
DEVOPS AND QUALITY
ASSURANCE

CS354R

DR SARAH ABRAHAM

CS354R

WHAT IS DEVOPS?

▸ Development Operations

▸ Backend facilitation of development

▸ Handles local and remote hardware

▸ Maintains build infrastructure and pipeline

▸ Monitors end user activity

▸ Hybrid sysadmin/developer

▸ Very, very important functionality for any reasonably-sized operation

▸ Skimping on your backend setup (or having an undocumented setup) will
waste MANY developer hours

▸ This is called “technical debt”

CS354R

BUILD SYSTEMS

▸ Creates software binaries from source code

▸ Reduces programmer time and effort to create executables

▸ Allows for easier build targeting across multiple platforms

▸ Building includes:

▸ Compiling

▸ Linking

▸ Packaging

▸ And ideally testing!

▸ What are some built systems you’ve used?

CS354R

MAKE UTILITY

▸ Determines what to compile/recompile and issues commands

▸ Makefile provides information that the make utility requires

▸ Relationships between program files

▸ Commands for updating files

▸ Typical make use is:

1. Compile source files to generate object files

2. Create executable from object files

CS354R

MAKEFILE

▸ Defines how to build files for desired targets

▸ CC defines compiler

▸ CFLAGS defines compiler flags

▸ INCLUDES defines additional header paths

▸ LFLAGS defines libraries to link to project

▸ Target executable is first target entry in the file

CS354R

MAKEFILE EXAMPLE
 # the compiler: gcc for C program, define as g++ for C++

 CC = gcc

 # compiler flags:

 # -g adds debugging information to the executable file

 # -Wall turns on most, but not all, compiler warnings

 CFLAGS = -g -Wall

 # the build target executable:

 TARGET = myprog

 all: $(TARGET)

 $(TARGET): $(TARGET).c

 $(CC) $(CFLAGS) -o $(TARGET) $(TARGET).c

 clean:

 $(RM) $(TARGET)

(https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html)

https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html

CS354R

WHAT’S THE PROBLEM WITH MAKE?

▸ As project complexity increases, complexity of reading
and writing Makefiles also increases

▸ More library dependencies

▸ Dynamically linked libraries

▸ Numerous compiler flags

▸ Multiple targets

▸ Difficult to cross-compile to non-Linux platforms

CS354R

CMAKE OVERVIEW

▸ Cross-platform, compiler-independent build system

▸ Commonly used and can build for Xcode and Visual Studio

▸ Works well for complex source directories and cross-linked
libraries

▸ Build process:

▸ CMakeLists.txt contains commands for configuring Makefile

▸ make then builds project

CS354R

CMAKE OVERVIEW

CS354R

CMAKE BUILD PROCESS

CS354R

SOME CMAKE COMMANDS

▸ project(project_name) sets project name

▸ add_executable(executable_name, project_file)
builds an executable from given project_file.cpp

▸ include_directories(include_dir) adds header
directory to build environment

▸ add_library(lib_name, lib_source) adds library to
project

▸ …and it goes on from there!

CS354R

HOW TO DEBUG CMAKE?

CS354R

DEBUGGING BUILD SYSTEMS

▸ Errors often related to library paths/dependencies

▸ Not necessarily any nice tools for debugging

▸ Must rely on good old-fashioned sleuthing

▸ Liberal use of dpkg (or equivalent) checks, etc

▸ Questions to consider:

▸ What is the library’s expected version?

▸ Where is the library located?

▸ A note about using StackOverflow

▸ Collective knowledge of Internet, so usually someone has encountered something
similar before you

▸ Read carefully to avoid going down ratholes!

CS354R

SCONS OVERVIEW

▸ Open source software construction tool that supports cross-
platform development and many compilers

▸ Built on Python

▸ Can be distributed with a software product

▸ Does not need to generate files

▸ Can be slower on large projects

▸ Not as fully implemented as CMake but it’s what Godot uses!

CS354R

SCONS BUILD PROCESS

▸ Uses Python scripts as configuration files

▸ SConstruct

▸ Creates complete dependency graph of all files

▸ Traverses graph to build target files using the SCons Build
Engine

CS354R

SCONS API

▸ Environment object stores the build configuration

▸ env = DefaultEnvironment()

▸ Can customize build information in a per-platform way

▸ CCFLAGS are options passed to compiler

▸ LINKFLAGS are options passed to the linker

▸ CPPPATH lists directories that have necessary includes

▸ LIBPATH lists directories that have necessary libraries

CS354R

GODOT AND GDEXTENSION

▸ What did you do to complete the GDExtension tutorial?

1. Used Godot game engine to create a project

2. Used GDExtension to dynamically connect external
C++ code to Godot (i.e. built a Godot plugin)

3. Incorporated this C++ functionality into gameplay and
editor (i.e. used the plugin)

CS354R

CREATING DYNAMIC GODOT PLUGINS USING GDEXTENSION

1. Compile Godot from source or download pre-compiled binary

▸ Builds and linked all necessary libraries from core and other modules

2. Generate GDExtension C++ bindings

▸ api.json contains all metadata for Godot functions and properties

▸ Building godot-cpp creates static library to link into custom plugin

3. Register plugin functionality with Godot’s ClassDB

▸ ClassDB accesses metadata for all classes available to Godot

4. Build plugin as a dynamic library to link into Godot projects without
recompiling engine

CS354R

GDEXTENSION PLUGIN COMPILATION

▸ Plugins must be compiled to work with the associated Godot
project

▸ Because of setup, there is no “hot reload”

▸ Must close and open Godot editor to see changes

▸ gdproject.gdextension connects GDExtension dynamic
libraries and any additional dynamic libraries used in C++ files

▸ Must point to a properly placed plugin (i.e. the dynamic
library)

CS354R

STATIC VERSUS DYNAMIC LIBRARIES?
▸ Static libraries are connected to a program at compile time with the object code built

into executable

▸ Faster at runtime

▸ Fewer compatibility issues

▸ Must recompile program if library code is modified

▸ Larger executable file size

▸ Dynamic libraries can be shared by programs and are connected at program runtime

▸ Faster compile time

▸ More possibilities for breaking

▸ Smaller memory footprint at runtime

▸ Smaller executable file size

CS354R

CONSIDER...

▸ Why does Godot structure GDExtension the way it does?

CS354R

CONTINUOUS INTEGRATION

▸ Developer code is frequently committed to the shared repository

▸ Advantages:

▸ Prevents late-stage problems

▸ Keeps work pipeline flowing

▸ Requires:

▸ Well-established work flow

▸ Automatic build scheduling

▸ Relatively fast builds

▸ Unit tests to prevent erroneous code (in theory)

▸ What sort of branching schema work well for this?

CS354R

CI SYSTEMS

Example: Jenkins

CS354R

QUALITY ASSURANCE

▸ Quality Assurance (QA) assures product’s quality is at acceptable,
expected level for customers

▸ Feedback loop:

▸ Design —> Develop —> Test

▸ Dedicated QA expedites process of tracking and correcting bugs and
features

▸ Complementary role to designers and developers

▸ Game QA is generally a meat-grinder, but QA in other software
industries can be senior-level programmers or designers

CS354R

IDEAL BUG REPORTS

▸ Bug reports should have:

▸ Descriptive title

▸ Encountered behavior

▸ Expected behavior

▸ Steps to reproduce

▸ Screenshots or video of bug

▸ Useful for asking about issues on Piazza/Discord, incidentally!

CS354R

QA VERSUS USER TESTING

▸ QA is often internal to a project

▸ Testers are trained and directed

▸ At least some understanding of project’s systems

▸ Often looking to break things

▸ User testing validates design by taking product “into the wild”

▸ Testers are likely part of product’s target demographic

▸ No understanding of project’s systems required

▸ Ideally interact with system in “expected” use-case

CS354R

BUG TRIAGE

▸ Process of assessing bug severity and priority

▸ Bug severity determines how serious (i.e. game-breaking/profit-
losing, etc) a bug is

▸ Bug priority determines how important it is to fix a bug

▸ Some examples:

▸ What could be a high severity/high priority bug?

▸ What could be a low severity/low priority bug?

▸ What could be a high severity/low priority bug?

▸ What could be a low severity/high priority bug?

CS354R

REFERENCES

▸ Make

▸ http://www.gnu.org/software/make/manual/make.html

▸ CMake

▸ https://cmake.org/cmake-tutorial/

▸ https://github.com/robbie-cao/note/blob/master/cmake.md

▸ SCons

▸ https://github.com/SCons/scons/wiki/sconsvsotherbuildtools

▸ QA

▸ http://qablog.practitest.com/2008/12/principles-of-good-bug-reporting/

https://cmake.org/cmake-tutorial/
https://github.com/robbie-cao/note/blob/master/cmake.md
https://github.com/SCons/scons/wiki/sconsvsotherbuildtools
http://qablog.practitest.com/2008/12/principles-of-good-bug-reporting/

