CS354R DR SARAH ABRAHAM
 3D ENGINES AND SCENE GRAPHS

3D GRAPHICS ENGINES

-What is a 3D graphics engine and what should it include?

3D ENGINES

- Handles functionality related to graphics and rendering
- The "graphics" part of a game engine

Ogre 1.9 Core class structure

WHAT ARE THE OBJECTS?

- Geometry - polygon (triangle, quad) meshes
- Vertices form edges
- Edges form faces

OBJECTS OF INCREASING COMPLEXITY...

Monster Hunter World

HIERARCHICAL MODELING

- Ways character can move:
- Move the whole character wrt the world
- Move legs, arms, head wrt body
, Move hands wrt arms
- Move upper vs. lower arm
- Same for legs

THE HIGHER LEVEL (3D MODELED OBJECTS)

- Modeling
, Rigging
- Skinning
- Animating

Wikipedia (Skeletal Animation)

THE LOWER LEVEL (SYMBOLS AND INSTANCES)

- Most graphics APIs support a few geometric primitives:
- Spheres
- Cubes
- Triangles
- These symbols are instanced using an instance transformation.

TRANSFORMATION REPRESENTATION

- We can represent a 2D point, $\mathrm{p}=(\mathrm{x}, \mathrm{y})$, in the plane as a column vector:
- We can represent a 2-D transformation M by a matrix:

$$
\mathbf{M}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$$
\mathbf{p}^{\prime}=\mathbf{M p}
$$

- If p is a column vector, M goes on the left:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D TRANSFORMATIONS

- Here's all you get with a 2×2 transformation matrix M:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- So:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

IDENTITY

- Suppose we choose $a=d=1, b=c=0$:
- Gives the identity matrix: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- Doesn't move the point at all

SCALING

- Suppose $b=c=0$, but let a and d take on any positive value
- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right] \quad \begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Can have differential (non-uniform) scaling in x and y

$\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 2\end{array}\right]$

REFLECTION

- Suppose $b=c=0$, but either a or d goes negative - Consider:

SHEAR

- Now leave $a=d=1$ and experiment with b

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right] \quad \begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

- Consider:

EFFECT ON UNIT SQUARE

- A general 2×2 transformation M on the unit square:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]
$$

OBSERVATIONS

- Origin invariant under M
- M can be determined just by knowing how the corners
$(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

ROTATION

- From our observations of the effect on the unit square, the matrix for "rotation about the origin":

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]}
\end{aligned}
$$

Thus:

$$
M_{R}=R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

LINEAR TRANSFORMATIONS

- The unit square observations suggest the 2×2 matrix transformation is representing a point in a new coordinate system:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M} \mathbf{p} \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{v}
\end{aligned}
$$

- where $\mathbf{u}=[\mathrm{a} c]^{\top}$ and $\mathbf{v}=[b \mathrm{~d}]^{\top}$ are vectors that define a new basis for a linear space.
- The transformation to this new basis (a.k.a., change of basis) is a linear transformation.

LIMITATIONS OF THE 2X2 MATRIX

- A 2×2 linear transformation matrix allows:
- Scaling
- Rotation
- Reflection
- Shearing
- What important operation does that leave out?

AFFINE TRANSFORMATIONS

- In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{u}, \mathbf{v} with an origin \mathbf{t}.
- Note that while \mathbf{u} and \mathbf{v} are basis vectors, the origin \mathbf{t} is a point.
- We call \mathbf{u}, \mathbf{v}, and \mathbf{t} (basis and origin) a frame for an affine space.
- Then, we can represent a change of frame as:

$$
\mathbf{p}^{\prime}=x \cdot \mathbf{u}+y \cdot \mathbf{v}+\mathbf{t}
$$

- This change of frame is also known as an affine transformation.

HOMOGENEOUS COORDINATES

- To represent transformations among affine frames, we can loft the problem up into 3 -space, adding a third component to every point:
- Note that:
- [a c 0] ${ }^{\top}$ and [b d 0] ${ }^{\top}$ represent vectors
- $\left[t_{x} t_{y} 1\right]^{\top},\left[\begin{array}{lll}x & 1 & 1\end{array}\right]^{\top}$ and $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]^{\top}$ represent points.

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M p} \\
& =\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\boldsymbol{x} \cdot \mathbf{u}+y \cdot \mathbf{v}+1 \cdot \mathbf{t}
\end{aligned}
$$

HOMOGENEOUS COORDINATES

-This allows us to perform translation as well as the linear transformations as a matrix operation:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M}_{\boldsymbol{T}} \mathbf{p} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\boldsymbol{x}^{\prime} & =\boldsymbol{x}+t_{x}
\end{aligned}
$$

USE A SERIES OF TRANSFORMATIONS

- A particular geometric instance is transformed by one combined transformation matrix:

- But it's convenient to build this single matrix from a series of simpler transformations:

- We have to be careful about how we think about composing these transformations.
(Mathematical reason: Transformation matrices don't commute under matrix multiplication!)

ROTATION ABOUT ARBITRARY POINTS

Until now, we've only considered rotation about the origin
With homogeneous coordinates, you can specify a rotation $\mathbf{R q}$ about any point $\mathbf{q}=\left[q_{x} q_{y} 1\right]^{\top}$ with a matrix

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Note: Line up the matrices for these steps in right to left order and multiply (this is why transformation order matters!)

SCALING IN 3D

-Some of the 3-D transformations are just like the 2-D ones.
For example, scaling:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z \\
1
\end{array}\right]=\left[\begin{array}{llll}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

TRANSLATION IN 3D

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

ROTATION IN 3D

, Rotation now has more possibilities in 3D:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & 0 & \sin (\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\theta) & 0 & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Use right hand rule

SHEARING IN 3D

- Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- We call this a shear with respect to the x-z plane.

COMBINING TRANSFORMATIONS AND PRIMITIVES

HIERARCHICAL MODELING

- Hierarchical models can be composed of instances using trees or DAGs:

- Edges contain geometric transformations
- Nodes contain geometry (and possibly drawing attributes)

3D EXAMPLE: A ROBOT ARM

- Consider this robot arm with 3 degrees of freedom:
- Base rotates about its vertical axis by θ
- Lower arm rotates in its $x y$-plane by ϕ
- Upper arm rotates in its $x y$-plane by ψ
- How might we draw the tree for the robot arm?

A COMPLEX EXAMPLE: HUMAN FIGURE

-What's the most sensible way to traverse this tree?

HUMAN FIGURE IMPLEMENTATION

Note: Fixed pipeline OpenGL is outdated but works well for illustrative purposes!

```
torso();
glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    head();
glPopMatrix();
glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    left_upper_arm();
    glPushMatrix();
        glTranslate( ... );
            glRotate( ... );
            left_lower_arm();
    glPopMatrix();
    glPopMatrix();
```


ON OUR WAY TO ANIMATING!

https://youtu.be/vOGhAV-84il?t=1m45s

SCENE GRAPHS

- The idea of hierarchical modeling can be extended to an entire scene, encompassing:
- Multiple objects
- Lights
- Camera position
- This is called a scene tree or scene graph

SCENE GRAPHS IN GODOT

- Godot originally a 2D game engine
- Added support for 3D in 3.0
- 2D scene graphs built of CanvasItems
- Control inherits for GUl items
- Node2Ds used for 2D scene graphs
- 3D scene graphics built on top of Node3Ds
- Transform property is 3×4 matrix
- 3 Vector 3 properties for translate, rotate, and scale

2D SCENE GRAPH IN GODOT

VIEWPORTS

- Viewports are how scenes are rendered out to a screen
- Allows for easier rendering to multiple screen resolutions

Clip-Volume Space

Clipping Volume ($2 \times 2 \times 1$ Cuboid)

Screen Space

VIEWPORTS IN GAMES

- Game utilize multiple viewports for:
- Displaying multiple cameras
- Rendering 2D elements in 3D scenes
- Rendering to textures
- etc
- Can add multiple viewports to the scene graphs in Godot
- Viewport Containers help set the outputted viewport size, and connect objects to display with its viewport

WHAT ABOUT CAMERAS?

- Cameras automatically display on closest parent viewport
- Only one active camera per viewport
- Viewport nodes only display objects that are their children
- Must instance the world scene to both viewports for displaying splitscreens/ overhead maps/etc

Scene	Import	:
+ 0	Filter nodes	Q
$\checkmark \mathrm{OSp}$		\bigcirc
	ameraA	\bigcirc
	Mesha	\bigcirc
\checkmark	vewport	
	MeshB	\bigcirc
	CameraB	\bigcirc

UNDERSTANDING ROTATION

- Euler angles are a common way of representing orientation and rotation
- Rotations about the x, y, and z axis can be composed to form any arbitrary rotation
- Yaw (up-axis), pitch (side-axis), and roll (front-axis)
- If any orientation/rotation can be
 represented, why are Euler angles insufficient?

GIMBAL LOCK

- Gimbal Lock Explained:
- https://www.youtube.com/watch?v=zc8b2Jo7mno

YX rotation

XY rotation

QUATERNIONS

- Mathematical notation for representing object orientation and rotation
- Complex planes rather than Cartesian planes
- Alternative to Euler angles and matrices
- No gimbal lock
- Simpler representation
- Finds closest path

NOTATION

- Complex Number Notation:

$$
q=w+x i+y j+z k
$$

- 4D Vector Notation:

$$
q=[w, v] \text { where } v=(x, y, z)
$$

- Rotate by angle $\boldsymbol{\theta}$ about axis $\hat{\text { v }}$

$$
q=\left[\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta \hat{v}\right]
$$

- Can apply Euler rotations using axis-angle notation above
- Must apply rotations in correct order as quaternion multiplication is not commutative!

QUATERNION INTERPOLATION

- SLERP (Spherical Linear Interpolation)
- Equation for LERP:

$$
p_{t}=p_{1}+\left(p_{2}-p_{1}\right) t
$$

- Equation for SLERP:

$$
\mathrm{q}_{t}=\frac{\sin ((1-t) \theta)}{\sin (\theta)} q_{1}+\frac{\sin (t \theta)}{\sin (\theta)} q_{2}
$$

- SQAD (Spherical and Quadrangle)
- Smoothly interpolate over a path of rotations (cubic)
- Defines "helper" quaternion that acts as a control point
- Caveat: when the angular distance between p_{1} and p_{2} is small, $\sin (\boldsymbol{\theta})$ approaches zero. Must switch back to LERP.

WORKING WITH ROTATIONS IN GAMES

- Often easier to think of rotations as Euler angles...
- But should convert to quaternions whenever applying rotations/ interpolations!
- One way to do this:

1. Get current and target orientation values as Euler angles
2. Convert Euler angles to quaternions
3. Slerp between current and target quaternion
4. Convert back to Euler angles

- Some overhead but your designers will thank you!

FURTHER READING ON QUATERNIONS

- Understanding Quaternions (Jeremiah van Oosten)
- http://3dgep.com/understanding-quaternions/
- Rotating Objects Using Quaternions (Nick Bobic)
- http://www.gamasutra.com/view/feature/131686/ rotating objects using quaternions.php

