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3D GRAPHICS ENGINES

▸ What is a 3D graphics engine and what should it include?
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3D ENGINES

▸ Handles functionality 
related to graphics and 
rendering 

▸ The “graphics” part of a 
game engine

Ogre 1.9 Core class structure
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WHAT ARE THE OBJECTS?

▸ Geometry - polygon (triangle, quad) meshes 

▸ Vertices form edges 

▸ Edges form faces
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OBJECTS OF INCREASING COMPLEXITY…

Monster Hunter World
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HIERARCHICAL MODELING

▸ Ways character can move: 

▸ Move the whole character wrt 
the world 

▸ Move legs, arms, head wrt 
body 

▸ Move hands wrt arms 

▸ Move upper vs. lower arm 

▸ Same for legs
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THE HIGHER LEVEL (3D MODELED OBJECTS)

▸ Modeling 

▸ Rigging 

▸ Skinning 

▸ Animating

Wikipedia (Skeletal Animation)
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THE LOWER LEVEL (SYMBOLS AND INSTANCES)

▸ Most graphics APIs support a few geometric primitives: 

▸ Spheres 

▸ Cubes 

▸ Triangles 

▸ These symbols are instanced using an instance 
transformation.
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TRANSFORMATION REPRESENTATION

▸ We can represent a 2D point, p = (x, y), in the plane as a column 
vector: 

▸ We can represent a 2-D transformation M by a matrix: 

▸ If p is a column vector, M goes on the left:
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2D TRANSFORMATIONS

▸ Here's all you get with a 2x2 transformation matrix M: 

▸ So: € 
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IDENTITY

▸ Suppose we choose a = d = 1, b = c = 0: 

▸ Gives the identity matrix: 

▸ Doesn’t move the point at all
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SCALING

▸ Suppose b = c = 0, but let a and d take on any positive 
value 

▸ Gives a scaling matrix:
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REFLECTION

▸ Suppose b = c = 0, but either a or d goes negative 

▸ Consider:
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SHEAR

▸ Now leave a = d = 1 and experiment with b 

▸ Consider:
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EFFECT ON UNIT SQUARE

▸ A general 2 x 2 transformation M on the unit square: 
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OBSERVATIONS

▸ Origin invariant under M 

▸ M can be determined just by knowing how the corners 
(1,0) and (0,1) are mapped 

▸ a and d give x- and y-scaling 

▸ b and c give x- and y-shearing
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ROTATION

▸ From our observations of the effect on the unit square, the 
matrix for “rotation about the origin”: 

▸  Thus:
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LINEAR TRANSFORMATIONS

▸ The unit square observations suggest the 
2x2 matrix transformation is representing a 
point in a new coordinate system: 

▸ where u = [a c]T and v = [b d]T are vectors 
that define a new basis for a linear space. 

▸ The transformation to this new basis (a.k.a., 
change of basis) is a linear transformation.
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LIMITATIONS OF THE 2X2 MATRIX

▸ A 2x2 linear transformation matrix allows: 

▸ Scaling 

▸ Rotation 

▸ Reflection 

▸ Shearing 

▸  What important operation does that leave out?
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AFFINE TRANSFORMATIONS

▸ In order to incorporate the idea that both the basis and the origin 
can change, we augment the linear space u, v with an origin t. 

▸ Note that while u and v are basis vectors, the origin t is a point. 

▸ We call u, v, and t (basis and origin) a frame for an affine space. 

▸ Then, we can represent a change of frame as: 

▸ This change of frame is also known as an affine transformation.
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HOMOGENEOUS COORDINATES

▸ To represent transformations among 
affine frames, we can loft the problem 
up into 3-space, adding a third 
component to every point: 

▸ Note that: 

▸  [a c 0]T and [b d 0]T represent vectors 

▸  [tx ty 1]T, [x y 1]T and [x' y' 1]T 
represent points.
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HOMOGENEOUS COORDINATES

▸This allows us to perform translation as well as the linear 
transformations as a matrix operation:
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USE A SERIES OF TRANSFORMATIONS

▸ A particular geometric instance is transformed by one combined transformation 
matrix: 

▸ But it’s convenient to build this single matrix from a series of simpler 
transformations:  

▸ We have to be careful about how we think about composing these 
transformations. 
 
(Mathematical reason: Transformation matrices don’t commute under matrix 
multiplication!)
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ROTATION ABOUT ARBITRARY POINTS

1. Translate q to origin 

2. Rotate 

3. Translate back

Until now, we’ve only considered rotation about the origin 

With homogeneous coordinates, you can specify a rotation Rq 
about any point q = [qx qy 1]T with a matrix
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SCALING IN 3D

▸Some of the 3-D transformations are just like the 2-D ones.   

▸For example, scaling:
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TRANSLATION IN 3D
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ROTATION IN 3D

▸Rotation now has more possibilities in 3D:
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SHEARING IN 3D

▸ Shearing is also more complicated.  Here is one example: 

▸ We call this a shear with respect to the x-z plane.
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COMBINING TRANSFORMATIONS AND PRIMITIVES
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HIERARCHICAL MODELING

▸  Hierarchical models can be composed of instances 
using trees or DAGs: 

▸ Edges contain geometric transformations 

▸ Nodes contain geometry (and possibly drawing attributes)
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3D EXAMPLE:  A ROBOT ARM

▸ Consider this robot arm with 3 degrees of freedom: 

▸ Base rotates about its vertical axis by θ

▸ Lower arm rotates in its xy-plane by φ

▸ Upper arm rotates in its xy-plane by ψ

▸ How might we draw the tree for the robot arm?

h1

h2 h3

Base Upper armLower arm
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A COMPLEX EXAMPLE: HUMAN FIGURE

▸What’s the most sensible way to traverse this tree?
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HUMAN FIGURE IMPLEMENTATION     torso(); 

    glPushMatrix(); 

        glTranslate( ... ); 

        glRotate( ... ); 

        head(); 

    glPopMatrix(); 

    glPushMatrix(); 

        glTranslate( ... ); 

        glRotate( ... ); 

        left_upper_arm(); 

        glPushMatrix(); 

            glTranslate( ... ); 

            glRotate( ... ); 

            left_lower_arm(); 

        glPopMatrix(); 

     glPopMatrix(); 

Note: Fixed pipeline OpenGL is outdated but 
works well for illustrative purposes!
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ON OUR WAY TO ANIMATING!

https://youtu.be/vOGhAV-84iI?t=1m45s

https://youtu.be/vOGhAV-84iI?t=1m45s


CS354R

SCENE GRAPHS

▸ The idea of hierarchical modeling can be extended to an 
entire scene, encompassing: 

▸ Multiple objects 

▸ Lights 

▸ Camera position 

▸ This is called a scene tree or scene graph

Camera

Light1
Light2

Object2 Object3

Scene

Object1
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SCENE GRAPHS IN GODOT

▸ Godot originally a 2D game engine 

▸ Added support for 3D in 3.0 

▸ 2D scene graphs built of CanvasItems 

▸ Control inherits for GUI items 

▸ Node2Ds used for 2D scene graphs 

▸ 3D scene graphics built on top of Node3Ds 

▸ Transform property is 3x4 matrix 

▸ 3 Vector3 properties for translate, rotate, and scale
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2D SCENE GRAPH IN GODOT
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VIEWPORTS

▸ Viewports are how scenes are rendered out to a screen 

▸ Allows for easier rendering to multiple screen resolutions

(https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html)

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html
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VIEWPORTS IN GAMES

▸ Game utilize multiple viewports for: 

▸ Displaying multiple cameras 

▸ Rendering 2D elements in 3D scenes 

▸ Rendering to textures 

▸ etc 

▸ Can add multiple viewports to the scene graphs in Godot 

▸ Viewport Containers help set the outputted viewport size, and 
connect objects to display with its viewport
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WHAT ABOUT CAMERAS?

▸ Cameras automatically display on 
closest parent viewport 

▸ Only one active camera per viewport 

▸ Viewport nodes only display objects 
that are their children 

▸ Must instance the world scene to both 
viewports for displaying splitscreens/
overhead maps/etc
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UNDERSTANDING ROTATION

▸ Euler angles are a common way of 
representing orientation and rotation 

▸ Rotations about the x, y, and z axis can 
be composed to form any arbitrary 
rotation 

▸ Yaw (up-axis), pitch (side-axis), and roll 
(front-axis) 

▸ If any orientation/rotation can be 
represented, why are Euler angles 
insufficient?



CS354R

GIMBAL LOCK

▸ Gimbal Lock Explained: 

▸ https://www.youtube.com/watch?v=zc8b2Jo7mno

YX rotation XY rotation

https://www.youtube.com/watch?v=zc8b2Jo7mno
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QUATERNIONS

▸ Mathematical notation for representing object orientation 
and rotation 

▸ Complex planes rather than Cartesian planes  

▸ Alternative to Euler angles and matrices 

▸ No gimbal lock 

▸ Simpler representation 

▸ Finds closest path

Quaternion Rotation (Gamasutra)



CS354R

NOTATION

▸ Complex Number Notation: 

▸ 4D Vector Notation: 

▸ Rotate by angle ϴ about axis v̂: 

▸ Can apply Euler rotations using axis-angle notation above 

▸ Must apply rotations in correct order as quaternion multiplication 
is not commutative!
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QUATERNION INTERPOLATION

▸ SLERP (Spherical Linear Interpolation) 

▸ Equation for LERP: 

▸ Equation for SLERP: 

▸ SQAD (Spherical and Quadrangle) 

▸ Smoothly interpolate over a path of rotations (cubic) 

▸ Defines “helper” quaternion that acts as a control point 

▸ Caveat: when the angular distance between p1 and p2 is 
small, sin(ϴ) approaches zero. Must switch back to LERP.
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WORKING WITH ROTATIONS IN GAMES

▸ Often easier to think of rotations as Euler angles… 

▸ But should convert to quaternions whenever applying rotations/
interpolations! 

▸ One way to do this: 

1. Get current and target orientation values as Euler angles 

2. Convert Euler angles to quaternions 

3. Slerp between current and target quaternion 

4. Convert back to Euler angles 

▸ Some overhead but your designers will thank you!
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FURTHER READING ON QUATERNIONS

▸ Understanding Quaternions (Jeremiah van Oosten) 

▸ http://3dgep.com/understanding-quaternions/ 

▸ Rotating Objects Using Quaternions (Nick Bobic)  

▸ http://www.gamasutra.com/view/feature/131686/
rotating_objects_using_quaternions.php

http://3dgep.com/understanding-quaternions/
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php

