
3D ENGINES AND SCENE
GRAPHS

CS354R
DR SARAH ABRAHAM

CS354R

3D GRAPHICS ENGINES

▸ What is a 3D graphics engine and what should it include?

CS354R

3D ENGINES

▸ Handles functionality
related to graphics and
rendering

▸ The “graphics” part of a
game engine

Ogre 1.9 Core class structure

CS354R

WHAT ARE THE OBJECTS?

▸ Geometry - polygon (triangle, quad) meshes

▸ Vertices form edges

▸ Edges form faces

CS354R

OBJECTS OF INCREASING COMPLEXITY…

Monster Hunter World

CS354R

HIERARCHICAL MODELING

▸ Ways character can move:

▸ Move the whole character wrt
the world

▸ Move legs, arms, head wrt
body

▸ Move hands wrt arms

▸ Move upper vs. lower arm

▸ Same for legs

CS354R

THE HIGHER LEVEL (3D MODELED OBJECTS)

▸ Modeling

▸ Rigging

▸ Skinning

▸ Animating

Wikipedia (Skeletal Animation)

CS354R

THE LOWER LEVEL (SYMBOLS AND INSTANCES)

▸ Most graphics APIs support a few geometric primitives:

▸ Spheres

▸ Cubes

▸ Triangles

▸ These symbols are instanced using an instance
transformation.

CS354R

TRANSFORMATION REPRESENTATION

▸ We can represent a 2D point, p = (x, y), in the plane as a column
vector:

▸ We can represent a 2-D transformation M by a matrix:

▸ If p is a column vector, M goes on the left:

€

x
y
"

$
%

&
'

€

M =
a b
c d
"

$

%

&
'

€

" p = Mp
" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(

CS354R

2D TRANSFORMATIONS

▸ Here's all you get with a 2x2 transformation matrix M:

▸ So: €

" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(

€

" x = ax + by
" y = cx + dy

CS354R

IDENTITY

▸ Suppose we choose a = d = 1, b = c = 0:

▸ Gives the identity matrix:

▸ Doesn’t move the point at all

€

1 0
0 1
"

$

%

&
'

CS354R

SCALING

▸ Suppose b = c = 0, but let a and d take on any positive
value

▸ Gives a scaling matrix:

€

a 0
0 d
"

$

%

&
'

€

" x = ax
" y = dy

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y €

2 0
0 2
"

$

%

&
'

€

1 2 0
0 2

"

$

%

&
' Can have differential (non-uniform)

scaling in x and y

CS354R

REFLECTION

▸ Suppose b = c = 0, but either a or d goes negative

▸ Consider:

x

y

x

y

€

−1 0
0 1

$
%

&

'
(

€

1 0
0 −1

$
%

&

'
(

CS354R

SHEAR

▸ Now leave a = d = 1 and experiment with b

▸ Consider:

€

1 b
0 1
"

$

%

&
'

€

" x = x + by
" y = y

1

1

1

1
x

y

x

y

€

1 1
0 1
"

$

%

&
'

CS354R

EFFECT ON UNIT SQUARE

▸ A general 2 x 2 transformation M on the unit square:

1

1

p q

rs

x

y

x

y

€

a b
c d
"

$

%

&
' p q r s[]= (p (q (r (s []

a b
c d
"

$

%

&
'
0 1 1 0
0 0 1 1
"

$

%

&
' =

0 a a+ b b
0 c c + d d
"

$

%

&
'

CS354R

OBSERVATIONS

▸ Origin invariant under M

▸ M can be determined just by knowing how the corners
(1,0) and (0,1) are mapped

▸ a and d give x- and y-scaling

▸ b and c give x- and y-shearing

CS354R

ROTATION

▸ From our observations of the effect on the unit square, the
matrix for “rotation about the origin”:

▸ Thus:

1

1
x

y

x

y

€

MR = R(θ) =
cos(θ) −sin(θ)
sin(θ) cos(θ)

$

%
&

'

(
)

CS354R

LINEAR TRANSFORMATIONS

▸ The unit square observations suggest the
2x2 matrix transformation is representing a
point in a new coordinate system:

▸ where u = [a c]T and v = [b d]T are vectors
that define a new basis for a linear space.

▸ The transformation to this new basis (a.k.a.,
change of basis) is a linear transformation.

€

" p = Mp

=
a b
c d

$
%

&

'
(
x
y

$
%
&

'
(

= u v[]
x
y

$
%
&

'
(

= x ⋅u+ y ⋅ v

CS354R

LIMITATIONS OF THE 2X2 MATRIX

▸ A 2x2 linear transformation matrix allows:

▸ Scaling

▸ Rotation

▸ Reflection

▸ Shearing

▸ What important operation does that leave out?

CS354R

AFFINE TRANSFORMATIONS

▸ In order to incorporate the idea that both the basis and the origin
can change, we augment the linear space u, v with an origin t.

▸ Note that while u and v are basis vectors, the origin t is a point.

▸ We call u, v, and t (basis and origin) a frame for an affine space.

▸ Then, we can represent a change of frame as:

▸ This change of frame is also known as an affine transformation.

€

" p = x ⋅u+ y ⋅ v+ t

CS354R

HOMOGENEOUS COORDINATES

▸ To represent transformations among
affine frames, we can loft the problem
up into 3-space, adding a third
component to every point:

▸ Note that:

▸ [a c 0]T and [b d 0]T represent vectors

▸ [tx ty 1]T, [x y 1]T and [x' y' 1]T
represent points.

€

" p = Mp

=

a b tx
c d ty
0 0 1

$

%
%
%

&

'

(
(
(

x
y
1

$

%
%
%

&

'

(
(
(

= u v t[]
x
y
1

$

%
%
%

&

'

(
(
(

= x ⋅u+ y ⋅ v+1⋅ t

CS354R

HOMOGENEOUS COORDINATES

▸This allows us to perform translation as well as the linear
transformations as a matrix operation:

€

" p = M Tp
" x
" y
1

$

%
%
%

&

'

(
(
(

=

1 0 tx

0 1 ty

0 0 1

$

%
%
%

&

'

(
(
(

x
y
1

$

%
%
%

&

'

(
(
(

" x = x + tx

" y = y + ty

1
x

y

x

y

1 1

1

€

1 0 1
0 1 1 2
0 0 1

"

$
$
$

%

&

'
'
'

CS354R

USE A SERIES OF TRANSFORMATIONS

▸ A particular geometric instance is transformed by one combined transformation
matrix:

▸ But it’s convenient to build this single matrix from a series of simpler
transformations:

▸ We have to be careful about how we think about composing these
transformations.

(Mathematical reason: Transformation matrices don’t commute under matrix
multiplication!)

CS354R

ROTATION ABOUT ARBITRARY POINTS

1. Translate q to origin

2. Rotate

3. Translate back

Until now, we’ve only considered rotation about the origin

With homogeneous coordinates, you can specify a rotation Rq
about any point q = [qx qy 1]T with a matrix

x

y

x

y

x

y

x

y

q
θ

Note: Line up the matrices for these steps in right to left order
and multiply (this is why transformation order matters!)

x

y

x

y

x

y

x

y

q
θ

CS354R

SCALING IN 3D

▸Some of the 3-D transformations are just like the 2-D ones.

▸For example, scaling:

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

CS354R

TRANSLATION IN 3D

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

CS354R

ROTATION IN 3D

▸Rotation now has more possibilities in 3D:

x

z

y

Use right hand rule

€

Rx(θ) =

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Ry(θ) =

cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Rz(θ) =

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

CS354R

SHEARING IN 3D

▸ Shearing is also more complicated. Here is one example:

▸ We call this a shear with respect to the x-z plane.

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

1 b 0 0
0 1 0 0
0 0 1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

CS354R

COMBINING TRANSFORMATIONS AND PRIMITIVES

CS354R

HIERARCHICAL MODELING

▸ Hierarchical models can be composed of instances
using trees or DAGs:

▸ Edges contain geometric transformations

▸ Nodes contain geometry (and possibly drawing attributes)

CS354R

3D EXAMPLE: A ROBOT ARM

▸ Consider this robot arm with 3 degrees of freedom:

▸ Base rotates about its vertical axis by θ

▸ Lower arm rotates in its xy-plane by φ

▸ Upper arm rotates in its xy-plane by ψ

▸ How might we draw the tree for the robot arm?

h1

h2 h3

Base Upper armLower arm

CS354R

A COMPLEX EXAMPLE: HUMAN FIGURE

▸What’s the most sensible way to traverse this tree?

CS354R

HUMAN FIGURE IMPLEMENTATION torso();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 head();

 glPopMatrix();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 left_upper_arm();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 left_lower_arm();

 glPopMatrix();

 glPopMatrix();

Note: Fixed pipeline OpenGL is outdated but
works well for illustrative purposes!

CS354R

ON OUR WAY TO ANIMATING!

https://youtu.be/vOGhAV-84iI?t=1m45s

https://youtu.be/vOGhAV-84iI?t=1m45s

CS354R

SCENE GRAPHS

▸ The idea of hierarchical modeling can be extended to an
entire scene, encompassing:

▸ Multiple objects

▸ Lights

▸ Camera position

▸ This is called a scene tree or scene graph

Camera

Light1
Light2

Object2 Object3

Scene

Object1

CS354R

SCENE GRAPHS IN GODOT

▸ Godot originally a 2D game engine

▸ Added support for 3D in 3.0

▸ 2D scene graphs built of CanvasItems

▸ Control inherits for GUI items

▸ Node2Ds used for 2D scene graphs

▸ 3D scene graphics built on top of Node3Ds

▸ Transform property is 3x4 matrix

▸ 3 Vector3 properties for translate, rotate, and scale

CS354R

2D SCENE GRAPH IN GODOT

CS354R

VIEWPORTS

▸ Viewports are how scenes are rendered out to a screen

▸ Allows for easier rendering to multiple screen resolutions

(https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html)

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_Examples.html

CS354R

VIEWPORTS IN GAMES

▸ Game utilize multiple viewports for:

▸ Displaying multiple cameras

▸ Rendering 2D elements in 3D scenes

▸ Rendering to textures

▸ etc

▸ Can add multiple viewports to the scene graphs in Godot

▸ Viewport Containers help set the outputted viewport size, and
connect objects to display with its viewport

CS354R

WHAT ABOUT CAMERAS?

▸ Cameras automatically display on
closest parent viewport

▸ Only one active camera per viewport

▸ Viewport nodes only display objects
that are their children

▸ Must instance the world scene to both
viewports for displaying splitscreens/
overhead maps/etc

CS354R

UNDERSTANDING ROTATION

▸ Euler angles are a common way of
representing orientation and rotation

▸ Rotations about the x, y, and z axis can
be composed to form any arbitrary
rotation

▸ Yaw (up-axis), pitch (side-axis), and roll
(front-axis)

▸ If any orientation/rotation can be
represented, why are Euler angles
insufficient?

CS354R

GIMBAL LOCK

▸ Gimbal Lock Explained:

▸ https://www.youtube.com/watch?v=zc8b2Jo7mno

YX rotation XY rotation

https://www.youtube.com/watch?v=zc8b2Jo7mno

CS354R

QUATERNIONS

▸ Mathematical notation for representing object orientation
and rotation

▸ Complex planes rather than Cartesian planes

▸ Alternative to Euler angles and matrices

▸ No gimbal lock

▸ Simpler representation

▸ Finds closest path

Quaternion Rotation (Gamasutra)

CS354R

NOTATION

▸ Complex Number Notation:

▸ 4D Vector Notation:

▸ Rotate by angle ϴ about axis v̂:

▸ Can apply Euler rotations using axis-angle notation above

▸ Must apply rotations in correct order as quaternion multiplication
is not commutative!

CS354R

QUATERNION INTERPOLATION

▸ SLERP (Spherical Linear Interpolation)

▸ Equation for LERP:

▸ Equation for SLERP:

▸ SQAD (Spherical and Quadrangle)

▸ Smoothly interpolate over a path of rotations (cubic)

▸ Defines “helper” quaternion that acts as a control point

▸ Caveat: when the angular distance between p1 and p2 is
small, sin(ϴ) approaches zero. Must switch back to LERP.

CS354R

WORKING WITH ROTATIONS IN GAMES

▸ Often easier to think of rotations as Euler angles…

▸ But should convert to quaternions whenever applying rotations/
interpolations!

▸ One way to do this:

1. Get current and target orientation values as Euler angles

2. Convert Euler angles to quaternions

3. Slerp between current and target quaternion

4. Convert back to Euler angles

▸ Some overhead but your designers will thank you!

CS354R

FURTHER READING ON QUATERNIONS

▸ Understanding Quaternions (Jeremiah van Oosten)

▸ http://3dgep.com/understanding-quaternions/

▸ Rotating Objects Using Quaternions (Nick Bobic)

▸ http://www.gamasutra.com/view/feature/131686/
rotating_objects_using_quaternions.php

http://3dgep.com/understanding-quaternions/
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php

