CS354R
DR SARAH ABRAHAM

COMPONENT-BASED
SOFTWARE DESIGN

CS354R

GAME ENGINE ARCHITECTURE

> Good practices lay a good foundation

CS354R

INHERITANCE-BASED ARCHITECTURE

> Deadly diamond GameObject

> Hard to maintain MovableObject
> Messy structure DrawableObject
* Potential memory penalties CoIIisionTObject

AnimatedObject
A

PhysicalObject

CS354R

PROBLEM

>

Entities inherently occupy multiple domains

>

Domains should remain as isolated as possible

CS354R

COMPONENT-BASED ARCHITECTURE

>

>

Break domains into component classes

Entity acts as a container of components

GameObject

position: Vec3i
velocity:Vec 3f

update()
¢

GraphicsComponent

Physics Component

InputComponent

CS354R

POTENTIAL DOMAINS

> Domains can be a single component or broken into multiple components:
" Input
> Graphics (Rendering + Animations)
> Physics (Collision + Forces)
> Sound
~ GUI
> Al (Sensing + Thinking + Acting)

> Game Logic

CS354R

ABSTRACT BASE CLASSES

* Components as abstract base classes implemented via
interfaces

> System knows when/where to call methods

> User implements specific functionality needed by parent
object

* C++ implements abstract classes using a pure virtual function

PlayerlInputComponent

InputComponent Ei

Player2InputComponent

CS354R

COMPONENTS IN UNREAL

AU Blueprints_Overview M EP Severa| Components

File Edit View Debug Window Help

5. Components 3 , R
Q < ' /@ ’lé a QW 1‘ > B BP_SeveralComponents

+7 _awomp,. Nt

4@ Spritel
§y StaticMesh1 ° m O

® PointLightl

pile Save FindinCB Search = Class Settings [MCIREeeianlied Simulation. Play Debug Filter

== Viewport f Construction Script m= Event Graph

M My Blueprint

A+ Add New = o-
4Graphs -+
== EventGraph
4Functions
* ConstructionScript
Macros
4Variables
4 Components
PointLight1
StaticMesh1
Spritel

Event Dispatchers

CS354R

UACTORCOMPONENTS

> Only way to render meshes, implement collision, play audio, etc

> Scene components have location but no geometric
representation

" Primitive components have location and geometric
representation

> To interact with larger systems (e.g. rendering, physics, etc),
components must be given state for that system

" Provides component with properties system requires

> Allows for more efficient updating when state is “dirty”

CS354R

COMPONENT PROPERTIES

> Character Movement Component
controls all movement associated
with Character objects

> Walking, Jumping/Falling,
Swimming, Flying etc

> Physics calculations and
networking replication handled
within the Character Movement
Component

4 Character Movement: Jumping / Falling
Jump Z Velocity

eleration Falli

Impart Base Angular Velo

Notify Apex

CoQaQ g
=]

4
7]

4 Character Movement (General Settings)

Min ed
Braking Deceleration Wall

CS354R

CONNECTING VIA BLUEPRINT

Directly access the component

<% Right | Move Updated Component

Pressed [
»
Released P = e m e EEE

Target Out Hit

_ Delta Retun Value

~ [x 200! [v 00][Z 00]

_ NewRotation
|| Character Movement ‘
Sweep

VIOVERIERL

_J Add Movement Input

€ InputAxis Vertical_Movement

»
Axis Value @

' < InputAxis Horizontal_Movement
»

Axis Value @

Access component through parent

CS354R

COMPONENTS IN UNITY

Main Camera Game Object associated with each scene

W y
/ \ Transform component

Camera component

@

@

@ =

CS354R

GAMEOBJECTS WITHOUT INHERITANCE

> No need for GameObiject inheritance

>

Instantiate GameObjects based on selected components:

GameObject
position:Vec3i
velocity:Vec3f

update()

N

PlayerlInputComponent Player1Physics Component Player1Graphics Component

GameObject * createPlayerl() { return new GameObject (new

PlayerlInputComponent(), new PlayerlPhysicsComponent(),
new PlayerlGraphicsComponent()); }

CS354R

PURE COMPONENT-BASED DESIGN

> If we take this model of container classes with components
to its extreme, we get Entity-Component-Systems

CS354R

ENTITY COMPONENT SYSTEM

Components

> Aspecific form of 1ol sl 5]
S| 2lE|8|S| 2|8l
component-based $15|8]|2|5|2]8|s5|2|3

o RenderSystem . . .
a rC h It e Ct u re AnimationSystem . .
. . . " PhysicsSystem
g Entlty IS an |d Ei ControlSystem - .
7 AlSystem - .
> Entity data stored as Heroshotsysem | I _Il
EnemyShotSystem . . .
com pO ne ntS (http://www.alecmce.com/)

> Systems modify

related components How do these systems communicate?
(e.g. how can an entity update its sprite
during a collision?)

http://www.alecmce.com/

CS354R

COMPONENT COMMUNICATION

> Direct Reference
* Components have references to relevant components
> Example:
> GraphicsComponent contains a reference to PhysicsComponent
> Updates sprite upon collision
> Message Passing
> Component sends message to container class
> Container class broadcasts message to its components

* Same idea as event-driven programming

CS354R

IMPLEMENTING ECS

* Components grouped by an ID form a “game object”
> Need fast component lookup by ID
> Factory classes create components for each game object type

> Alternatively, “data-driven” model can read in a file defining object
types

> Inter-object communication requires sending a message to an “object”
to get required response

> Know a priori which component gets a given message

> Multicast to all of the components of an object

CS354R

RESTRUCTURING THE ENGINE LOOP

>

GameObjects contained in vector at game manager level

class Engine {
std: :vector<GameObject>;
vold update () ;

J

>

GameObject components stored in vector within
component managers:

class PhysicsManager : public Manager

std: :vector<PhysicsComponent>;

CS354R

STORING DATA

> Game Objects are a unique id:

struct GameObject {
unsigned int 1d;
b

> Components contain relevant data:

struct PhysicsComponent ({
vector3 position;
quaterion orilentation;

vector3 velocity;

};

CS354R

UPDATING THE SYSTEM

* System accesses entities with relevant components during
update loop

class PhysicsSystem : public System {
std: :vector<GameObject> entities;
vold update () {
for (entity 1n entities) {
physics = getPhysicsComponent (entity);

physics.position += physics.velocity;

Systems add and remove entities as their components change

CS354R

CREATION AND DESTRUCTION

* What do we need to consider when creating or destroying
objects in an entity-component system?

CS354R

MANAGING MEMORY

> Essential for entity-component systems

* Smart layout of data will avoid cache misses

> Cache hits lead to massive performance gains
> Arrays are flat with fast access

> Vectors allow for flexibility in array size

CS354R

ECS PROS

> Can be more memory-efficient
> Only store properties in use, no unused data members in objects
> Easier to construct in a data-driven way

> Define new attributes with scripts, less recoding of class
definitions

> Can be more cache-friendly
> Data tables loaded into contiguous locations in cache

> Struct of arrays (rather than array of structs) principle

CS354R

ECS CONS

» Hard to enforce relationships among properties

» Harder to implement large-scale behaviors if they're
composed of scattered pieces of fine-grained behavior

» Harder to debug

» Can't just put a game object into a debugger watch window
and see what happens to it

CS354R

HYBRID SOLUTIONS POSSIBLE

> Hierarchies are messy, but component-based systems might be
over-engineering

> Always design for the problem
> Usual software principles:
> Take time to plan before writing code

> If a system is difficult to conceptualize, the current approach
might be wrong

> Leave time to rework existing code

CS354R

LAST THOUGHTS ON DATA STRUCTURES

* There is no one correct solution
> Individual preference is a good place to start...
> But be flexible and adapt to the problem
> Don’t over-engineer or prematurely optimize...
* But keep data storage and caching in mind
> Try different approaches

> Take multiple passes to refactor

CS354R

ASSIGNMENT 0

» Assignment O is out!
» Godot 4.3 currently being installed on lab machines

» Use your own machine for development until Godot has been
updated

» This is meant to be a fun, open-ended assignment, but you will be
graded on elegance of solution, so please take some time to consider:

1. Readability of code
2. Good use and organization of game assets

3. Scalability and efficiency of implementation

CS354R

REFERENCES

> Scott Bilas. A Data-Driven Game Object System<http://
scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf>

> Bob Nystrom. Game Programming Patterns <http://
gameprogrammingpatterns.com/component.htm|>

> Randy Gaul. Component Based Engine Design <http://
www.randygaul.net/2013/05/20/component-based-engine-

design/>

> Nomad Game Engine <https://medium.com/@savas/nomad-
game-engine-part-2-ecs-2132829188e5>

http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf
http://scottbilas.com/files/2002/gdc_san_jose/game_objects_slides.pdf
http://gameprogrammingpatterns.com/component.html
http://gameprogrammingpatterns.com/component.html
http://gameprogrammingpatterns.com/component.html
http://www.randygaul.net/2013/05/20/component-based-engine-design/
http://www.randygaul.net/2013/05/20/component-based-engine-design/
http://www.randygaul.net/2013/05/20/component-based-engine-design/
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5
https://medium.com/@savas/nomad-game-engine-part-2-ecs-9132829188e5

