CS354R
DR SARAH ABRAHAM

3D ENGINES AND SCENE
GRAPHS

CS354R

3D GRAPHICS ENGINES

» What is a 3D graphics engine and what should it include?

CS354R

3D ENGINES

» Handles functionality v

SceneManager Plugin

related to graphics and —

— OctreeSceneManager

SceneNode

MovableObject

rendering | —

CustomMovable

» The “graphics” part of a
g a m e e n g i n e ResourceGroupManager | | Mesh Texture T z SnOETE

S R R HardwareBufferManager RenderSystem
ResourceManager
ArchiveFactory

| N |

Plu ;m \ F'Iugln /

CustomArchiveFactory GLTexture GLRenderSystem

Ogre 1.9 Core class structure

CS354R

WHAT ARE THE OBJECTS?

» Geometry - polygon (triangle, quad) meshes

» Vertices form edges

» Edges form faces

CS354R

OBJECTS OF INCREASING COMPLEXITY. .. .

S

S N
N I}/“i{%‘-

wr N

Monster Hunter World

CS354R

HIERARCHICAL MODELING

» Ways character can move:

» Move the whole character wrt
the world

» Move legs, arms, head wrt

body

» Move hands wrt arms
» Move upper vs. lower arm

» Same for legs

CS354R

THE HIGHER LEVEL (3D MODELED OBJECTS)

» Modeling

» Rigging
» Skinning O\ N
» Animating S =y

\\

Wikipedia (Skeletal Animation)

CS354R

THE LOWER LEVEL (SYMBOLS AND INSTANCES)

» Most graphics APIs support a few geometric primitives:
» Spheres
» Cubes
» Triangles

» These symbols are instanced using an instance
transformation.

CS354R

TRANSFORMATION REPRESENTATION

» We can represent a 2D point, p = (x, y), in the plane as a column

vector: X
Y.
» We can represent a 2-D transformation M by a matrix:
b
M =
c d
p'=Mp
» If p is a column vector, M goes on the left: X _ a bi|lx
Y] [c dly

CS354R

2D TRANSFORMATIONS

» Here's all you get with a 2x2 transformation matrix M:

X,
>

<.
0 N
Q.
<

>SO: X'=3X+by

CS354R

IDENTITY

» Suppose we choosea=d=1,b=c=0:

» Gives the identity matrix: [1] 0
-O 1-

» Doesn’t move the point at all

CS354R

SCALING

» Suppose b =c =0, but let a and d take on any positive
value

» Gives a scaling matrix:
a 0 X = ax

0 d y=d | | b o)

>
>'<

>

H [1/2 o}
Can have differential (non-uniform) . 0 2
scalingin x and y

CS354R

REFLECTION

» Suppose b = c =0, but either a or d goes negative

» Consider:

>
>

-1 0 1 O
0 1 > X »xo_l

CS354R

SHEAR

» Now leave a = d = 1 and experiment with b
1 b X =X+ by
0 1 y=y

» Consider:

> X)i f > X

CS354R

EFFECT ON UNIT SQUARE

» A general 2 x 2 transformation M on the unit square:
PR

c d

a bl[0 1 1 0] [0 a a+b b

c djio0 0 1 I|] |0 ¢ c+d d

lp g r s|=[p q r s}

> <
> <

CS354R

OBSERVATIONS

» Origin invariant under M

» M can be determined just by knowing how the corners
(1,0) and (0,1) are mapped

» a and d give x- and y-scaling

» b and c give x- and y-shearing

CS354R

ROTATION

» From our observations of the effect on the unit square, the
matrix for “rotation about the origin”:

! 3 ‘cos(0)
sin(6)

—sin(6)

- <> o - cos(6) |

cos(0) -—sin(0)
sin(0) cos(0)

— oS -~

» Thus: MR = RO) =

CS354R

LINEAR TRANSFORMATIONS

» The unit square observations suggest the
2x2 matrix transformation is representing a
point in a new coordinate system:

» where u=[ac]Tand v =[b d]T are vectors
that define a new basis for a linear space.

» The transformation to this new basis (a.k.a.,

change of basis) is a linear transformation.

=Mp

_'a bl [x

e dlly
-

=lu v

|]_y_

= XU+ YV

CS354R

LIMITATIONS OF THE 2X2 MATRIX

» A 2x2 linear transformation matrix allows:
» Scaling
» Rotation
» Reflection

» Shearing

» What important operation does that leave out?

CS354R

AFFINE TRANSFORMATIONS

» In order to incorporate the idea that both the basis and the origin
can change, we augment the linear space u, v with an origin t.

» Note that while u and v are basis vectors, the origin tis a point.
» We call u, v, and t (basis and origin) a frame for an affine space.

» Then, we can represent a change of frame as:

P'=XxU+y V+t

» This change of frame is also known as an affine transformation.

CS354R

HOMOGENEQUS COORDINATES

» To represent transformations among
affine frames, we can loft the problem p'=Mp

up into 3-space, adding a third a b t|[x
component to every point: =lc d t||y
0 0 1|1
» Note that: '
X
» [acO]Tand [b d O] represent vectors =lu v t]|y
1
t«ty 117, 1Tand [x'y' 1]7 "
> Ity 1 Ixy 1]Tand xTy 1] = XU+ y v+1:

represent points.

CS354R

HOMOGENEQUS COORDINATES

» This allows us to perform translation as well as the linear
transformations as a matrix operation:

p,=MTp
x| [1 0 ¢t
yi=10 1 1t
1l 10 0 1
X =X+t
A [y=y+t,
1 0 1

CS354R

USE A SERIES OF TRANSFORMATIONS

» A particular geometric instance is transformed by one combined transformation
matrix:

» Butit's convenient to build this single matrix from a series of simpler

transformations:
I s /W R T &
ﬂ /ﬂ 1 /ﬂ 1 /—\ﬁw

» We have to be careful about how we think about composing these
transformations.

(Mathematical reason: Transformation matrices don’t commute under matrix
multiplication!)

CS354R

SCALING IN 3D

»Some of the 3-D transformations are just like the 2-D ones.

»For example, scaling:

Y A
X1 [s. 0 0 0][x
, y| 10 s 0 0|y
X A X =
Zl |0 0 s 0||z
) 1] [0 o o 1|1

CS354R

TRANSLATION IN 3D

-1_

1-

0 0 0

1

> X

CS354R

ROTATION IN 3D

»Rotation now has more possibilities in 3D:

1 0 0 0
0 cos(@) -sin(O)

0 sm(0@) cos(0)

0 0 0
cos(@) 0 sin(0)

0 1 0

0
R() - ;
|
0
0
R0)- —-sin®) 0 cos(®) O R, Ry
1
0
0
0
1

0 0 0
cos(0) -sin(0) O
sin(@) cos(@) O
0 0 1
0 0 0

Use right hand rule

R(0) =

CS354R

SHEARING IN 3D

» Shearing is also more complicated. Here is one example:

X1 1 b0 O

— vl o 1 0 0

...... . x Zl 1o o1 0
] . 1| 000 1

» We call this a shear with respect to the x-z plane.

— N < X%

CS354R

COMBINING TRANSFORMATIONS AND PRIMITIVES

/|

-

CS354R

HIERARCHICAL MODELING

» Hierarchical models can be composed of instances
using trees or DAGs:

R-R [L-F
R-F L-R

Right-front || | Right-rear Left-front Left-rear Wheel I
wheel wheel wheel wheel

» Edges contain geometric transformations

» Nodes contain geometry (and possibly drawing attributes)

CS354R

3D EXAMPLE: A ROBOT ARM

» Consider this robot arm with 3 degrees of freedom:
» Base rotates about its vertical axis by 6
» Lower arm rotates in its xy-plane by ¢
» Upper arm rotates in its xy-plane by

» How might we draw the tree for the robot arm?

Base Lower arm Upper arm

CS354R

A COMPLEX EXAMPLE: HUMAN FIGURE

»What's the most sensible way to traverse this tree?

Torso
My

My,
M lua Mrua M lul "
Hcoad Left-upper || |Right-upper|| | Left-upper || |Right-upper
arm arm leg leg
My, My, My My

Left-lower || | Right-lower|| | Left-lower || |Right-lower
arm arm leg leg

CS354R

HUMAN FIGURE IMPLEMENTATION e

glPushMatrix();
glTranslate(...);
glRotate(...);
head () ;
glPopMatrix();
glPushMatrix();
glTranslate(...);
glRotate(...);
left upper_arm();
glPushMatrix();
glTranslate(...);
glRotate(...);

left_lower_arm();

Note: Fixed pipeline OpenGL is outdated but

. . l1PopMatrix();
works well for illustrative purposes! Jorer O

glPopMatrix();

CS354R

ON OUR WAY TO ANIMATING!

https://youtu.be/vOGhAV-84il?t=1m45s

https://youtu.be/vOGhAV-84iI?t=1m45s

CS354R

SCENE GRAPHS

» The idea of hierarchical modeling can be extended to an

entire scene, encompassing:

Scene

» Multiple objects Camera

=

» Lights Light1

Light2

» Camera position

» This is called a scene tree or scene graph

Objectt

.

Obiject2

AN

Object3

CS354R

SCENE GRAPHS IN GODOT

» Godot originally a 2D game engine
» Added support for 3D in 3.0
» 2D scene graphs built of Canvasltems
» Control inherits for GUI items
» Node2Ds used for 2D scene graphs
» 3D scene graphics built on top of Node3Ds
» Transform property is 3x4 matrix

» 3 Vector3 properties for translate, rotate, and scale

CS354R

20 SCENE GRAPH IN GODOT

SceneTree ‘

1

Viewport
(root)

y
Scene

l (Root Node) l

'

CanvaslLayer Level CanvaslLayer
(-1) (Node2Ds) (1)

l ,

Parallax BG I HUD ‘

CS354R

VIEWPORTS

» Viewports are how scenes are rendered out to a screen

» Allows for easier rendering to multiple screen resolutions

Screen Space

Camera Space Clip-Volume Space
z
Y |
I
z -
width - 1y 7 X
P 7’ - - - - . m XJ—,-‘ ________ - -
,//7AT(-z)height 2 x
S Lz height <«—maxZ
Y R 4 - -+—far «—z=1
‘| __ .- -<+—near 5 «—z=0 F o idth <—minZ
fov)
Y View Frustum Clipping Volume minX Vi
z COoP y iewport

(2x2x1 Cuboid)

(https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html)

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html

CS354R

VIEWPORTS IN GAMES

» Game utilize multiple viewports for:
» Displaying multiple cameras
» Rendering 2D elements in 3D scenes
» Rendering to textures
» etc
» Can add multiple viewports to the scene graphs in Godot

» Viewport Containers help set the outputted viewport size, and
connect objects to display with its viewport

CS354R

WHAT ABOUT CAMERAS?

» Cameras automatically display on
closest parent viewport

» Only one active camera per viewport

» Viewport nodes only display objects
that are their children

» Must instance the world scene to both
viewports for displaying splitscreens/
overhead maps/etc

Scene

O Spatial

% CameraA
N MeshA
[J Viewport

N MeshB
% CameraB

CS354R

UNDERSTANDING ROTATION

» Euler angles are a common way of
representing orientation and rotation

» Rotations about the x, y, and z axis can
be composed to form any arbitrary
rotation

» Yaw (up-axis), pitch (side-axis), and roll
(front-axis)

» If any orientation/rotation can be
represented, why are Euler angles
insufficient?

CS354R

GIMBAL LOCK

» Gimbal Lock Explained:

» https://www.youtube.com/watch?v=zc8b2Jo7mno

YX rotation XY rotation

https://www.youtube.com/watch?v=zc8b2Jo7mno

CS354R

QUATERNIONS

» Mathematical notation for representing object orientation
and rotation

» Complex planes rather than Cartesian planes

» Alternative to Euler angles and matrices

» No gimbal lock
» Simpler representation

» Finds closest path

Quaternion Rotation (Gamasutra)

CS354R

NOTATION

» Complex Number Notation:
g=w+xt+yj+ zk
» 4D Vector Notation:
q = |w,v| where v = (x,y, 2)
» Rotate by angle © about axis V:
q = [cos30, sinz 0]
» Can apply Euler rotations using axis-angle notation above

» Must apply rotations in correct order as quaternion multiplication
Is not commutative!

CS354R

QUATERNION INTERPOLATION

» SLERP (Spherical Linear Interpolation)

» Equation for LERP: Dy = P1 + (pz — pl)t
- n((1—t)6 n(t6
» Equation for SLERP: Q¢ = Sms(i(n(e’;))Q1 SSZZ?;((tH)) g5

» SQAD (Spherical and Quadrangle)
» Smoothly interpolate over a path of rotations (cubic)
» Defines "helper” quaternion that acts as a control point

» Caveat: when the angular distance between p1 and p3 is
small, sin(©) approaches zero. Must switch back to LERP.

CS354R

WORKING WITH ROTATIONS IN GAMES

» Often easier to think of rotations as Euler angles...

» But should convert to quaternions whenever applying rotations/
interpolations!

» One way to do this:
1. Get current and target orientation values as Euler angles
2. Convert Euler angles to quaternions
3. Slerp between current and target quaternion
4. Convert back to Euler angles

» Some overhead but your designers will thank you!

CS354R

FURTHER READING ON QUATERNIONS

» Understanding Quaternions (Jeremiah van Oosten)

» http://3dgep.com/understanding-quaternions/

» Rotating Objects Using Quaternions (Nick Bobic)

» http://www.gamasutra.com/view/feature/131686/
rotating_objects_using_guaternions.php

http://3dgep.com/understanding-quaternions/
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php

