
GODOT OVERVIEW
CS354R

DR SARAH ABRAHAM

CS354R

OPEN SOURCE GAME ENGINE

▸ Godot is open source under the MIT license
and provides:

▸ Cross-platform development support

▸ GUI editor tools

▸ Support for 2D and 3D game development

▸ Ability to export to multiple platforms

▸ Free to use and readily viewable/modifiable
code

CS354R

ADDITIONAL ASSETS

▸ Additional plugins and modules available in the Asset Library:

▸ https://godotengine.org/asset-library/asset

▸ Can also import materials and 3D meshes from asset creation tools like
Blender and Maya

▸ Godot does not support fbx, so export as collada

▸ 3D models and animations can be found on https://www.turbosquid.com/

▸ Only some models are free

▸ Check copyright before using

https://godotengine.org/asset-library/asset
https://www.turbosquid.com/

CS354R

GODOT ARCHITECTURE

▸ Godot is object-oriented

▸ Allows both composition and aggregation

▸ Nodes are fundamental building blocks

▸ Scenes are composed of nodes

▸ Everything is built on these two hierarchies

CS354R

NODES

▸ Nodes can:

▸ Be named

▸ Have editable properties

▸ Receive callbacks

▸ Be extended

▸ Be a child of another node

▸ Nodes inherit from all their parents

▸ Has all properties in hierarchy

CS354R

NODE FUNCTIONALITY
▸ Base class for all scene objects

▸ Some of its properties:

▸ name (String)

▸ owner (Node)

▸ Some of its functions:

▸ _process()

▸ _physics_process(float delta)

▸ _ready()

▸ Inherits from Object, which is base class for all classes

▸ Servers, MainLoop, Loaders, etc

CS354R

SCENES
▸ Formed from a hierarchy of nodes

▸ Have one root node

▸ Can be saved and loaded from disk

▸ Can be instanced

▸ Every game has a main scene (.tscn)

▸ Scenes can be anything

▸ Levels, characters, cameras, etc

▸ Inheritance allows for nested prefabs

▸ Changing parent modifies all children

▸ Scenes can be instanced and added to other scenes

CS354R

SERVERS
▸ Used for multithreading and data separation

▸ Implement mediator pattern to process data and push results back to
the engine

▸ Servers run as parallel as possible and sync only when necessary

▸ Used in lieu of a heavier-weight job scheduler

▸ Servers do not handle objects or classes

▸ Contain references to RID (Resource ID) types

▸ Similar to the “System” part of ECS

▸ Servers for physics, rendering, logic, etc

CS354R

VARIANTS

▸ Common type used in Godot

▸ Maximum of 20 bytes

▸ Can contain most Godot engine data types

▸ Used for communication, editing, and serialization

▸ Not for long-term storage

▸ Allows for dynamic type handling more efficiently than native C++

▸ Dictionaries and Arrays both implemented using Variants

▸ Data retrieved via callbacks may also be Variant data!!

CS354R

MULTITHREADING

▸ Not all of Godot is thread safe!

▸ Active scene trees must be locked

▸ Cannot access nodes from background processes

▸ Use mutexes when multiple threads need to access data

▸ Use semaphores when threads are waiting on data

CS354R

CONCURRENCY

▸ call_deferred/CallDeferred queues up a call to run during
the main thread’s idle time

▸ await creates a coroutine or a function that can pause
execution

▸ Will wait on signal before continuing execution

▸ Invoking coroutine with await will pause the calling
function until the coroutine itself completes

CS354R

GDSCRIPT AWAIT EXAMPLE

func callerFunc():

 await coroutineFunc()

 //This will wait for the timer to complete

func coroutineFunc():

 await get_tree().create_timer(1).timeout

func callerFunc():

 coroutineFunc()

 //This will not wait for the timer to complete

func coroutineFunc():

 await get_tree().create_timer(1).timeout

CS354R

USING AWAIT WITH C#

▸ Use the async keyword to allow for asynchronous
execution of instructions

▸ Use await keyword to allow for non-blocking tasks

public async void CallerFunc()

{

 //This timer will not block the thread...

 await ToSignal(GetTree().CreateTimer(1, “timeout”);

 //But it’s still waiting for timer to complete...

}

CS354R

GODOT SCRIPTING

▸ GDScript is native Godot scripting language

▸ Integrated into editor

▸ C# and C++ bindings also available

▸ Must be developed in separate IDE

▸ GDExtensions allows C++ scripting without recompiling the
engine

▸ Can also add C++ functionality via modules but must
recompile engine

CS354R

GDSCRIPT
▸ Designed specifically for game development/Godot engine

▸ Optimized for Godot

▸ Integrated in the editor

▸ Built-in types for linear algebra

▸ Multithreading support

▸ No garbage collection (uses reference counting)

▸ Dynamically typed

▸ Accesses functions and properties of node that script is attached to

▸ Example:

 func _on_Button_pressed():

 get_node(“Label”).text = “Hello!”

CS354R

GDEXTENSION

▸ Module that can run native code and load shared libraries

▸ Connects third party libraries to Godot without
recompiling the engine

▸ Has C++ bindings (separate download from Godot source)

▸ Can access whole of GDScript API

CS354R

WHY GDEXTENSION?

▸ Allows for highly optimized code without modifying
source to create modules

▸ Connects additional third-party libraries to project without
modifying source

CS354R

BUT WHY ARE WE USING GDEXTENSION?

▸ Generally speaking, you’ll try to develop in GDScript/C#
for general purpose game development

▸ Using GDExtension for everything ignores a lot of the
power Godot provides

▸ But this is a game technology/engine building class, so
we are going to take a lower level approach :)

▸ “Pulls back covers” on some of the things the higher
level scripting languages intentionally hide

CS354R

GDEXTENSION SETUP

▸ For gameplay objects, inherit from Object class

▸ Expected includes

▸ Constructor/Destructor

▸ Necessary properties and functions

▸ GDCLASS() macro required for internal setup:

class GDSprite : public Sprite2D {

 GDCLASS(GDSprite, Sprite2D)

CS354R

REGISTERING FUNCTIONS AND PROPERTIES

▸ Must expose properties and functions that are called from
Godot editor

▸ Use static function _bind_methods()

▸ Call bind_method(D_METHOD(“method name”),
&method) to expose methods

▸ Call add_property(“Class Name”,
PropertyInfo(Variant::TYPE, “name”,
PROPERTY_HINT_RANGE, “min, increment, max”),
“setter”, “getter”); to expose property

CS354R

INTER-NODE COMMUNICATION?

CS354R

SIGNALS

▸ Implementation of Godot’s observer pattern

▸ Observer nodes subscribe to a subject node’s messages

▸ Subject nodes emit messages that all observing nodes
will execute

▸ Used for callbacks on events

▸ Allows for decoupled nodes to communicate safely

CS354R

CONNECTING SIGNALS

▸ Can connect in GDExtension:

▸ subject->connect(“signalname”,
Callable(observer, StringName(“callback”));

▸ Can connect through editor interface

▸ Must register signal in _register_methods

▸ ADD_SIGNAL(MethodInfo(“signal name",
PropertyInfo(Variant::TYPE, “signal parameter
1"), PropertyInfo(Variant::TYPE, “signale
parameter 2”), ...));

CS354R

EMITTING AND RECEIVING SIGNALS

▸ By convention, Godot uses naming:
on<subjectname>_<signalname> for target function

▸ Must create this function in the observing node

▸ Can emit a signal by calling emit_signal(“signalname”,
parameter1, parameter2, …);

▸ Many nodes have existing signals you can access:

▸ Area nodes have area_entered(Area area)/
area_exited(Area area)

▸ BaseButton nodes have button_down()/button_up()

CS354R

PUTTING IT ALL TOGETHER

▸ Must create a library of all extensions within the module as a plugin

▸ initialize_name_module and uninitialize_name_module
called when plugin is loaded and unloaded

▸ Register all classes in the library register_types

▸ ClassDB::register_class<class>();

▸ Compile the plugin using SCons (may have to close Godot and
recompile after changes)

▸ Define where dynamic libraries are loaded from (.gdextension)

CS354R

GODOT CASTS

▸ Note that while C-style casts compile, this may create runtime issues

▸ Use Godot-style casts at all times: Object::cast_to<MyClass>(foo);

▸ Casting Variants to the object’s actual type requires a slightly different syntax

▸ Object::cast_to<MyClass>(MyClass::___get_from_variant(va
riant));

▸ Casts will return a pointer to that object

▸ Always check that pointer is not null before accessing it

 if (foo) {

 //do some stuff with foo

 }

CS354R

OBJECTS, REFCOUNTED, AND RESOURCE

▸ Object is the base class and parent of Node class

▸ Require manual memory management

▸ Possible to create own lighter weight classes

▸ RefCounted inherits from Object but has reference counting

▸ Resource inherits from RefCounted and act as data containers

▸ Ability to serialize/deserialize

▸ Only loaded once from disk

CS354R

CREATING NEW REFERENCE OBJECTS

▸ Cannot do a standard call to new for RefCounted objects

▸ RefCounted objects are reference counted

▸ Allows them to be released without a call to free

▸ Useful for objects that are frequently created and
destroyed during gameplay

▸ Call ReferenceType * myReference =
memnew(ReferenceType);

CS354R

DIVING INTO GDEXTENSIONS

▸ Not as well documented as the higher level scripting system

▸ Expected to read the source code to understand
available functionality

▸ godot-cpp folder has code for binding into the Godot
engine framework

▸ Code for lower level object models within src folder

▸ Code for useful Godot classes and functionality within
gen folder

CS354R

DIVING INTO GODOT SOURCE

▸ Godot source code is separate from GDExtensions bindings

▸ Better documented but still not a fully searchable online API

▸ Devs are expected to read the source code to understand
details and use cases

▸ Main folders with functionality are core and scene for
gameplay objects

▸ Other useful folders are editor (holds objects for building in
editor) and servers (runs functionality on RIDs of game objects)

CS354R

UTILITY AND ENGINE FUNCTIONS

▸ Utilities under #include <godot_cpp/variant/
utility_functions.hpp>

▸ UtilityFunctions::print(); //print to Godot console

▸ UtilityFunctions::is_same(); //variant to variant comparison

▸ ...and a bunch of math functionality...

▸ Engine singleton under #include <godot_cpp/classes/
engine.hpp>

▸ Checks editor vs gameplay

▸ Controls physics and frame information

CS354R

TUTORIALS AND GETTING STARTED

▸ GDNative <https://docs.godotengine.org/en/stable/
tutorials/scripting/gdextension/what_is_gdextension.html>

▸ Custom Modules in C++ <https://docs.godotengine.org/
en/3.1/development/cpp/custom_modules_in_cpp.html>

▸ Godot API <https://docs.godotengine.org/en/stable/
classes/index.html>

▸ Godot Core types <https://docs.godotengine.org/en/
stable/development/cpp/core_types.html>

https://docs.godotengine.org/en/stable/tutorials/scripting/gdextension/what_is_gdextension.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdextension/what_is_gdextension.html
https://docs.godotengine.org/en/3.1/development/cpp/custom_modules_in_cpp.html
https://docs.godotengine.org/en/3.1/development/cpp/custom_modules_in_cpp.html
https://docs.godotengine.org/en/3.1/development/cpp/custom_modules_in_cpp.html
https://docs.godotengine.org/en/stable/classes/index.html
https://docs.godotengine.org/en/stable/classes/index.html
https://docs.godotengine.org/en/stable/classes/index.html
https://docs.godotengine.org/en/stable/development/cpp/core_types.html
https://docs.godotengine.org/en/stable/development/cpp/core_types.html
https://docs.godotengine.org/en/stable/development/cpp/core_types.html

