW

‣ Use triangle strips to avoid sending vertex data more than once

‣ Use vertex arrays

‣ Tell the API what vertices will be used

‣ Specify triangles by indexing into the array

‣ Reduces cost per vertex

‣ Allows hardware to cache vertices

‣ Non-shared attributes, such as normal vectors, limit the effectiveness
of some of these techniques

‣ These techniques are required in OpenGL ES but good practice even
when not space/operation restricted

CS354R

NOTE ON HARDWARE: GPU DIRECT MEMORY ACCESS

▸ DMA (Direct Memory Access) allows for asynchronous
memory access independent of the CPU

▸ Useful for large data transfers and during I/O

▸ GPUs have high latency

▸ Modern tasks (e.g. big data, AI, etc) require massive data
sets resulting in I/O bottleneck

▸ Use of GPU-specific DMA allows for faster access across bus
or over a network

CS354R

NVIDIA GPUDIRECT STORAGE

▸ Allows for direct access by GPU

▸ Avoids overhead of bounce buffer (typically required to
process I/O from host to subsystem)

CS354R

PIPELINE EFFICIENCY
‣ The rendering pipeline is (as the name suggests) a

pipeline

‣ Slowest pipeline operation determines throughput
(frame rate)

‣ For graphics, that could be memory bandwidth,
transformations, clipping, rasterization, lighting, buffer
fill etc

‣ Profiling tools can tell you which part of the pipeline is
slow

CS354R

RASTER PIPELINE

CS354R

FORWARD SHADING

▸ Forward shading assumes shaders process everything in a serial
fashion:

▸ Process all scene vertices

▸ Create necessary primitives

▸ Rasterize primitives to screen based on depth

▸ Color pixels based on fragment color

▸ Performance issues with increased lighting complexity

▸ Objects processed wether or not they’re visible to the viewer

CS354R

DEFERRED SHADING PIPELINE

▸ Defers expensive light calculations till scene complexity is
reduced

▸ Scene geometry treated as textures within the fragment
shader

▸ Only need to consider scene in per-pixel way

▸ Can better manage light complexity

▸ Can be combined with forward rendering and post-
processing techniques

CS354R

DEFERRED SHADING PASSES

▸ Rasterization broken into two passes:

▸ Geometry pass

▸ Lighting pass

▸ Geometry pass stores geometric information into G-buffer

▸ Lighting pass uses data in G-buffer to reconstruct scene
but calculates lights per-pixel

CS354R

CREATING THE G-BUFFER

▸ Contains textures that hold world-space data needed for
final lighting pass

▸ Depth buffer has already determined what information is
needed per pixel and culled all data that’s not relevant

▸ Flexible texture precision allows for compact storage of
the data

CS354R

G-BUFFER DATA EXAMPLE

CS354R

RUNNING A LIGHTING PASS

▸ Lighting applied to G-buffer content rather than the scene

▸ One lighting operation per pixel

▸ Optimizations using light volumes

▸ Allows for fast light attenuation

CS354R

MODERN TECHNIQUES IN UNREAL

▸ Nanite handles culling and LODs on the GPU using compute
shaders

▸ Lumen handles global illumination in a raster-driven way

▸ Multiple distance fields and a hierarchical Z-buffer

▸ MegaLights allows for extreme number of dynamic and and
shadowed area lights

▸ Uses importance sampling for shadows and volumetric fog

▸ Replaces BRDF and light evaluation in deferred shading

CS354R

DEMOS

▸ Nanite and Lumen Demo:

▸ https://www.youtube.com/watch?v=qC5KtatMcUw

▸ MegaLights Demo:

▸ https://www.youtube.com/watch?v=hzcsKvrF-Ho

https://www.youtube.com/watch?v=qC5KtatMcUw
https://www.youtube.com/watch?v=hzcsKvrF-Ho

CS354R

BILLBOARDING HOW-TOS

‣ NeHe Productions <http://nehe.gamedev.net/article/
billboarding_how_to/18011/>

‣ Lighthouse 3D <http://www.lighthouse3d.com/opengl/
billboarding/>

‣ NVidia GPUDirect Storage <https://developer.nvidia.com/
blog/gpudirect-storage/>

http://nehe.gamedev.net/article/billboarding_how_to/18011/
http://nehe.gamedev.net/article/billboarding_how_to/18011/
http://nehe.gamedev.net/article/billboarding_how_to/18011/
http://www.lighthouse3d.com/opengl/billboarding/
http://www.lighthouse3d.com/opengl/billboarding/
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/

