
MATERIALS AND TEXTURES

CS354R
DR SARAH ABRAHAM

CS354R

IMPROVING VISUAL FIDELITY

▸ Historically games relied on simple, local lighting models

▸ How did they get games to look like this?

CS354R

TEXTURE MAPPING

▸ Take a “painted” image (texture) and wrap it around a 3D
mesh (map) to add more detail

▸ Works for any shading parameters, not just color

CS354R

BASIC MAPPING

▸ Textures live in a 2D space

▸ Parameterize points in the texture with 2 coordinates: (s, t)

▸ Define the mapping from (x, y, z) in world space to (s, t) in
texture space

▸ For polygons:

▸ Specify (s, t) coordinates at vertices

▸ Interpolate (s, t) for other points

CS354R

BASIC TEXTURING CONCEPTS AND TERMS

▸ Vertices are coordinates that define geometry

▸ Texture coordinates specified at vertices and interpolated across triangles

▸ Texture values for points mapping outside the texture image can be
generated in various ways:

▸ REPEAT, CLAMP, etc

▸ Width and height of texture images is often constrained

▸ Powers of two

▸ Sometimes required to be a square

CS354R

TEXTURES IN GAMES

▸ Modern game engines provide a lot of texture support

▸ High level of control for importing and editing

▸ Varying resolutions to support hardware performance

▸ Automatic texture atlasing

▸ Artist tools often included for texture management

▸ Design texture images

▸ Specify how to apply to object

▸ Profiling to maintain good memory and performance bounds

CS354R

TEXTURE ATLASING

▸ A packed set of textures (or sprites)

▸ 2D Example: a sprite sheet

CS354R

TEXTURE ATLASING

▸ Also used in 3D games!

▸ Artists pack the textures for many objects into one image

▸ The texture coordinates for a given object may only index
into a small part of the image

▸ Care must be taken at sub-image boundary to achieve correct
blending

▸ Mipmapping is restricted

▸ Best for objects that are at a known resolution

CS354R

COMBINING TEXTURES

CS354R

MIPMAPS

▸ Store multiple resolutions of same texture

▸ Sample based on distance from camera

OTHER TEXTURE ISSUES

TEXTURE SAMPLING (ALIASING) CREATES VISUAL ARTIFACTS

https://www.iquilezles.org/www/articles/filtering/filtering.htm

https://www.iquilezles.org/www/articles/filtering/filtering.htm

CS354R

A LARGER EXAMPLE

CS354R

3D EXAMPLE: TEXTURE TOOL

CS354R

OTHER TEXTURING TECHNIQUES

▸ Animated textures

▸ Texture matrix transforms texture in memory

▸ Texture can slide, rotate, and stretch/shrink over surface

▸ Useful for things like flame, swirling vortices, or pulsing
entrances…

▸ Projective textures

▸ Texture projected onto the scene as if from a slide projector

▸ Used in light maps, shadow maps and decals

CS354R

SHADOW MAPS

▸ Render shadows by determining if pixels are occluded from light sources

1. Render scene from light source’s point of view (multiple renders for
multiple light sources)

2. Store depth values of this scene as a texture (the shadow map)

3. Render scene from camera’s point of view and test if object
coordinates are lit or unlit by light

▸ Must transform objects in scene into light source’s coordinate system

▸ Check depth of object against depth of shadow map value to determine
if object is occluded

CS354R

SHADOW MAP EXAMPLE

CS354R

SHADOW MAP CHALLENGES

▸ Basic shadow mapping only generates hard shadows

▸ Need additional processing for shadow penumbra

▸ Resolution of shadow map determines resolution of
shadow

▸ Aliasing and continuity issues

▸ Resource intensive

▸ Need pre-baking or advanced techniques

CS354R

SHADOW MAP CHALLENGES

Hard shadows vs shadows with penumbra

Aliased vs anti-aliased shadow maps

CS354R

MSAA AND TEMPORAL ANTI-ALIASING
▸ Multisample anti-aliasing is a form of supersampling (oversampling to

reduce loss of the signal)

▸ Naive oversampling samples the entire image at higher resolution then
reduces

▸ Observation: aliasing occurs in specific areas rather than universally

▸ Solution: only perform super sampling in areas with discontinuities in
triangles/depth/etc

▸ Temporal anti-aliasing samples pixel over time to reduce temporal aliasing

▸ Temporal aliasing occurs when objects move faster than frame speed

▸ Apply filters based on multiple frames to soften effect

CS354R

DLSS AND FSR

▸ DLSS (Deep learning Super Sampling) by NVidia

▸ FSR (FidelityFX Super Resolution) by AMD

▸ Deep learning approach to super sampling

▸ Takes lower resolution image and upsamples it for higher resolution
monitors

▸ Better scaling in resolution for “screen space” techniques

▸ 4K resolution makes many screen space techniques impractical and/or
less efficient

▸ Does not handle “high frequency” details such as text etc without
extensive training

CS354R

CONTROL DLSS VS DLSS 2.0 DEMO

CS354R

MODELING LIGHT TRANSPORT

▸ Photons of light bounce around a “scene” based on their physical properties

▸ Modeling this transport of energy reconstructs visual output of the scene based
on the lights and material properties of the scene objects

▸ Family of techniques known as “ray tracing” try to reconstruct this physics
equation in a discrete/statistically valid way

▸ Path tracers use Monte Carlo methods to converge in an unbiased way

CS354R

RAY TRACING IN MODERN GAMES

▸ Ray tracing to create global illumination (GI) is increasingly
common in Triple A games

▸ Possible to create specific lighting features using
targeted raytracing

▸ Path tracing possible with RTX hardware/machine
learning

▸ Many other techniques besides ray tracing still used to
emulate GI

CS354R

MOVING TOWARD GLOBAL ILLUMINATION

▸ Environment mapping
produces reflections on shiny
objects

▸ Texture is transferred in the
direction of the reflected ray
from the environment map
onto the object

Object

Viewer Reflected ray

Environment Map

CS354R

ENVIRONMENT MAPPING CONT’D

▸ Reflected ray: R = I - 2(N·I)N

(NVidia CG Tutorial)

CS354R

EXAMPLE

CS354R

CUBE MAPPING

▸ The map resides on the surfaces of a cube around the object

▸ Typically align the faces of the cube with the coordinate axes

▸ Can make map rendering arbitrarily complex as it’s possible to do off-
line

▸ For each face of the cube either:

▸ Render the world from the center of the object with the cube face
as the image plane

▸ Or take 6 photos of a real environment with a camera in the object’s
position

CS354R

CUBE MAP EXAMPLE

CS354R

WHAT DO TEXTURES REPRESENT?

▸ Graphics hardware doesn’t know what is in a texture

▸ GPU applies a set of operations using values it finds in the texture, the
existing value of the fragment (pixel), and maybe another color

▸ The programmer decides what these operations are

▸ Examples:

▸ Scalar luminance data (multiplies the fragment color)

▸ Alpha data (multiplies the fragment’s alpha channel)

▸ Vector data (modifies the surface normals)

▸ Depth data (determines distance from light source for shadow mapping)

CS354R

TEXTURES IN DIGITAL ART

▸ Assets designed for modern
graphics pipeline

▸ Lower poly, higher textures

▸ Multiple maps for multiple
effects

(Arnab Roy, Maya)

CS354R

PHYSICALLY-BASED MATERIALS

▸ Textures provide more details but Phong lighting model
inherently limited

▸ Function is very approximate and not physically-based

▸ Can improve material model by using functions based on the
physics of light

CS354R

BRDFS

▸ Bidirectional reflectance
distribution function

▸ Defines how a material reflects light
based on the angle of observation

▸ Determines ratio of reflected
radiance

▸ Physically-based

▸ Empirically studied by material
sample

CS354R

THE RENDERING EQUATION

▸ Describes radiance of light entering and leaving a point

BRDF

CS354R

ADDITIONAL FUNCTIONS

▸ BTDF (bidirectional transmittance distribution function)
models the scattering of transmitted light

▸ BSSRDF (bidirectional scattering-surface reflectance
distribution function) model subsurface scattering and
related effects

▸ BSDF (bidirectional scattering distribution function)
encompasses BRDFs, BTDFs, and BSSRDFs

CS354R

MATERIAL PARAMETERIZATION

▸ Base Color (Albedo)

▸ Diffuse color based on scattering/absorption of light wavelengths

▸ Roughness

▸ Amount of microsurfaces and imperfections on material’s surface leading
to light scatter

▸ Metallic

▸ Degree of “metalness” including colored reflections and any diffusion
from corrosion/dirt on surface

▸ Reflectance

▸ Amount of reflected light on non-metallic surfaces

CS354R

ALBEDO

CS354R

ROUGHNESS

CS354R

METALLIC

CS354R

REFLECTANCE

CS354R

THE ORDER: 1886

CS354R

MATERIAL TEMPLATES

▸ Store parameterization in base material

▸ Changes from base material store on derived material

▸ Global changes to base material change all derived material

▸ Material templates include:

▸ Glasses

▸ Masonry

▸ Metals

▸ Wood

▸ etc

▸ Material compositing done using reference material and blend mask

CS354R

MATERIAL TEMPLATING

CS354R

MATERIAL PIPELINE

▸ BRDFs provide a way for artists to interact with
photorealistic lighting models and shader programming at
a higher level

▸ Substance demo reel

▸ https://www.youtube.com/watch?v=BYQpPK-qrTM

▸ Substance overview:

▸ https://www.youtube.com/watch?v=y8q6-tgQjZc

https://www.youtube.com/watch?v=BYQpPK-qrTM
https://www.youtube.com/watch?v=y8q6-tgQjZc

CS354R

GAMES THAT USE PBR MATERIALS…

▸ Industry standard so pretty much everyone…

CS354R

YES, I MEAN EVERYONE

▸ Non-photorealistic rendering also benefits from PBR
models!

CS354R

SHADER CODE

▸ Allows (relatively) easy writing of code to transform vertices,
geometry, and pixels on the GPU

▸ GLSL is language for OpenGL

▸ HLSL is language for DirectX

▸ Setup for sending data to GPU done by graphics library

▸ e.g. vertices to process, textures, lights, etc

▸ Programs on GPU run in parallel for every vertex, shape, pixel,
etc being processed

CS354R

SHADERS IN GODOT

▸ Godot provides its own language based on GLSL ES 3.0

▸ Adds functionality

▸ Reduces flexibility

▸ Only supports vertex and fragment shaders

▸ Easier to set up and avoids low level issues

▸ Assumes some knowledge of shader programming in GLSL

▸ Access to compute shaders for allow for greater flexibility

CS354R

MATERIAL SHADERS FOR ARTISTS

▸ Modern game engines and material programs provide
interfaces for artists to work with shaders using visual
scripting

CS354R

VISUALSHADER IN GODOT

▸ VisualShader is Godot’s node-based scripting language
for shaders

▸ Allows access to many, but not all, shader features

▸ Provides a fast, visual way to create and debug shaders

CS354R

PARTICLE EFFECT EXAMPLE IN VISUALSHADER

CS354R

REFERENCES/RESOURCES

▸ [http://developer.download.nvidia.com/CgTutorial/
cg_tutorial_chapter07.html]

▸ [https://learnopengl.com/Advanced-Lighting/Shadows/
Shadow-Mapping]

▸ [https://developer.nvidia.com/gpugems/GPUGems3/
gpugems3_ch08.html]

▸ [https://marmoset.co/posts/basic-theory-of-physically-
based-rendering/]

http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter07.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter07.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter07.html
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch08.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch08.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch08.html
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/

CS354R

REFERENCES/RESOURCES

▸ [https://eng.libretexts.org/Bookshelves/
Materials_Science/
Supplemental_Modules_(Materials_Science)/
Optical_Properties/Metallic_Reflection]

▸ [https://godotengine.org/article/visual-shader-editor-
back]

▸ [https://www.gdcvault.com/play/1020162/Crafting-a-
Next-Gen-Material]

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Metallic_Reflection
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Metallic_Reflection
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Metallic_Reflection
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Metallic_Reflection
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Metallic_Reflection
https://godotengine.org/article/visual-shader-editor-back
https://godotengine.org/article/visual-shader-editor-back
https://godotengine.org/article/visual-shader-editor-back
https://www.gdcvault.com/play/1020162/Crafting-a-Next-Gen-Material
https://www.gdcvault.com/play/1020162/Crafting-a-Next-Gen-Material
https://www.gdcvault.com/play/1020162/Crafting-a-Next-Gen-Material

