
SPATIAL PARTITIONING
CS354R
DR SARAH ABRAHAM

CS354R

SPATIAL DATA STRUCTURES

‣ Data indexed by spatial location (e.g. location or
polygons)

‣ Multitude of uses in video games

‣ Visibility - What can I see?

‣ Ray intersections - What did the player just shoot?

‣ Collision detection - Did the player just hit a wall?

‣ Proximity queries - Where is the nearest power-up?

CS354R

USING DECOMPOSITIONS

‣ Geometric queries are expensive

‣ Reduce the cost with fast, approximate queries that eliminate distant
(or hidden) objects

‣ Trees with a containment property allow us to do this

‣ The cell of a parent completely contains all the cells of its children

‣ If a query fails for the cell, we know it will fail for all its children

‣ If the query succeeds, we try for the children

‣ If we get to a leaf, we do the expensive query

CS354R

SPATIAL DECOMPOSITIONS

‣ Partition space into regions, or cells, of some type

‣ Octrees (Quadtrees): Axis aligned, regularly spaced planes
cut space into cubes (squares)

‣ Kd-trees: Axis aligned planes cut space into rectilinear
regions

‣ BSP trees: Arbitrarily aligned planes cut space into convex
regions

‣ BVHs: Geometry hierarchically arranged within the tree

CS354R

OCTREE

‣ Root node represents a cube containing entire world

‣ Each node has eight children nodes

‣ Quadtree is for 2D decompositions - root is square and four
children are sub-squares

‣ Objects assigned to nodes in one of two
common ways:

‣ All objects are in leaf nodes

‣ Each object is in the leaf that partially
contains it

CS354R

OCTREE NODE DATA STRUCTURE

‣ What needs to be stored in a node?

‣ Children pointers (at most eight)

‣ Parent pointer

‣ Extents of cube (inferable from tree structure, but easier to store)

‣ Data associated with the contents of the cube

‣ Contents might be whole objects or individual polygons, or
even something else

‣ Neighbors are useful in some algorithms (but not all)

CS354R

QUADTREE EXAMPLE CONSTRUCTION

CS354R

OBJECTS IN MULTIPLE CELLS

‣ Assume an object intersects more than one cell

‣ Typically store pointers to it in all the cells it intersects

‣ Why can’t we store it in just one cell?

‣ Object might be considered twice for some tests

‣ Solution 1: Flag an object when it has been tested and
not consider it again until the next round of testing

‣ Solution 2: Tag it with the frame number it was last tested

CS354R

FRUSTUM CULLING WITH OCTREES

‣ Eliminate objects that do not intersect the view
frustum

‣ Have a test that succeeds if a cell may be visible

‣ Test corners of cell against each clip plane

‣ Starting with the root node cell, perform the test

‣ If it fails, nothing inside the cell is visible

‣ If it succeeds, something inside the cell
might be visible

‣ Recurse for each child of a visible cell

(Lighthouse3

CS354R

OTHER COMMON TESTS

‣ Interference Testing (which cells an object collides with)

‣ Ray Intersection Testing (which cells a ray intersects)

CS354R

OCTREE PROBLEMS

‣ Octrees become very
unbalanced if the objects
are far from a uniform
distribution

‣ Problem is the requirement
that cube always be
equally split amongst
children

A bad octree case

CS354R

KD-TREES

‣ A kd-tree has following properties:

‣ Each node represents a rectilinear region (faces aligned with axes)

‣ Each node is associated with an axis-aligned plane that cuts its region
into two

‣ Each node has a child for each sub-region

‣ The directions of the cutting planes alternate with depth

‣ Kd-trees generalize octrees by allowing splitting planes at variable
positions

‣ Note that cut planes in different sub-trees at the same level need not
be the same

CS354R

KD-TREE EXAMPLE
1

2 3

4 5 6 7

8
9 10 11 12 13

1

3

4

5

6

7

8

9

10

11

12

132

CS354R

KD-TREE NODE DATA STRUCTURE

‣ What needs to be stored in a node?

‣ Children pointers (always two)

‣ Parent pointer - useful for moving about the tree

‣ Extents of cell - xmax, xmin, ymax, ymin, zmax, zmin

‣ List of pointers to the contents of the cell

‣ Neighbors are complicated in kd-trees, so typically not
stored

CS354R

KD-TREE - BUILD

CS354R

KD-TREE

RL

CS354R

KD-TREE

RL

RRRL

CS354R

KD-TREE

RL

RR

RRL RRR

RL

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

LLL LLR

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

LLL LLR

LLLL LLLR

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

LLL

LLR LRL LRR

LLLL LLLR

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

LLL LLR

LRL

LRR

LRLL LRLRLLLL LLLR

CS354R

KD-TREE

RL

RR

RRL RRR

RLLL LR

LLL LLR

LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

CS354R

CHOOSING A SPLIT PLANE

‣ Goals in selecting a splitting plane for each cell:

‣ Minimize the number of objects cut by the plane

‣ Balance the tree: Use the plane that equally divides the
objects into two sets (the median cut plane)

‣ Generally NP-complete, so we approximate

‣ Axis-Aligned Bounding Boxes (AABBs)

‣ Suface Area Heuristic

CS354R

COMMON APPROXIMATIONS

‣ Axis-Aligned Bounding Boxes
(AABBs)

‣ Simplify objects to “fat points”

‣ Reduces candidate split
planes

‣ Surface Area Heuristic (SAH)

‣ Greedy strategy to estimate
traversal cost

CS354R

KD-TREE APPLICATIONS

‣ Kd-trees work well when axis aligned planes cut things
into meaningful cells

‣ View frustum culling extends trivially to kd-trees

‣ Kd-trees are frequently used as data structures for other
algorithms – particularly in visibility

CS354R

BSP TREES
‣ Binary Space Partition trees

‣ Sequence of cuts that divide a region of space into two

‣ Cutting planes can be of any orientation

‣ Generalization of kd-trees (kd-tree is an axis-aligned BSP tree)

‣ Divides space into convex cells

‣ Industry standard for spatial subdivision in many game environments

‣ General enough to handle most common environments

‣ Easy enough to manage and understand

‣ Big performance gains

CS354R

BSP EXAMPLE

‣ Notes:

‣ Splitting planes end when they intersect their parent node’s planes

‣ Internal node labeled with planes, leaf nodes with regions

1

42

3 75

BA out8

D out

6

C out

1
2

3

4

5
6

78

outA

out

BC

D

CS354R

BSP TREE NODE DATA STRUCTURE
‣ What needs to be stored in a node?

‣ Children pointers (always two)

‣ Parent pointer

‣ If a leaf node: Extents of cell

‣ If an internal node: The split plane

‣ List of pointers to the contents of the cell

‣ Neighbors are useful in many algorithms

‣ Store neighbors at leaf nodes

‣ Cells can have many neighboring cells

‣ Portals are also useful (holes that see into neighbors)

CS354R

CHOOSING SPLITTING PLANES
‣ Goals:

‣ Trees with few cells

‣ Planes that are mostly opaque (best for visibility calculations)

‣ Objects not split across cells

‣ Some heuristics:

‣ Choose planes that are also polygon planes

‣ Choose large polygons first

‣ Choose planes that don’t split many polygons

‣ Choose planes that evenly divide the data

‣ User selects or otherwise guides the splitting process

‣ Random choice of splitting planes doesn’t do too badly

CS354R

DRAWING ORDER FROM BSP TREES

‣ BSP trees can order polygons from back to front, or visa-versa

‣ Descend tree with viewpoint

‣ Things on the same side of a splitting plane as the viewpoint are always in front of
things on the far side

‣ Can draw from back to front

‣ Removes need for z-buffer (but few people care any more)

‣ Gives the correct order for rendering transparent objects with a z-buffer, and by
far the best way to do it

‣ Can draw front to back

‣ Use info from front polygons to avoid drawing back ones

‣ Useful in software renderers

CS354R

BSPS IN GAMES

‣ BSP trees can partition space as you would with an octree or kd-tree

‣ Leaf nodes are cells with lists of objects

‣ Cells typically correspond to “rooms” but don’t have to

‣ Fast visibility and ray-trace queries

‣ Polygons used in the partitioning are defined by the level designer

‣ A brush is a region of space that contributes planes to the BSP

‣ Artists lay out brushes, then populate them with objects

‣ Additional planes may be specified

‣ Sky planes for outdoor scenes to block off visibility

‣ Planes defined to block sight-lines, but not visible themselves

CS354R

BSP BRUSHES IN UE4

CS354R

BOUNDING VOLUME HIERARCHIES

‣ BVHs have a bounding volume for each object

‣ Spheres, AABBs etc

‣ Parent bounds bound their children’s bounds

‣ Children bounds the same type as their parent’s

‣ Fixed or variable number of children per node

‣ No notion of cells

CS354R

BVH EXAMPLE

CS354R

BVH OPERATIONS

‣ Some of the operations work with BVHs

‣ Frustum culling

‣ Collision detection

‣ BVHs are good for moving objects

‣ Updating the tree is easier than for other methods

‣ Incremental construction to avoid complete rebuilds

‣ BVHs lack some convenient properties

‣ Not all space is filled so algorithms that “walk” through cells won’t
work

