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GAME ENGINE ARCHITECTURE

‣  Good practices lay a good foundation
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INHERITANCE-BASED ARCHITECTURE

‣  Deadly diamond 

‣  Hard to maintain 

‣  Messy structure 

‣  Potential memory penalties

GameObject

MovableObject

DrawableObject

CollisionObject

AnimatedObject

PhysicalObject
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PROBLEM

‣  Entities inherently occupy multiple domains 

‣  Domains should remain as isolated as possible



CS354R

COMPONENT-BASED ARCHITECTURE

‣  Break domains into component classes 

‣  Entity acts as a container of components
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POTENTIAL DOMAINS

‣  Domains can be a single component or broken into multiple components: 

‣ Input 

‣ Graphics (Rendering + Animations) 

‣ Physics (Collision + Forces) 

‣ Sound 

‣ GUI 

‣ AI (Sensing + Thinking + Acting) 

‣ Game Logic
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ABSTRACT BASE CLASSES

‣ Components as abstract base classes implemented via 
interfaces 

‣ System knows when/where to call methods 

‣ User implements specific functionality needed by parent 
object 

‣ C++ implements abstract classes using a pure virtual function
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COMPONENTS IN UNREAL

Static mesh component

Point light component
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UACTORCOMPONENTS

‣ Only way to render meshes, implement collision, play audio, etc 

‣ Scene components have location but no geometric 
representation 

‣ Primitive components have location and geometric 
representation 

‣ To interact with larger systems (e.g. rendering, physics, etc), 
components must be given state for that system 

‣ Provides component with properties system requires 

‣ Allows for more efficient updating when state is “dirty” 
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COMPONENT PROPERTIES

‣ Character Movement Component 
controls all movement associated 
with Character objects 

‣ Walking, Jumping/Falling, 
Swimming, Flying etc 

‣ Physics calculations and 
networking replication handled 
within the Character Movement 
Component
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CONNECTING VIA BLUEPRINT

Directly access the component

Access component through parent
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COMPONENTS IN UNITY

Transform component

Camera component

Main Camera Game Object associated with each scene
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GAMEOBJECTS WITHOUT INHERITANCE

‣  No need for GameObject inheritance 

‣  Instantiate GameObjects based on selected components:

GameObject * createPlayer1() {  return new GameObject(new 
Player1InputComponent(),  new Player1PhysicsComponent(), 
new Player1GraphicsComponent()); }
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PURE COMPONENT-BASED DESIGN

‣ If we take this model of container classes with components 
to its extreme, we get Entity-Component-Systems
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ENTITY COMPONENT SYSTEM

‣  A specific form of 
component-based 
architecture 

‣ Entity is an id 

‣ Entity data stored as 
components 

‣ Systems modify 
related components

(http://www.alecmce.com/)

How do these systems communicate? 
(e.g. how can an entity update its sprite 
during a collision?)

http://www.alecmce.com/


CS354R

COMPONENT COMMUNICATION
‣  Direct Reference 

‣ Components have references to relevant components 

‣ Example:  

‣ GraphicsComponent contains a reference to PhysicsComponent 

‣ Updates sprite upon collision 

‣  Message Passing 

‣ Component sends message to container class 

‣ Container class broadcasts message to its components 

‣ Same idea as event-driven programming
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IMPLEMENTING ECS

‣ Components grouped by an ID form a “game object” 

‣ Need fast component lookup by ID 

‣ Factory classes create components for each game object type 

‣ Alternatively, “data-driven” model can read in a file defining object 
types 

‣ Inter-object communication requires sending a message to an “object” 
to get required response 

‣ Know a priori which component gets a given message 

‣ Multicast to all of the components of an object
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RESTRUCTURING THE ENGINE LOOP

‣  GameObjects contained in vector at game manager level 

‣  GameObject components stored in vector within 
component  managers:

class PhysicsManager : public Manager { 

 std::vector<PhysicsComponent>; 

}

class Engine { 

 std::vector<GameObject>; 

 void update(); 

}
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STORING DATA

‣ Game Objects are a unique id: 

‣ Components contain relevant data:

struct GameObject { 

 unsigned int id; 

};

struct PhysicsComponent { 

 vector3 position; 

   quaterion orientation; 

   vector3 velocity; 

};



CS354R

UPDATING THE SYSTEM

‣ System accesses entities with relevant components during 
update loop

class PhysicsSystem : public System { 

std::vector<GameObject> entities; 

void update() { 

for (entity in entities) { 

physics = getPhysicsComponent(entity); 

physics.position += physics.velocity; 

} 

...

Systems add and remove entities as their components change
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CREATION AND DESTRUCTION

‣ What do we need to consider when creating or destroying 
objects in an entity-component system?
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MANAGING MEMORY

‣ Essential for entity-component systems 

‣ Smart layout of data will avoid cache misses 

‣ Cache hits lead to massive performance gains 

‣ Arrays are flat with fast access 

‣ Vectors allow for flexibility in array size
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ECS PROS

‣ Can be more memory-efficient 

‣ Only store properties in use, no unused data members in objects 

‣ Easier to construct in a data-driven way 

‣ Define new attributes with scripts, less recoding of class 
definitions 

‣ Can be more cache-friendly 

‣ Data tables loaded into contiguous locations in cache 

‣ Struct of arrays (rather than array of structs) principle
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ECS CONS

▸ Hard to enforce relationships among properties  

▸ Harder to implement large-scale behaviors if they’re 
composed of scattered pieces of fine-grained behavior  

▸ Harder to debug 

▸ Can’t just put a game object into a debugger watch window 
and see what happens to it
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HYBRID SOLUTIONS POSSIBLE

‣  Hierarchies are messy, but component-based systems might be 
over-engineering 

‣  Always design for the problem 

‣  Usual software principles: 

‣ Take time to plan before writing code 

‣ If a system is difficult to conceptualize, the current approach 
might be wrong 

‣ Leave time to rework existing code
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LAST THOUGHTS ON DATA STRUCTURES

‣  There is no one correct solution 

‣  Individual preference is a good place to start… 

‣  But be flexible and adapt to the problem 

‣  Don’t over-engineer or prematurely optimize… 

‣  But keep data storage and caching in mind 

‣  Try different approaches 

‣  Take multiple passes to refactor
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ASSIGNMENT 0

▸ Assignment 0 is out! 

▸ Godot 4.3 currently being installed on lab machines 

▸ Use your own machine for development until Godot has been 
updated 

▸ This is meant to be a fun, open-ended assignment, but you will be 
graded on elegance of solution, so please take some time to consider:  

1. Readability of code 

2. Good use and organization of game assets 

3. Scalability and efficiency of implementation
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