
COMPONENT-BASED
SOFTWARE DESIGN

CS354R
DR SARAH ABRAHAM

CS354R

GAME ENGINE ARCHITECTURE

‣ Good practices lay a good foundation

CS354R

INHERITANCE-BASED ARCHITECTURE

‣ Deadly diamond

‣ Hard to maintain

‣ Messy structure

‣ Potential memory penalties

GameObject

MovableObject

DrawableObject

CollisionObject

AnimatedObject

PhysicalObject

CS354R

PROBLEM

‣ Entities inherently occupy multiple domains

‣ Domains should remain as isolated as possible

CS354R

COMPONENT-BASED ARCHITECTURE

‣ Break domains into component classes

‣ Entity acts as a container of components

CS354R

POTENTIAL DOMAINS

‣ Domains can be a single component or broken into multiple components:

‣ Input

‣ Graphics (Rendering + Animations)

‣ Physics (Collision + Forces)

‣ Sound

‣ GUI

‣ AI (Sensing + Thinking + Acting)

‣ Game Logic

CS354R

ABSTRACT BASE CLASSES

‣ Components as abstract base classes implemented via
interfaces

‣ System knows when/where to call methods

‣ User implements specific functionality needed by parent
object

‣ C++ implements abstract classes using a pure virtual function

CS354R

COMPONENTS IN UNREAL

Static mesh component

Point light component

CS354R

UACTORCOMPONENTS

‣ Only way to render meshes, implement collision, play audio, etc

‣ Scene components have location but no geometric
representation

‣ Primitive components have location and geometric
representation

‣ To interact with larger systems (e.g. rendering, physics, etc),
components must be given state for that system

‣ Provides component with properties system requires

‣ Allows for more efficient updating when state is “dirty”

CS354R

COMPONENT PROPERTIES

‣ Character Movement Component
controls all movement associated
with Character objects

‣ Walking, Jumping/Falling,
Swimming, Flying etc

‣ Physics calculations and
networking replication handled
within the Character Movement
Component

CS354R

CONNECTING VIA BLUEPRINT

Directly access the component

Access component through parent

CS354R

COMPONENTS IN UNITY

Transform component

Camera component

Main Camera Game Object associated with each scene

CS354R

GAMEOBJECTS WITHOUT INHERITANCE

‣ No need for GameObject inheritance

‣ Instantiate GameObjects based on selected components:

GameObject * createPlayer1() { return new GameObject(new
Player1InputComponent(), new Player1PhysicsComponent(),
new Player1GraphicsComponent()); }

CS354R

PURE COMPONENT-BASED DESIGN

‣ If we take this model of container classes with components
to its extreme, we get Entity-Component-Systems

CS354R

ENTITY COMPONENT SYSTEM

‣ A specific form of
component-based
architecture

‣ Entity is an id

‣ Entity data stored as
components

‣ Systems modify
related components

(http://www.alecmce.com/)

How do these systems communicate?
(e.g. how can an entity update its sprite
during a collision?)

http://www.alecmce.com/

CS354R

COMPONENT COMMUNICATION
‣ Direct Reference

‣ Components have references to relevant components

‣ Example:

‣ GraphicsComponent contains a reference to PhysicsComponent

‣ Updates sprite upon collision

‣ Message Passing

‣ Component sends message to container class

‣ Container class broadcasts message to its components

‣ Same idea as event-driven programming

CS354R

IMPLEMENTING ECS

‣ Components grouped by an ID form a “game object”

‣ Need fast component lookup by ID

‣ Factory classes create components for each game object type

‣ Alternatively, “data-driven” model can read in a file defining object
types

‣ Inter-object communication requires sending a message to an “object”
to get required response

‣ Know a priori which component gets a given message

‣ Multicast to all of the components of an object

CS354R

RESTRUCTURING THE ENGINE LOOP

‣ GameObjects contained in vector at game manager level

‣ GameObject components stored in vector within
component managers:

class PhysicsManager : public Manager {

 std::vector<PhysicsComponent>;

}

class Engine {

 std::vector<GameObject>;

 void update();

}

CS354R

STORING DATA

‣ Game Objects are a unique id:

‣ Components contain relevant data:

struct GameObject {

 unsigned int id;

};

struct PhysicsComponent {

 vector3 position;

 quaterion orientation;

 vector3 velocity;

};

CS354R

UPDATING THE SYSTEM

‣ System accesses entities with relevant components during
update loop

class PhysicsSystem : public System {

std::vector<GameObject> entities;

void update() {

for (entity in entities) {

physics = getPhysicsComponent(entity);

physics.position += physics.velocity;

}

...

Systems add and remove entities as their components change

CS354R

CREATION AND DESTRUCTION

‣ What do we need to consider when creating or destroying
objects in an entity-component system?

CS354R

MANAGING MEMORY

‣ Essential for entity-component systems

‣ Smart layout of data will avoid cache misses

‣ Cache hits lead to massive performance gains

‣ Arrays are flat with fast access

‣ Vectors allow for flexibility in array size

CS354R

ECS PROS

‣ Can be more memory-efficient

‣ Only store properties in use, no unused data members in objects

‣ Easier to construct in a data-driven way

‣ Define new attributes with scripts, less recoding of class
definitions

‣ Can be more cache-friendly

‣ Data tables loaded into contiguous locations in cache

‣ Struct of arrays (rather than array of structs) principle

CS354R

ECS CONS

▸ Hard to enforce relationships among properties

▸ Harder to implement large-scale behaviors if they’re
composed of scattered pieces of fine-grained behavior

▸ Harder to debug

▸ Can’t just put a game object into a debugger watch window
and see what happens to it

CS354R

HYBRID SOLUTIONS POSSIBLE

‣ Hierarchies are messy, but component-based systems might be
over-engineering

‣ Always design for the problem

‣ Usual software principles:

‣ Take time to plan before writing code

‣ If a system is difficult to conceptualize, the current approach
might be wrong

‣ Leave time to rework existing code

CS354R

LAST THOUGHTS ON DATA STRUCTURES

‣ There is no one correct solution

‣ Individual preference is a good place to start…

‣ But be flexible and adapt to the problem

‣ Don’t over-engineer or prematurely optimize…

‣ But keep data storage and caching in mind

‣ Try different approaches

‣ Take multiple passes to refactor

CS354R

ASSIGNMENT 0

▸ Assignment 0 is out!

▸ Godot 4.3 currently being installed on lab machines

▸ Use your own machine for development until Godot has been
updated

▸ This is meant to be a fun, open-ended assignment, but you will be
graded on elegance of solution, so please take some time to consider:

1. Readability of code

2. Good use and organization of game assets

3. Scalability and efficiency of implementation

CS354R

REFERENCES

‣ Scott Bilas. A Data-Driven Game Object System<http://
scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf>

‣ Bob Nystrom. Game Programming Patterns <http://
gameprogrammingpatterns.com/component.html>

‣ Randy Gaul. Component Based Engine Design <http://
www.randygaul.net/2013/05/20/component-based-engine-
design/>

‣ Nomad Game Engine <https://medium.com/@savas/nomad-
game-engine-part-2-ecs-9132829188e5>

http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf
http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf
http://gameprogrammingpatterns.com/component.html
http://gameprogrammingpatterns.com/component.html
http://gameprogrammingpatterns.com/component.html
http://www.randygaul.net/2013/05/20/component-based-engine-design/
http://www.randygaul.net/2013/05/20/component-based-engine-design/
http://www.randygaul.net/2013/05/20/component-based-engine-design/
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5

