
PHYSICS OVERVIEW
CS354R

DR SARAH ABRAHAM

CS354R

GAME PHYSICS – BASIC AREAS

▸ Point Masses

▸ Particle simulation

▸ Collision response

▸ Rigid Bodies

▸ Extensions to non-points

▸ Soft Body Dynamic Systems

▸ Articulated Systems and Constraints

▸ Collision Detection

CS354R

GAME PHYSICS – BASIC AREAS

▸ Point Masses

▸ Particle simulation

▸ Collision response

▸ Rigid Bodies

▸ Extensions to non-points

▸ Soft Body Dynamic Systems

▸ Articulated Systems and Constraints

▸ Collision Detection

CS354R

PHYSICS ENGINES

▸ API for collision detection

▸ API for kinematics (motion but no forces)

▸ API for dynamics

▸ Examples:

▸ Box2d

▸ Bullet

▸ ODE (Open Dynamics Engine)

▸ PhysX

▸ Havoc

▸ Many others!

CS354R

PARTICLE DYNAMICS AND PARTICLE SYSTEMS

▸ A particle system is a collection of point masses that obeys some
physical laws (e.g, gravity, heat convection, spring behaviors, etc)

▸ Particle systems can be used to simulate all sorts of physical
phenomena:

▸ Fluids

▸ Cloth

▸ Galaxies

▸ Other stuff

▸ So let’s consider a single particle…

CS354R

PARTICLE IN A FLOW FIELD

▸ Consider a single particle that has:

▸ Position:

▸ Velocity:

▸ Suppose the velocity is actually dictated by some driving function
g:

x

y

x = [x
y]

v = ·x =
d x
dt

=
dx
dt
dy
dt

·x = g(x , t)

CS354R

VECTOR FIELDS

▸ At any moment in time, the function g defines a vector field
over x:

▸ How can we use this to determine where we are in the field?

CS354R

DIFFERENTIAL EQUATIONS AND INTEGRAL CURVES

▸ The equation: is actually a first order differential equation.

▸ We can solve for x through time by starting at an initial point and stepping
along the vector field:

▸ This is called an initial value problem and the solution is called an integral
curve.

·x = g(x , t)

START HERE

CS354R

EULER’S METHOD

▸ Choose a time step, Δt, and take linear steps along the
flow:

▸ Writing as a time iteration:

▸ This approach is called Euler’s method and looks like:

€

•

CS354R

ADDING FORCES AND MASS

▸ Now consider a particle in a force field f

▸ In this case, the particle has:

▸ Mass: m

▸ Acceleration:

▸ The particle obeys Newton’s law:

▸ The force field f can in general depend on the position and velocity
of the particle as well as time.

▸ Thus, with some rearrangement, we end up with: ··x =
f (x , ·x, t)

m

f = m a = m··x

a ≡ ··x =
d v
dt

=
d2 x
dt2

CS354R

SECOND ORDER EQUATIONS

‣ This equation: is a second order differential
equation.

‣ Our solution method works on first order differential equations.

‣ We can rewrite this as:

where we have added a new variable v to get a pair of coupled
first order equations.

··x =
f (x , ·x, t)

m

·x = v

·v = f (x , v , t)
m

CS354R

PHASE SPACE

▸ Concatenate x and v to make a 6-vector position in phase space

▸ Taking the time derivative to make a 6-vector velocity in phase
space

▸ A vanilla 1st-order differential equation

[x
v]

[
·x
·v]

[
·x
·v] = [v

f /m]

CS354R

DIFFERENTIAL EQUATION SOLVER

€

•

€

•

€

•

€

••

€

•

€

•

€

•

▸ Starting with:

▸ Applying Euler’s method:

▸ And making substitutions:

▸ Writing this as an iteration:

▸ (Still performs poorly for large Δt)

[
·x
·v] = [v

f /m]

CS354R

REMEMBER THIS GRAPH?

CS354R

TIME STEP MATTERS

https://www.reddit.com/r/gaming/comments/9yg41t/nothing_to_see_here_just_some_good_old_bethesda/

https://www.reddit.com/r/gaming/comments/9yg41t/nothing_to_see_here_just_some_good_old_bethesda/

CS354R

EULER’S METHOD PROPERTIES

▸ Properties:

▸ Simplest numerical method

▸ Bigger steps, bigger errors. Error ~ O(Δt2).

▸ Need to take pretty small steps, so not very efficient

▸ Better methods exist:

▸ Runge-Kutta

▸ Implicit Integration

▸ Semi-implicit Euler

▸ Verlet

▸ These methods range in terms of complexity and computation

CS354R

SO LET’S TALK VERLET…

▸ Verlet integration is frequently used in video games

▸ Good numerical stability

▸ Good booking-keeping properties

▸ Good performance (as fast as forward Eulerian!)

▸ Verlet flavors:

▸ Position Verlet

▸ Uses 2 previous positions to obtain next position without using a velocity

▸ Leapfrog

▸ Alternately updates to position and velocity

▸ Velocity Verlet

▸ Similar to Leapfrog but updates position and velocity in the same timestep

CS354R

VERLET

▸ Consider Forward Euler:

▸ Substitute velocity calculation into position calculation:

v i+1 = v i + aiΔt
x i+1 = x i + v i+1Δt

x i+1 = x i + (v i + aiΔt)Δt

x i+1 = x i + v iΔt + aiΔt2

CS354R

POSITION VERLET INTEGRATION

▸ Does not directly store velocity

▸ What do we need when i = 0?

x i+1 = x i + (x i − x i−1) + aiΔt2

x i−1 = x i

CS354R

HISTORY OF SIMULATION IN GAMES

Alan Wake
Hitman: Codename 47

CS354R

SIMULATION IN GAMES

https://www.youtube.com/watch?v=HacuU5kKae4Last Guardian

https://www.youtube.com/watch?v=HacuU5kKae4

CS354R

REPRESENTING A PARTICLE

▸ How do we represent a particle in code?

CS354R

PARTICLE STRUCTURE

position

velocity

force accumulator

mass

Position in phase spacex
v

f
m

CS354R

SINGLE PARTICLE SOLVER INTERFACE

getDim

derivEval

getState

setState

x
v

f
m

[6]

[x
v]

[v

f /m]

CS354R

PARTICLE SYSTEMS

▸ In general, we have a particle system consisting of n
particles to be managed over time:

particles n time

x1

v1

f1
m1

x2

v2

f2
m2

. . .

xn

vn

fn
mn

CS354R

PARTICLE SYSTEM SOLVER INTERFACE

▸ For n particles, the solver interface now looks like:

derivEval

get/setState getDim

particles n time

6n

CS354R

PARTICLE SYSTEM DIFF. EQ. SOLVER

▸ We can determine the evolution of a particle system using
the Euler method or another solver of choice:

CS354R

FORCES

▸ Each particle can experience a force which sends it on its way

▸ Forces can be:

▸ Constant (gravity)

▸ Position/time dependent (force fields)

▸ Velocity-dependent (drag)

▸ Combinations (damped springs)

▸ How do we compute the net force on a particle?

▸ Force objects are black boxes that point to the particles they
influence and add in their contributions.

▸ We can now visualize the particle system with force objects:

CS354R

PARTICLE SYSTEMS WITH FORCES

F2 Fnf

particles n time forces nf

F1

x1

v1

f1
m1

x2

v2

f2
m2

. . .

xn

vn

fn
mn

x1

v1

f1
m1

x2

v2

f2
m2

. . .

xn

vn

fn
mn

CS354R

DERIVATIVE EVALUATION

1. Clear forces

▸ Loop over particles

▸ Zero force accumulators

2. Calculate forces

▸ Sum all forces into accumulators

3. Return derivatives

▸ Loop over particles,

▸ Return v and f/m

Apply forces 
 to particles

Clear force
accumulators1

2

3
Return
derivatives 
to solver

F2 F3 FnfF1

x1

v1

f1
m1

x2

v2

f2
m2

. . .

xn

vn

fn
mn

[
v1

f1 /m1
] [

v2

f2 /m2
] . . .

vn

fn /mn

CS354R

GRAVITY AND VISCOUS DRAG

▸ The force due to gravity is:

▸ Often, we want to slow things down with viscous drag:

p→f += p→m * F→G

p→f -= F→k * p→v

f grav = mG

f drag = − k v

▸ Recall the equation for the force due to a spring:

CS354R

DAMPED SPRING

r = rest length

p1 = [x 1

v 1]

p2 = [x 2

v 2]

CS354R

DAMPED SPRING

▸ We can augment this with damping:

▸ The resulting force equations for a spring between two
particles become:

CS354R

ADDITIONAL RESOURCES

▸ Verlet Integration:

▸ [http://www.saylor.org/site/wp-content/uploads/
2011/06/MA221-6.1.pdf]

▸ [http://gamedevelopment.tutsplus.com/tutorials/
simulate-tearable-cloth-and-ragdolls-with-simple-verlet-
integration--gamedev-519]

▸ [www.gamasutra.com/view/feature/132771/
the_secrets_of_cloth_simulation_in_.php]

http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-6.1.pdf
http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-6.1.pdf
http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-6.1.pdf
http://gamedevelopment.tutsplus.com/tutorials/simulate-tearable-cloth-and-ragdolls-with-simple-verlet-integration--gamedev-519
http://gamedevelopment.tutsplus.com/tutorials/simulate-tearable-cloth-and-ragdolls-with-simple-verlet-integration--gamedev-519
http://gamedevelopment.tutsplus.com/tutorials/simulate-tearable-cloth-and-ragdolls-with-simple-verlet-integration--gamedev-519
http://www.gamasutra.com/view/feature/132771/the_secrets_of_cloth_simulation_in_.php
http://www.gamasutra.com/view/feature/132771/the_secrets_of_cloth_simulation_in_.php
http://www.gamasutra.com/view/feature/132771/the_secrets_of_cloth_simulation_in_.php

