
Model Checking of Recursive Probabilistic Systems · App–1

This document is the online-only appendix to:

Model Checking of Recursive Probabilistic Systems
KOUSHA ETESSAMI

University of Edinburgh

and

MIHALIS YANNAKAKIS

Columbia University

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–45.

A. MISSING PROOFS.

This electronic appendix provides all proofs that are missing in the main body of
the paper.

LEMMA 8. For all D ∈ F ′, ρ−1(D) ∈ F and PrΩ(ρ−1(D)) = PrΩ′(D).

Proof. It suffices, by standard facts about probability measure, to prove the
claim for cylinders C(w′) ⊆ Ω′, where w′ = w0, . . . wk. We use induction on k.
The base case (k = 0) follows from Lemma 7. Namely, C(ǫ) = Ω′, and ρ−1(Ω′) =
Ω \ ρ−1(⋆). Thus PrΩ(ρ−1(Ω′)) = 1 − PrΩ(ρ−1(⋆)) = 1.

For the induction step, suppose that the claim holds for the prefix w′ = w0w1 . . . wk.
Let D[w′] = ρ−1(C(w′)). Define the event Ji,y ∈ F to be Ji,y = {t ∈ Ω |
ρ(t) = w0 . . . wi . . . , and wi = y}. Note that by definition of conditional proba-
bility, PrΩ(D[w′wk+1]) = PrΩ(D[w′])PrΩ(Jk+1,wk+1

| D[w′]).
We want to show that PrΩ(D[w′wk+1]) = PrΩ′(C(w′wk+1)). We distinguish

three cases, based on what type of edge (wk, wk+1) is in HA, as in the proof of
Lemma 7.

Case 1: wk is not a call port. Thus (wk, wk+1) ∈ EHA
is an ordinary edge of the

summary graph and corresponds to an edge of the RMC inside some component Ai

of A. Consider the trajectories t ∈ D[w′]. From the definition of ρ we know that
after some prefix, such a trajectory t arrives at a vertex 〈β,wk〉, and subsequently
never reaches an exit of Ai, i.e., it retains β as a prefix of the call stack for the
remainder of the trajectory. The conditional probability PrΩ(Jk+1,wk+1

| D[w′]), is
the probability that the (k+1)-st step of ρ(t) is wk+1, given that the prefix of ρ(t) is
w0w1, ...wk. Note that this conditional probability is independent of the call stack
β, and that this process has the Markov property, so that it is also independent
of how we arrive at wk. The conditional probability PrΩ(Jk+1,wk+1

| D[w′]) is the

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–2 · K. Etessami and M. Yannakakis

probability that the execution from wk transitions next to wk+1 and never reaches
an exit of the component Ai, conditioned on the event that it never reaches an
exit of Ai. Let NE(u) ∈ F be the event that, starting at a node 〈β, u〉, we will
never reach an exit, i.e., β ∈ B+ will forever remain on the call stack; because of
the Markovian property, the probability of this event does not depend on β and is
equal to ne(u). Recall also that the conditional probability of an event E1 given
event E2 is PrΩ(E1 | E2) = PrΩ(E1 ∩ E2)/PrΩ(E2).

Since wk is not a call port, and using the Markovian property, we have:

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(Jk+1,wk+1

| Jk,wk
)

= PrΩ(J1,wk+1
| J0,wk

), (now assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
∩ NE(wk))/PrΩ(NE(wk))

= PrΩ(J1,wk+1
∩ NE(wk+1))/ ne(wk)

= PrΩ(J1,wk+1
)PrΩ(NE(wk+1))/ ne(wk)

= pwk,wk+1
ne(wk+1)/ ne(wk)

Therefore, PrΩ(D[w′wk+1]) = PrΩ(D[w′])pwk,wk+1
ne(wk+1)/ ne(wk). By the in-

duction hypothesis, and the construction of M ′

A, PrΩ′(C(w′wk+1)) =
PrΩ′(C(w′))p′wk,wk+1

= PrΩ(D[w′])pwk,wk+1
ne(wk+1)/ newk = PrΩ(D[w′wk+1]).

Case 2: wk = (b, en) is a call port, and wk+1 = (b, ex) is a return port. In this
case, the conditional probability PrΩ(Jk+1,wk+1

| D[w′]) is the probability that an
execution of the RMC starting at the call port wk = (b, en) of box b reaches the
return port wk+1 = (b, ex) of b given that it does not reach an exit of the component
of wk (and wk+1). From the properties of conditional probabilities, this is equal to
the probability that an execution of the RMC starting at the call port wk reaches
the return port wk+1 and then after that it does not reach an exit of the component
divided by the probability that an execution starting at wk does not reach an exit.
Thus, similar to case 1, we have:

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(J1,wk+1

∩ NE(wk+1))/ ne(wk), (assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
) ne(wk+1)/ ne(wk)

= q∗(en,ex) ne(wk+1)/ ne(wk)

Again, PrΩ(D[w′wk+1]) = PrΩ(D[w′])q∗(wk,wk+1)
ne(wk+1)/ ne(wk), and by induc-

tion, PrΩ′(C(w′wk+1)) = PrΩ′(C(w′))p′wk,wk+1
=

PrΩ(D[w′])q∗(wk,wk+1)
ne(wk+1)/ ne(wk) = PrΩ(D[w′wk+1]).

Case 3: wk = (b, en) is a call port, and wk+1 = en is the corresponding entry.
By the definition of the summarization map ρH and ρ, the next vertex wk+1 after
wk in ρ(t) is en iff the call of the box b does not terminate. Thus, the conditional
probability PrΩ(Jk+1,wk+1

| D[w′]) is the probability that in an execution of the
RMC starting at the call port wk = (b, en), the call of the box b does not terminate,
given that the execution does not reach an exit of the component of wk. Note that
every execution, in which the call of the box b does not terminate, obviously does
not reach an exit of the component of wk. Therefore, the conditional probability
is equal to the probability that the call of the box b from its call port (b, en)
(i.e. the component Y (b) starting at its entry en) does not terminate divided by

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–3

the probability that an execution starting at wk does not reach an exit of the
component of wk. That is, we have:

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(J1,wk+1

| J0,wk
)

= PrΩ(J1,wk+1
∩ NE(wk))/PrΩ(NE(wk)), (assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
)/ ne(wk), (because NE(wk) ⊆ J1,wk+1

)

= PrΩ(NE(wk+1))/ ne(wk) = ne(wk+1)/ ne(wk)

Again, PrΩ(D[w′wk+1]) = PrΩ(D[w′]) ne(wk+1)/ ne(wk), and PrΩ′(C(w′wk+1)) =
PrΩ′(C(w′))p′wk,wk+1

= PrΩ(D[w′]) ne(wk+1)/ ne(wk) = PrΩ(D[w′wk+1]).

THEOREM 17. The qualitative problem of determining whether a given RMC A
satisfies a property specified by a Büchi automaton B with probability = 1, (i.e.,
whether PA(L(B)) = 1)) is EXPTIME-complete. Furthermore, this holds even if
the RMC is fixed and each component has one entry and one exit. Moreover, the
qualitative “emptiness” problem, namely determining whether PA(L(B)) = 0, is
also EXPTIME-complete, again even when the RMC is fixed and each component
has one entry and one exit.

Proof. The EXPTIME upper bound was established in Theorem 16. So we
need to establish EXPTIME-hardness.

We begin by proving the result for determining whether PA(L(B)) = 1 in the
case where both A and B are part of the input. The case where A is fixed, and

the case for qualitative emptiness, PA(L(B))
?
= 0, are variations on the same proof,

and we sketch them at the end.
The reduction is from the acceptance problem for alternating linear space bounded

Turing machines. As is well known, ASPACE(S(n)) = ∪c>0DTIME(cS(n)). There
is a fixed linear space bounded alternating Turing machine, T , such that the prob-
lem of deciding whether T accepts a given input of length n is EXPTIME-complete.
We can assume wlog that T has one tape, and uses space n. The tape contains
initially the given input x. Recall that an alternating TM has four types of states:
existential, universal, accepting and rejecting. We assume wlog that the TM has
two possible moves from each existential and universal state, and it halts when it is
in an accepting or rejecting state. Let Γ be the tape alphabet, Q the set of states
and ∆ = Γ ∪ (Q × Γ) the extended tape alphabet. A configuration of the TM is
expressed as usual as a string of length n where the ith symbol is (q,X) ∈ (Q× Γ)
(we will usually write qX instead of (q,X)) if the head is on the tape cell i, the state
is q and the tape symbol is X , and otherwise the ith symbol is the tape symbol X
in cell i. The type of a configuration (existential, universal etc) is determined by
the type of the state. A computation is a sequence of configurations starting from
the initial one, according to the transition rules of the TM. We assume wlog that
all computations of the TM halt.

There is a natural game associated with an alternating TM between two play-
ers, an existential player E and a universal player U. The positions of the game
correspond to the configurations. Player E moves at the existential configurations
and player U at the universal ones. Accepting configurations are winning positions
for player E, and rejecting configurations are winning for player U. An input x is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–4 · K. Etessami and M. Yannakakis

accepted by the TM iff the existential player E has a winning strategy from the
initial configuration corresponding to x.

We will construct a RMC, A, and a BA, B, so that A satisfies B with probability
1 iff x is not accepted by T , i.e. E does not have a winning strategy.

Let us first mention that the only thing that will matter about A, is its “struc-
ture”, i.e., which edges have non-zero probability. We thus describe these edges
without defining the probabilities explicitly: any positive probabilities that sum to
1 will do.

The RMC A has an initial component C0 and a component C(q,X) for each
state q ∈ Q and tape symbol X ∈ Γ. The automaton B has an initial state s0, a
final state f which is the only accepting state, and a state (δ, i) for each δ ∈ ∆, and
i = 1, . . . , n. The alphabet of B is the vertex set of A.

Let q0 be the initial state of the TM T , and let x = x1 · · ·xn be the input.
Component C0 of A has an edge from its entry to a node u0, an edge from u0

to a box that is mapped to C(q0, x1) and an edge from the exit of the box to an
absorbing node v0 that has a self-loop.

Component C(q,X), where q is an existential state and X ∈ Γ, is structured
as follows. Suppose that the two moves of the TM T when it is in state q and
reads X are (pk, Yk, Dk), k = 1, 2, where pk ∈ Q is the next state, Yk is the symbol
written over X , and Dk = L/R (left/right) is the direction of the head movement.
For each i = 1, .., n, k = 1, 2, and Z ∈ Γ, the component has a set of nodes
u[q,X, i, k, Z], v[q,X, i, k, Z], and a set of boxes b[q,X, i, k, Z], each mapped to
component C(pk, Z). The entry of the component C(q,X) has edges to each of the
nodes u[q,X, i, k, Z], every node u[q,X, i, k, Z] has an edge to the call port of the
corresponding box b[q,X, i, k, Z], the return port of each such box has an edge to
the corresponding node v[q,X, i, k, Z], and each of these nodes has an edge to the
exit of the component.

Component C(q,X), where q is a universal state and X ∈ Γ, is structured as
follows. Let again the two moves of the TM T for q and X be (pk, Yk, Dk), k = 1, 2.
For each i = 1, .., n, k = 1, 2, and Z ∈ Γ, the component has again a set of nodes
u[q,X, i, k, Z], v[q,X, i, k, Z], and a set of boxes b[q,X, i, k, Z] mapped to C(pk, Z),
and has in addition one more node w[q,X]. The entry of the component C(q,X)
has edges to each of the nodes u[q,X, i, 1, Z], every node u[q,X, i, 1, Z] has an edge
to the call port of the corresponding box b[q,X, i, 1, Z], the return port of each such
box has an edge to the corresponding node v[q,X, i, 1, Z], and each of these has
an edge to node w[q,X]. Node w[q,X] has edges to all the nodes u[q,X, i, 2, Z],
every node u[q,X, i, 2, Z] has an edge to the call port of the corresponding box
b[q,X, i, 2, Z], the return port of each such box has an edge to the corresponding
node v[q,X, i, 2, Z], and each of these has an edge to the exit of the component.

Component C(q,X), where q is a halting (accepting or rejecting) state andX ∈ Γ
has an edge from its entry to a node u[q,X] and from u[q,X] to the exit of the
component.

The transitions of the automaton B are as follows. The initial state s0 of B
transitions on input u0 to the set of states {(q0x1, 1), (x2, 2), . . . , (xn, n)}. There
are no other transitions out of s0. The final state f transitions to itself on every
input.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–5

Let q be an existential or universal state and suppose that the two moves of
the TM T when it is in state q and reads X are (pk, Yk, Dk), k = 1, 2. On input
u[q,X, i, k, Z], a state (δ, j) of B has exactly one transition, as follows: If j = i
and δ 6= qX then it transitions to f ; else, if j = i and δ = qX then it transitions
to state (Yk, i); else, if ((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) and
δ = Z then it transitions to (pkZ, j); else, if ((j = i+ 1 and Dk = R) or (j = i− 1
and Dk = L)) and δ 6= Z then it transitions to f ; else, it transitions to itself, (δ, j).
On input v[q,X, i, k, Z], a state (δ, j) of B has the following transition: If j = i
then it transitions to (qX, i); else, if ((j = i + 1 and Dk = R) or (j = i − 1 and
Dk = L)) then it transitions to (Z, j); else, it transitions to itself, (δ, j). All states
have a self-loop on input w[q,X], v0, as well as for all the vertices that are entries
and exits of boxes.

Let q be a halting state of the TM. On input u[q,X], a state (δ, j) of B transitions
to itself if δ ∈ Γ or (δ = qX and q is accepting), and it transitions to f otherwise.

This concludes the definition of the RMC A and the Büchi automaton B. Note
that A has a bounded number of components (independent of the length of the
input x), and every component has one entry and one exit. Note also that all the
transitions of B are deterministic except for the transition of the initial state s0 on
input u0.

Consider a path of the RMC, and look at the corresponding set P of states of
B at each step. At u0, the set P contains one state (δ, i) for each i = 1, . . . , n
corresponding to the initial configuration of the TM. From then on, it is easy to
check that P always contains at most one state (δ, i) for each i, and either these
states form a configuration of the TM or P contains f . Once f is included in P ,
then it will stay there forever and any continuation of the path will be accepted by
B.

Let us call a path of the RMC valid if the set P at the end (and during the path)
does not contain f . Consider the game tree G of the game corresponding to the
TM T on the given input x: The nodes of the tree are the configurations reached
by the TM in its computation, the root is the initial configuration, the children
of each node are the two successor configurations, and the leaves correspond to
halting configurations. An existential strategy corresponds to a subtree GE of G
that contains one child of each (reachable) existential configuration (nodes that are
not reachable any more from the root are not included in GE). We consider the
two children of each node as being ordered according to the indexing (k = 1, 2) of
the two moves of the configuration.

We claim that every valid path of the RMC corresponds to a prefix of the depth-
first-search traversal of an existential game treeGE , where all the leaves in the prefix
are accepting; and conversely every such prefix of a DFS traversal corresponds to a
valid path. Note that when a valid path is at the entry of an existential component
C(q,X), in order for it to continue to be valid it must move to a node u[q,X, i, k, Z]
such that i is the current position of the head, q and X must be the current state
and symbol at cell i, and Z must be the symbol in the tape cell where the head
moves next according to move k = 1 or 2 of the TM. That is, there are precisely
two valid choices corresponding to the two possible moves of the existential player.
The transitions of B are defined so that the states of the new current set P form

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–6 · K. Etessami and M. Yannakakis

the next configuration as the path of the RMC moves to the box corresponding to
the move of the TM. When the path exits the box, if it is still valid, then the set
P is the same as when the path entered the box. After the node v[q,X, i, k, Z], the
set P is updated to restore the configuration as it was when the component C(q, x)
was called. For a universal component C(q,X) there is only one correct choice if
the path is to remain valid. If the path exits the component remaining valid, it
means that it never went through a rejecting component, i.e., the corresponding
subtree of GE that was traversed has only accepting leaves.

If x is accepted by the TM T , then the existential player has a winning strategy,
hence there is a valid path of the RMC that reaches node v0 of C0 and stays there
forever. Thus, with positive probability the RMC follows this path which is not
accepted by B. On the other hand, if x is not accepted by the TM T , then every
path becomes eventually invalid (either because it reaches a rejecting component
or because one of its transitions does not correspond to a TM move) and hence is
accepted by B; thus the probability of acceptance is 1.

We are done with the proof that checking PA(L(B)) = 1 is EXPTIME-hard. By
Theorem 16, the problem is also EXPTIME-complete.

We now sketch how a variation of the same proof shows that probabilistic empti-
ness (PA(L(B)) > 0?) is also EXPTIME-complete.

For each component except C0, add a direct path from entry to exit en→ r → ex
through a new node r where the first edge has probability > 1/2. Every state of
the Büchi automaton B, goes to f on these intermediate nodes. (The purpose of
these paths is to make sure that every component exits with probability 1 - but
these are not valid paths). Remove the self loop of v0, add new nodes y0,z0 to C0,
and edges v0 → y0 → z0 → u0 with probability 1. Also add a new state g to B
which is the only accepting state (f is not accepting anymore). On input y0, all
states of B die (have no transition) except for f that goes to g. On z0, g goes to
the initial state s0.

By the previous proof , (1) if input x is accepted by the TM T , the old RMC
had a path p from the initial vertex to v0 such that the corresponding set of states
of the automaton at the end (for all possible runs) did not include f . (2) If x is not
accepted by the TM T , then for every trajectory of the old RMC, the automaton
has a run that gets to f .

Because of the new paths to the exits that we have added, every component
exits with probability 1 (this follows from basic facts about RMCs, see [Etessami
and Yannakakis 2009]). Hence, infinitely often (i.o.), the trajectory will go to u0,
traverse a path, come out at v0, go to y0,z0, back to u0, and again all over. If the
state set of the Büchi automaton includes f when the path arrives at v0, then it
will go next to g, then reset to the initial state and start again. Therefore, if x is
not accepted by the TM T , this will happen every time, hence g will appear i.o.
and the probability of acceptance PA(L(B) = 1.

If x is accepted by the TM T , and in some iteration the RMC follows the path
p as above then the automaton will die when the path reaches y0. Every time the
process returns to u0 and tries again, there is positive probability that it will follow
the path p, so eventually this will happen at some point with probability 1. When
it happens, the automaton will die and hence will not accept the trajectory. Thus,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–7

in this case PA(L(B)) = 0.
Next, we briefly sketch how we actually only need a fixed RMC, whose size does

not depend on the size of the input tape of the TM. Here is the modification. Drop
the tape cell index i from the u and v nodes of A, and add a self loop to these
nodes; that is, the u and v nodes have now the form u[q,X, k, Z], v[q,X, k, Z] for
q ∈ Q,X,Z ∈ Γ, k = 1, 2. Basically, the RMC is going to guess what is the correct
index i of the cell with the tape head, which will be the number of times it loops at
the node u (and v). The Büchi automaton states keep track of how many times the
RMC goes around the loop at the current vertex u[q,X, k, Z] or v[q,X, k, Z]. In
other words, the BA states have now, besides extended tape symbol δ ∈ ∆ and cell
number i = 1, . . . , n, another counter j = 0, 1, . . . , n for the number of iterations
of the self-loop at the current u or v vertex of the RMC. If the RMC performs the
wrong number of iterations at the current vertex (stays too long or leaves too early)
then the BA transitions to f and the game is in effect over. In particular if the BA
is at state (qX, i, j) and the counter j tries to exceed i without the RMC leaving
the current vertex u[...], or if it leaves u[...] before j reaches i, then the the BA goes
to f . If the RMC leaves the current vertex u[...] exactly at the correct time, then
(qX, i, i) makes the right transition to the appropriate state (Y, i, 0) corresponding
to the Turing machine move. For the other states (δ, i, j) of the BA, first if δ has a
state and is not qX then go to f right away; otherwise, if the state is (δ, l, i) when
the RMC moves out of u[...] and l 6= i, the state assumes that the RMC moved at
the right time (i.e. tape head is at cell i) and acts accordingly: for example if the
head is supposed to move left and new state = p, new symbol (in new position)= Z,
then (δ, l, i) transitions to (δ, l, 0) if l 6= i − 1, to f if l = i − 1 but δ 6= Z, and to
(pZ, l, 0) otherwise. The moves at v[...] that restore the state are similar.

THEOREM 23. For a fixed Büchi automaton B, given a bounded RMC, A, and a
rational value p ∈ [0, 1], we can decide whether PA(L(B)) ≥ p in time polynomial
in |A|.

Proof. If the Büchi automaton B is fixed, then the deterministic automaton B′

has bounded size. Taking the product with a bounded RMC A results in another
bounded RMC A⊗B′ (note that the number of entries and exits of A gets multiplied
by the number of states of B′). The termination probabilities of a bounded RMC
are in general irrational, but, as shown in [Etessami and Yannakakis 2009], we
can answer in polynomial time comparison questions concerning them, using a
procedure for the existential theory of the reals with a bounded number of variables.

We summarize below the method from [Etessami and Yannakakis 2009]. First
the bounded RMC (A⊗B′ in this case) is preprocessed to identify and remove the
vertex-exit pairs with 0 probability. Now use variables x(en,ex) only for the set D of
entry-exit pairs (en, ex) of the components of A⊗B′ that have nonzero probability;
note that there is a bounded number d of such pairs. Let x′ be the restriction of the
variable vector x of vertex-exit probabilities to these variables x(en,ex) for (en, ex) ∈
D. Then the exit probabilities for all the vertex-exit pairs (u, ex) can be expressed
as rational functions of these entry-exit variables. Specifically, for every vertex-exit
pair (u, ex) (including the entry-exit pairs) we can construct in polynomial time two

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–8 · K. Etessami and M. Yannakakis

polynomials f(u,ex)(x
′), g(u,ex)(x

′) such that q∗(u,ex) = f(u,ex)(q
′∗)/g(u,ex)(q

′∗), where

q′∗ is the restriction of the vector q∗ to the set D of (nonzero) entry-exit pairs. The
polynomials f(u,ex)(x

′), g(u,ex)(x
′) have rational coefficients of polynomial bit size,

and have total degree at most n, the number of vertices. As shown in [Etessami
and Yannakakis 2009], the vector q′∗ is the (unique) minimal nonzero solution
to the following set C(x′) of constraints: f(en,ex)(x

′) = g(en,ex)(x
′) · x(en,ex) and

x(en,ex) > 0 for all entry-exit pairs (en, ex) ∈ D, and
∑

ex x(en,ex) ≤ 1 for all entries
en of each component of the RMC. This solution q′∗ of C(x′) can be extended to
compute the vector q∗ for all vertex-exit pairs (u, ex) using the equations q∗(u,ex) =

f(u,ex)(q
′∗)/g(u,ex)(q

′∗). Furthermore the constraint set C′(x) has the property that
if we take any other solution r′ of C(x′) and extend it similarly to all vertex-exit
pairs, it results in a vector r that is a fixed point of the original set x = P (x) and
hence is r ≥ q∗. We can therefore determine whether q∗(u,ex) ≤ c for some vertex exit

pair (u, ex) and rational c by adding to the constraint set C(x′) the variable x(u,ex)

and constraints f(u,ex)(x
′) = g(u,ex)(x

′) · x(u,ex), and x(u,ex) ≤ c, and invoking an
algorithm for the existential theory of the reals with a bounded number of variables.
Similarly, we can determine if a vertex u is deficient in polynomial time by adding
to C(x′) variables xu,ex for all exits ex ∈ Exi of the component of u and adding
constraints f(u,ex)(x

′) = g(u,ex)(x
′) · x(u,ex) for all ex ∈ Exi, and the constraint∑

ex∈Exi
x(u,ex) < 1.

Construct now the Markov chain M ′

A,B, which is the conditioned summary chain
of the RMC A ⊗ B′. We know its set of states, which are the deficient states of
the RMC A ⊗ B′, and its transitions. We do not compute explicitly the values
of the transition probabilities, which are irrational numbers, but rather compute
them symbolically as rational functions of the vector x′ of the entry-exit proba-
bilities of the RMC A ⊗ B′. Namely, note that the non-exit probability ne(u) of
a vertex u of A ⊗ B′ is ne(u) = 1 −

∑
ex∈Exi

f(u,ex)(x
′)/g(u,ex)(x

′). The poly-
nomials f(u,ex)(x

′), g(u,ex)(x
′) have total degree n, so ne(u) is a rational function

fu(x′)/gu(x′) where fu, gu are polynomials of total degree ≤ dn = O(n), also with
rational coefficients of polynomial bit-size, and fu, gu can be easily constructed in
polynomial time. It follows from the definition of the conditioned summary chain
M ′

A,B that the transition probabilities are also rational functions of x′ that can be
constructed in polynomial time.

We determine the accepting states and accepting edges, and thus the accepting
bottom SCCs of the chain M ′

A,B. As in the proof of Theorem 21, we define a
revised Markov chain M ′′

A,B by removing all accepting bottom SCCs and replacing
them with a new absorbing node v∗; all transitions going to accepting bottom
SCCs are directed now to v∗. The desired probability PA(L(B)) is equal to the
probability that a trajectory of M ′′

A,B starting at the initial state u∗ = (v0, {q0})
hits v∗. If we had the transition probabilities explicitly, we would compute this
probability PA(L(B)) by setting up and solving a linear system of equations. By
Cramer’s rule, PA(L(B)) is equal to the ratio of the determinants of two matrices,
det(F)/det(G), whose entries are the transition probabilities, and the constants 0,1.
Now the transition probabilities are represented symbolically by rational functions
in x′, so the probability PA(L(B)) is equal to the ratio det(F (x′))/det(G(x′)) of the
determinants of two matrices F (x′), G(x′) whose entries are ratios of polynomials

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–9

of total degree O(n). Clearing the denominators in the matrix F (x′), we can write
it as F (x′) = F1(x

′)/f2(x
′) where f2(x

′) is the product of all the denominators
(a polynomial of total degree O(n3)) and F1(x

′) is a matrix whose entries are
polynomials of total degree at most O(n3). Since x′ has a fixed number d of
variables, each of these polynomials has at most O(n3d) terms and can be computed
explicitly in polynomial time. We have det(F (x′)) = det(F1(x

′))/(f2(x))
n. The

numerator det(F1(x
′)) is a polynomial f1(x

′) of total degree at most O(n4) and
has at most O(n4d) terms. As in [Etessami and Yannakakis 2009] we can compute
f1(x

′) explicitly using interpolation, by substituting a sufficient number of tuples
for the variables (e.g., O(n4) values for each variable) and solving a linear system
of equations to compute the coefficients of all the possible O(n4d) terms of f1(x

′).
The denominator (f2(x))

n is also a polynomial of total degree O(n4) and can be
computed easily. Similarly det(G(x′)) can be computed as the ratio g1(x

′)/g2(x
′)

of two polynomials, and hence PA(L(B)) = f1(x
′)g2(x

′)/f2(x
′)g1(x

′) = f(x′)/g(x′)
is expressed as the ratio of two polynomials f(x′), g(x′) of total degree O(n4).

We can then test whether PA(L(B)) ≥ p by invoking a procedure for the ex-
istential theory of the reals with bounded number of variables on the set of con-
straints consisting of the system C(x′) for the RMC A ⊗ B′ defined above, con-
straints (fu(x′))2 > 0 for all deficient vertices u of the RMC A ⊗ B′ (recall
ne(u) = fu(x′)/gu(x′), thus (fu(x′))2 > 0 iff ne(u) 6= 0), t · g(x′) = f(x′) where
t is a new variable that stands for PA(L(B)), and t ≥ p. The constraints C(x′)
and (fu(x′))2 > 0 for deficient vertices u ensure that there is a unique solution
which is q′∗, the vector of entry-exit probabilities of A ⊗ B′, and the constraints
t · g(x′) = f(x′), t ≥ p imply that PA(L(B)) ≥ p.

LEMMA 31. Suppose that C satisfies the three conditions of Theorem 30. For
every probable pair (u, t) with u ∈ K, the following are true for each i = 1, . . . , n.

(1) There is a node (u, t′) of C such that t and t′ agree in the first i coordinates.

(2) There is a finite path α(u, t, i) of M ′′

A starting at u such that the type of al-
most all trajectories of the RMC from u that do not exit u’s component, whose
summary image has prefix α(u, t, i), agrees with t in the first i coordinates.

Proof. We use induction on i. The basis, i = 1 is trivial: ϕ1 is a proposition
and part (1) is satisfied by any node (u, t′) of C with first component u. Note
that C has such a node since every path of K is the projection of a path of C (by
condition (2) and Lemma 29). As for part (2), we let α(u, t, 1) be the trivial path
that consists of node u.

For the induction step, the lemma follows trivially if ϕi is a proposition, or node
i of the parse tree of ϕ is labelled with a Boolean connective, or if it is labelled with
U and the value of ti is determined uniquely by property (3) of consistency, i.e.,
ϕi = ϕjUϕl and tl = 1 or ti = tj = 0. In these cases, if we have a probable pair (u, t)
and a node (u, t′) of C such that t and t′ agree in the first i− 1 coordinates, then
they must agree also in the ith coordinate. Also, we may let α(u, t, i) = α(u, t, i−1).
There are two remaining cases.

Case 1: i is labelled with the next operator. Suppose that ϕi = ©ϕj . Let (u, t)
be a probable pair and take any typical trajectory X of the RMC starting at u that

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–10 · K. Etessami and M. Yannakakis

does not exit u’s component and has type t. Consider the summary image ρ(X) of
X , let v be the second node of ρ(X) and s the type of the suffix of X from (this
occurrence of) v on. Since u ∈ K, K is a bottom SCC of M ′

A, and there is an edge
u→ v, it follows that also v ∈ K.

Subcase 1.1. Suppose first that u is not a call port. Then v is simply the second
vertex of the trajectory X . Clearly, v is in the same component of the RMC as u,
the trajectory does not exit v’s component and since it is typical, the pair (v, s) is
probable. By the induction hypothesis, there is a node (v, s′) of C such that s and
s′ agree in the first i− 1 coordinates. By condition (2) of the theorem and Lemma
29, (v, s′) has an incoming edge from a node (u, t′) of C with first component
u. This node (u, t′) fulfils the required property 1: the first i coordinates of t′

are determined from the first i − 1 coordinates of s′ in the same way that the
corresponding coordinates of t are determined from s, and note that ti = sj and
t′i = s′j , hence ti = t′i. For part 2, we let α(u, t, i) be u→ v followed by α(v, s, i−1).

Subcase 1.2. Suppose that u is a call port u = (b, en). The second node v of
ρ(X) is either the entry en of the component of A corresponding to the box b, or
it is a return port v = (b, ex) of the box. In the first case, the argument is exactly
the same as above; note that the suffix of X from v = en on does not exit v’s
component and (v, s) is a probable pair. So suppose that v = (b, ex) is a return
port of the box b, and let π be the prefix of X from u to v. The type t at u is the
type that is backwards implied by the path π and the type s. Again, (v, s) is a
probable pair and thus C contains a node (v, s′) where s′ agrees in the first i − 1
coordinates with s. The equivalence class of the path π corresponds to one of the
parallel summary edges of M ′′

A, say edge a, from u to v. From Lemma 29 it follows
that C contains a corresponding edge (u, t′) → (v, s′), such that t′ is the type that
is backwards implied from the path π and s′. Since s and s′ agree in the first i− 1
coordinates, the same is true for all the types implied at corresponding nodes of
the path π, and thus also at u, the first node of the path, as well as at the second
node of the path π. Since ti and t′i are equal to the respective coordinates l at the
second node, it follows that t and t′ agree in the first i coordinates. As for part 2,
we let α(u, t, i) be the summary edge a from u to v (corresponding to the path π)
followed by the path α(v, s, i− 1).

Case 2: Node i is labelled with the Until operator. Suppose that ϕi = ϕjUϕl,
and that tj = 1, tl = 0 (we took care of the other possibilities for t). Take a typical
trajectory X of the RMC starting at u that does not exit u’s component and has
type t. Let X = 〈ǫ, u〉x1x2 . . ., and let Y = ρ(X) = uy1y2... be its summary image.
We will distinguish cases according to the value of ti.

Subcase 2.1: ti = 1. Let m be the smallest index such that the suffix xmxm+1 . . .
of X satisfies ϕl; such an index m exists by the definition of U , and for all k < m,
the corresponding suffix from xk on satisfies ϕj . Suppose first that the summary
image Y = ρ(X) includes the node corresponding to xm, i.e. xm = 〈β, v〉 and all
subsequent xq, q > m include the context β. Let s = tm be the type of the suffix
of X from xm on. Since the trajectory is typical, (v, s) is a probable pair, and the
summary chain contains a path π′ from u to v (namely, the summary image of the
prefix of X up to xm). Therefore, v is in the same bottom SCC K as u. By the
induction hypothesis, C contains a node (v, s′) such that s′ agrees with s in the first

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–11

i− 1 coordinates. From Lemma 29, the path π′ from u to v in K is the projection
of a path in C from some node (u, t′) to (v, s′). It follows then that t and t′ agree
in the first i coordinates (they agree on coordinate i because all nodes (z, q) along
the path have qj = 1 and the final node has s′l = sl = 1). We let the path α(u, t, i)
be π′ followed by the path α(v, s, i− 1).

Suppose that the image trajectory Y = ρ(X) in the summary chain does not
include the node corresponding to xm, i.e. it is shortcut by a summary edge (w, v),
where w = (b, en), v = (b, ex) for some box b. That is, for some indices p < m,
q > m, we have xp = 〈β,w〉, xq = 〈β, v〉 and all states of the trajectory X between
xp and xq include the context βb. Let r = tp, s = tq. Again v ∈ K and the pair
(v, s) is probable. By the induction hypothesis, C contains a node (v, s′) such that
s that agrees with s′ in the first i − 1 coordinates. From Lemma 29, the SCC C
contains a path from some node (u, t′) to (v, s′) with projection the path π′ of M ′′

A

from u to v corresponding to the prefix of X up to xq. If we consider this prefix of
X up to xq, substitute s′ for the type at xq in place of s, and then infer backwards
the types t′k at the preceding states xk, k < q, obviously all the types t′k will agree
in the first i−1 coordinates with tk. This implies in particular that the type at xm

will have the lth coordinate t′ml = 1. Since the jth coordinate in all the preceding
states is 1, it follows that t′i = 1, hence t′ agrees with t in the first i coordinates.
We let again the path α(u, t, i) be π′ followed by the path α(v, s, i− 1).

Subcase 2.2: ti = 0. Recall that tj = 1, tl = 0. We consider two further subcases.

Subcase 2.2.1: There is a typical trajectory X = 〈ǫ, u〉x1x2 . . ., starting at u that
does not exit u’s component, has type t, and some suffix ofX from some state xm on
satisfies ϕj = ϕl = 0. The arguments are very similar to the case ti = 1. Consider
the summary image Y = ρ(X). Either it contains the node corresponding to xm

or the node is shortcut by a summary edge. Consider the second case; the first
case is similar and simpler. For some indices p < m, q > m, we have xp = 〈β, u〉,
xq = 〈β, v〉 and all states of the trajectoryX between xp and xq include the context
βb. Let r = tp, s = tq. Again v ∈ K and the pair (v, s) is probable, so by the
induction hypothesis, there is a node (v, s′) ∈ C such that s′ agrees with s in the
first i−1. There is a path in C from some node (u, t′) to (v, s′) with projection the
path π′ of K from u to v that is the summary image of the prefix of X up to xq.
Again we can infer backwards the types and conclude that t, t′ agree in the first i
coordinates.

Subcase 2.2.2: For every typical trajectory X , starting at u that does not exit u’s
component and has type t, every suffix of X satisfies ϕj = 1 or ϕl = 1. Consider
such a typical trajectory X = 〈ǫ, u〉x1x2 Suppose that there is an index m
such that the suffix xm.... satisfies ϕl = 1, and let m be the smallest such index.
Since ϕl = 0 for smaller indices k < m, it follows that ϕj = 1 for them, hence
from the semantics of the Until operator it follows that trajectory X satisfies ϕi,
contradicting the assumption that ti = 0. Therefore, it must be the case that every
suffix xm.... satisfies ϕl = 0 and hence ϕj = 1. We will argue that for any v ∈ K,
every probable pair (v, s) has sl = 0, sj = 1, and there is no edge w → v of K that
is the projection of a probable summary edge into (v, s) with label l.

Let (v, s) be a probable pair with v ∈ K and consider the finite path α(v, s, i−1).
Every trajectory of the summary chain M ′′

A starting at u will contain this path as

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–12 · K. Etessami and M. Yannakakis

a subpath with probability 1. In other words, for almost every trajectory X of the
RMC that starts at u and does not exit u’s component, its summary image ρ(X)
will contain this path. Since the type of almost all trajectories whose ρ image has
prefix α(v, s, i−1) agrees with s in the first i−1 coordinates, and since every suffix
of X satisfies ϕl = 0 and ϕj = 1, it follows that sl = 0 and sj = 1.

Suppose that there is a probable summary edge (w, r) → (v, s) whose label
includes l, and with projection the edge a = w → v of K. Let π be a u − v
path of the RMC corresponding to the summary edge. We know that rl = sl = 0
and rj = sj = 1. Consider the path consisting of the summary edge a followed
by the path α(v, s, i − 1). Every trajectory of the summary chain M ′′

A starting
at u will contain this path as a subpath with probability 1. Thus, almost every
non-exiting trajectory X of the RMC starting at u will have an image ρ(X) that
contains this path. Let X = 〈ǫ, u〉x1x2 . . . be such a typical trajectory of type t
where xp gets mapped to w in the summary chain, xq is mapped to v, and the
subpath π = xp . . . xq is mapped to the summary edge a = w → v. We may assume
wlog (it happens a.s.) that the type of the suffix from xq on agrees with s in the
first i− 1 coordinates. If we infer the types along the path π backwards from xq,
some intermediate state xm of the path will have tml = 1 because the summary edge
includes label l, and clearly this label depends only on the first i− 1 coordinates of
s. By our assumption, no suffix of the trajectory satisfies ϕj = ϕl = 0. It follows
that the whole trajectory satisfies ϕi = ϕlUϕj , contradicting our assumption that
ti = 0. We conclude that there is no probable summary edge (w, r) → (v, s) in G
with label l where w, v ∈ K.

In the same way that we showed that if one node of a SCC of G is probable then
all the nodes are probable, we can argue that the same property is true if we restrict
attention to the first i− 1 coordinates of the types. This implies that for all nodes
(v, s′) of C we have s′l = 0 and s′j = 1. Also, no summary edge (w, r′) → (v, s′)
is labelled l. (Since l ≤ i − 1, if there was a w − u path π that yielded such a
l-labelled summary edge, then the above argument would still apply by restricting
types to the first i − 1 coordinates). By condition (3) of Theorem 30, it follows
that all nodes (v, s′) of C have their ith coordinate s′i = 0. So we may let (u, t′) be
the node of C that agrees with (u, t) in the first i − 1 coordinates. We may take
α(u, t, i) = α(u, t, i− 1).

THEOREM 33. The qualitative problem of determining whether a given RMC A
satisfies a LTL formula ϕ with probability 1 (i.e., whether PA(ϕ) = 1) is EXPTIME-
hard (thus EXPTIME-complete). Furthermore, this holds even if the RMC is fixed
and each component has one entry and one exit.

Proof. We reduce from the acceptance problem for alternating linear space
bounded Turing Machines. As is well known, ASPACE(S(n)) = ∪c>0DTIME(cS(n)).
There is a fixed linear space bounded alternating Turing machine, T , such that the
problem of deciding whether T acccepts a given input of length n is EXPTIME-
complete. We can assume wlog that T has one tape, and uses space n. The tape
initially contains the given input x. Recall that an alternating TM has four types
of states: existential, universal, accepting and rejecting. We assume wlog that the
TM has two possible moves from each existential and universal state, and it halts

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–13

when it is in an accepting or rejecting state. Let Γ be the tape alphabet, Q the
set of states and ∆ = Γ ∪ (Q × Γ) the extended tape alphabet. A configuration
of the TM is expressed as usual as a string of length n where the ith symbol is
(q,X) ∈ (Q× Γ) (we will usually write qX instead of (q,X)) if the head is on the
tape cell i, the state is q and the tape symbol is X , and otherwise the ith symbol
is the tape symbol X in cell i. The type of a configuration (existential, universal,
etc.) is determined by the type of the state. A computation is a sequence of config-
urations starting from the initial one, according to the transition rules of the TM.
We assume wlog that all computations of the TM halt.

There is a natural game associated with an alternating TM between two players,
an existential player E and a universal player U. The positions of the game corre-
spond to the configurations. Player E moves at the existential configurations and
player U at the universal ones. Accepting configurations are winning positions for
player E, and rejecting configurations for player U. An input x is accepted by the
TM iff the existential player E has a winning strategy from the initial configuration
corresponding to x.

We will construct a RMC, A, and a LTL formula ϕ so that A satisfies ϕ with
probability 1 iff x is not accepted by T , i.e. E does not have a winning strategy.

Let us first mention that the only thing that will matter about A, is its “struc-
ture”, i.e., which edges have non-zero probability. We thus describe these edges
without defining the probabilities explicitly: any probabilites that sum to 1 will do.

The construction of the RMC A is similar to the construction in the proof of
Theorem 17. The RMC A has an initial component C0 and a component C(q,X)
for each state q ∈ Q and tape symbol X ∈ Γ. Let q0 be the initial state of the TM
T , and let x = x1 · · ·xn be the input. Component C0 of A has an edge from its
entry to a node u0, an edge from u0 to a box b0 that is mapped to C(q0, x1) and
an edge from the exit of the box to an absorbing node v0 that has a self-loop.

Component C(q,X), where q is an existential state and X ∈ Γ, is structured as
follows. Suppose that the two moves of the TM when it is in state q and reads X
are (pk, Yk, Dk), k = 1, 2, where pk ∈ Q is the next state, Yk is the symbol written
over X , and Dk = L/R (left/right) is the direction of the head movement. For each
k = 1, 2, and Z ∈ Γ, the component has a set of nodes u[q,X, k, Z], v[q,X, k, Z],
and a set of boxes b[q,X, k, Z], each mapped to component C(pk, Z). The entry
en[q,X] of the component C(q,X) has edges to each of the nodes u[q,X, k, Z], every
node u[q,X, k, Z] has an edge to itself and to the call port of the corresponding box
b[q,X, k, Z], the return port of each such box has an edge to the corresponding node
v[q,X, k, Z], and each of these nodes has an edge to itself and to the exit ex[q,X]
of the component.

Component C(q,X), where q is a universal state and X ∈ Γ, is structured as
follows. Let again the two moves of the TM for q and X be (pk, Yk, Dk), k = 1, 2.
For each k = 1, 2, and Z ∈ Γ, the component has again a set of nodes u[q,X, k, Z],
v[q,X, k, Z], and a set of boxes b[q,X, k, Z] mapped to C(pk, Z), and has in addition
one more node w[q,X]. The entry of the component C(q,X) has edges to each of
the nodes u[q,X, 1, Z], every node u[q,X, 1, Z] has an edge to itself and to the call
port of the corresponding box b[q,X, 1, Z], the return port of each such box has an
edge to the corresponding node v[q,X, 1, Z], and each of these has an edge to itself

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–14 · K. Etessami and M. Yannakakis

and to node w[q,X]. Node w[q,X] has edges to all the nodes u[q,X, 2, Z], every
node u[q,X, 2, Z] has an edge to itself and to the call port of the corresponding
box b[q,X, 2, Z], the return port of each such box has an edge to the corresponding
node v[q,X, 2, Z], and each of these has an edge to itself and to the exit of the
component.

Component C(q,X), where q is a halting (accepting or rejecting) state andX ∈ Γ
has an edge from its entry to a node u[q,X], which has an edge to itself and to a
node v[q,X], and v[q,X] has an edge to itself and to the exit of the component.

We will construct a LTL formula ϕ such that player E has a winning strategy σ
on input x iff there is a path πσ of the RMC A from the initial state to v0 after
which the process stays at v0 forever and the path violates ϕ. Before describing ϕ,
we will describe how the path πσ is constructed from the winning strategy σ of E.

Consider the game tree G of the game corresponding to the TM on the given
input x: The nodes of the tree are the configurations reached by the TM in its
computation, the root is the initial configuration, the children of each node are the
two successor configurations, and the leaves correspond to halting configurations.
An existential strategy σ corresponds to a subtree Gσ of G that contains one child
of each (reachable) existential configuration (nodes that are not reachable any more
from the root are not included in Gσ). We consider the two children of each node
as being ordered according to the indexing (k = 1, 2) of the two moves of the
configuration. If σ is a winning strategy of player E then all the leaves of Gσ are
accepting configurations.

Perform a depth-first-search traversal α = (a1, a2, ...) of the existential game tree
Gσ. We map this traversal to the path πσ of the RMC A as follows. Initially, πσ

starts at the initial entry node moves to u0, enters the box b0 and it is thus in state
〈b0, en[q0, x1]〉.

In the general step l, suppose that the traversal α is at a node al (initially, a1

is the root of the tree), and moves next to al+1 which is either a child of al or its
parent. Suppose that al is an existential node and al+1 is its child, corresponding to
the kth move (k = 1 or 2) of the existential configuration cl of the TM corresponding
to node al. Let q be the state of the TM in configuration cl, and let i be the index
of the cell where the tape head is and let X be the symbol at cell i. Then the path
πσ constructed so far is at this point at a state 〈β, en[q,X]〉 where the context β
consists of a sequence of boxes corresponding to the sequence of configurations on
the path of the tree Gσ from the root to the current node al. The path πσ of the
RMC moves from the entry en[q,X] of component C(q,X) to u[q,X, k, Z] where Z
is the symbol in the current configuration cl of the new cell (i−1 or i+1) to which
the head will move next according to the kth move of the TM. The path stays at
u[q,X, k, Z] for i steps, and then it moves to the entry of the box b[q,X, k, Z]. The
new state of the trajectory πσ becomes 〈βb[q,X, k, Z], en[pk, Z]〉, ready to simulate
the next step of the traversal α.

If the current node al of the DFS traversal α corresponds to a universal config-
uration cl and the next node al+1 is its first child, then the path πσ is extended
similarly from the entry node of the appropriate component. If al+1 is the second
child of al, then the path is at this point at a state 〈β,w[q,X]〉, where the context
β again consists of a sequence of boxes corresponding to the sequence of configu-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–15

rations on the path of the tree Gσ from the root to the current node al, and q, X
are respectively the state and tape symbol under the head of the current configu-
ration cl. From there the path is extended similarly by moving to the appropriate
successor u[q,X, 2, Z], staying there for i steps (where i is the index of the cell of
the tape head) and entering then the box b[q,X, 2, Z], ready for the next step.

If al is a leaf, then the path loops i times at u[q,X] and at v[q,X] and then
proceeds to the exit of the current component C(q,X) and returns to the return
port of the innermost box b[q′, X ′, k,X] from the context. Note that al+1 is the
parent of al in the tree, and the corresponding configuration has state q′, tape
head symbol X ′ and the head is at some cell j. The path πσ then proceeds to
v[q′, X ′, k,X], stays there for j steps and then moves on to its successor, which is
either the node w[q′, X ′] (if cl+1 is a universal configuration and al was its first
child) or the exit node ex[q′, X ′].

In general, if the next step al → al+1 of the DFS traversal is a backtracking step
from a node to its parent, the path πσ of the RMC is extended in a similar way. At
the end, when the traversal α returns to the root of the tree, the path πσ reaches
the return port of the box b0 of the top component C0, and from there it goes to
v0.

We will construct a LTL formula ξ which says that the path of the RMC is of
the form πσ described above, corresponding to a DFS traversal α of an accepting
existential strategy tree Gσ. We let ϕ = ¬ξ. Then PA(ϕ) < 1 iff PA(ξ) > 0 iff there
is such a path πσ iff E has a winning strategy, i.e. iff the TM accepts the input x.

For simplicity, we have one proposition for each node of the RMC. The formula ξ
is a conjunction of several subformulas. First, we want the path to reach v0, and we
do not want it to go through a rejecting state. So, let ξ1 = (∧q,X¬u[q,X])Uv0 where
the conjunction ranges over all pairs (q,X) with q a rejecting state and X ∈ Γ.

Second, we build a formula ξ2 that ensures that the tape head starts from cell 1
and moves correctly in each step. The position of the tape head is represented by
the number of iterations at a vertex u[] or at a vertex v[]. Let u be the disjunction
of all the u[] propositions (not u0), and similarly let v be the disjunction of all the

v[] propositions (not v0). The expression ψi = (¬u) ∧ (
∧i

j=1 ©
ju) ∧ (¬ ©i+1 u)

says that in the next step the path moves to a u[] node and stays there for exactly
i steps. Similarly we can define an expression ψ′

i for v. For the initialization part,
the formula ¬uUψ1 says that the head starts at cell 1, and is included in ξ2. The
formula 2[(¬u∧©u) → ∨n

i=1ψi] says that the path never loops more than n times
at a node u[], and is also included in ξ2, and similarly we include a corresponding
formula for v.

For a state-symbol pair (q,X), suppose that the kth transition (k = 1, 2) of
the TM from (q,X) is (pk, Yk, Dk), where Dk is L or R, say for concreteness that
Dk = L. Then, if the path is at a vertex u[q,X, k, Z] and stays for i steps there,
which means that the head is at cell i, we want to ensure that the next time the path
goes to a u[] node, it stays there for i−1 steps. Let χ(i, L) = ψi∧©i+1(¬uUψi−1)).
We include in ξ2 the formula 2[(¬u∧©

∨
Z u[q,X, k, Z]) →

∨n
i=1 χ(i, L)]. We define

an analogous expression χ(i, R) for right moves and include in ξ2 an analogous
formula for transitions where the head moves right.

Similar formulas are defined and included in ξ2 for the v nodes to ensure that they

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–16 · K. Etessami and M. Yannakakis

restore the correct head position during the backtracking when we return from a
recursive call. Note that the tag [q,X, k, Z] of the box (and the subsequent v node)
tells us which way the head moved when we entered the box, so that we move it in
the opposite direction to restore its position.

If q is a universal state, then we include a formula in ξ2 to ensure that the number
of iterations at a node v[q,X, 1, Z] is the same as the number of iterations at the
next node u[q,X, 2, Z ′]. For q a halting state, we have a subformula in ξ2 that
matches the number of iterations at the u[q,X] node with those at the next v[q,X]
node. The formula ξ2 is the conjunction of all these subformulas.

Finally, we have a formula ξ3 which ensures that in every cell i the tape symbol
is initially the input symbol xi and thereafter it is only changed when the head
is at that cell. That is, (1) the first time that the head is at cell i (i.e., when
ψi holds for the first time, if ever) the tape symbol is xi; this can be expressed as
2[¬ψiU((ψi∧©u[xi])∨v0)], where u[xi] is the disjunction of all the u[] propositions
with tape symbolX = xi. (2) If a step puts a symbol Y at cell i (this happens either
at a u[] node that moves to a new configuration or at a v[] node that restores an old
configuration), then the next time that the head moves to cell i (if there is a next
time) it finds the same symbol Y there. First construct a formula put(Y, i), which
is the disjunction of all ψi ∧ ©u[q,X, k, Z], where the kth transition of (q,X) is
(pk, Y,Dk), and of all ψ′

i∧©v[q, Y, k, Z], for all q, k, Z. Then we have 2[put(Y, i) →
©i+1(¬ψiU((ψi ∧©u[Y]) ∨ v0)].

The formula ξ is the conjunction of ξ1, ξ2 and ξ3.
A trajectory of the RMC satisfies ξ iff it has as a prefix the path πσ for a winning

strategy σ of the existential player.

LEMMA 34. Probabilities P ′(u, t) satisfy constraints 2a-2c.

Proof. (2a) is obvious: Every trajectory that starts at u and does not exit must
have some type, and the types t for which (u, t) is not probable (for which we did
not include variables) have probability 0.

For (2b), consider the typical trajectories X that start at u and do not exit u’s
component. Then Y = ρ(X) is a trajectory of M ′

A. With probability p′u,v the
second vertex is v, the trajectory does not exit the component of v (which is the
same as that of u), and the trajectory from v on has type s with probability P ′(v, s);
the type of X will be t iff there is an edge (u, t) → (v, s) in H .

For (2c), consider again the typical trajectoriesX that start at u = (b, en) and do
not exit u’s component, and let Y = ρ(X). There are two kinds of such trajectories.
The first kind consists of those that never exit the box b, that is, they enter the
component corresponding to b at the entry node en and never reach an exit. This
happens with probability p′u,en. The subsequent trajectory from en does not exit
its component, and has type s will probability P ′(en, s); the type of the whole
trajectory X will be t iff there is an edge (u, t) → (en, s) in H . The second kind of
trajectories X consists of those that eventually exit the box b at some return port
v = (b, ex), (i.e. v is the second node of the image trajectory Y = ρ(X) in M ′

A),
but then the rest of X from v does not reach the exit of the component of v (which
is the same as the component of u). This happens with probability p′u,v. The rest
of the trajectory from v has type s with probability P ′(v, s). Then X has type t

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Model Checking of Recursive Probabilistic Systems · App–17

if the u − v path that was followed to exit the box b implies back t from s; this
happens with probability p′u,vfu,v,t,s.

LEMMA 35. The system (2) of linear equations in the variables z(u, t) has a
unique solution.

Proof. From the summary chain M ′

A we form a refined chain M ′′

A as described
in the previous section, where we replace every summary edge u→ v of M ′

A by a set
of parallel edges, one for each equivalence class of u−v paths, and we distribute the
transition probability of the edge u→ v among these parallel edges proportionately
to the probability of the paths of the RMC that they represent. Then p′u,vfu,v,t,s

is the sum of transition probabilities on the parallel edges of M ′′

A corresponding to
the classes where s at v maps back to t at u.

Let us also introduce parallel edges and edge weights in the graph H : Replace
every summary edge (u, t) → (v, s) of H by a set of parallel edges, one for each
equivalence class of u− v paths that imply back t at u from s at v. Let H ′ be the
resulting multigraph. Now every edge a′ of H ′ corresponds to a unique edge a of
M ′′

A; give weight to edge a′ equal to the transition probability on edge a of M ′′

A.
The edge weights of H ′ do not make H ′ into a Markov chain because weights out
of a node may not sum to 1. Note that every path of H ′ corresponds to (we’ll say,
projects onto) a unique path of M ′′

A. Furthermore, for every node (v, s) of H ′ and
every edge a = u → v of M ′′

A, the graph H ′ contains a unique corresponding edge
a′ into (v, s); the head of the edge is a node (u, t) for some t.

The proof of the lemma uses a similar technique to that of Proposition 5.11 in
[Courcoubetis and Yannakakis 1995]. Write the system of equations (2b-2c) as
z = Bz where z is the vector of variables z(u, t) and B is the coefficient matrix
of the right-hand side. The rows and columns of B are indexed by the probable
pairs, and the entry B[(u, t), (v, s)] is equal to the sum of the weights of the edges
(u, t) → (v, s) of H ′. If α is a finite path (sequence of edges) of M ′′

A or H ′, then
we denote by w(α) the product of the probabilities (or weights) of the edges along
the path α and call it the weight of α. Consider the jth power Bj of B. Then
Bj [(u, t), (v, s)] is the sum of the weights of the paths α′ of length j of H ′ from
(u, t) to (v, s). Every such path projects to a unique path α of M ′′

A from u to v,
and α has the same weight.

A trajectory of the (refined) summary Markov chain M ′′

A starting at any node u
hits with probability 1 eventually a bottom SCC K. Recall from Lemma 31 that
if v is any node of K and s any type such that (v, s) is probable, then there is a
finite path α(v, s, n) such that any trajectory of M ′′

A from v with prefix α(v, s, n)
has type s with probability 1. A trajectory from u that hits K will eventually with
probability 1 contain the path α(v, s, n) as a subpath. If β is finite a path of M ′′

A

from a node u that hits a bottom SCC K and includes a subpath α(v, s, n) for some
v ∈ K and type s such that (v, s) is probable, then we will say that β is determined.
We assign to such a β a unique type t, which is the type that is backwards implied
by the prefix from u to the occurrence of v right before the subpath α(v, s, n) and
the type s at v. Clearly, H ′ contains a path corresponding to β starting at (u, t)
(the path goes on to (v, s) and continues from there). Furthermore, H ′ has no path
corresponding to β starting at any other node (u, t′) for any other type t′ 6= t. The

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–18 · K. Etessami and M. Yannakakis

reason is that such a path would have to go to a node (v, s′) with s′ 6= s followed
by a path corresponding to α(v, s, n); but then (v, s′) cannot be a probable pair,
because almost all trajectories of M ′′

A from v with prefix α(v, s, n) have type s.
Let dj(u, t, v) be the sum of the weights (probabilities) of the paths β of M ′′

A of
length j from u to v that are determined of type t. Let dj(u, t) =

∑
v dj(u, t, v),

let dj(u) =
∑

t dj(u, t), and let ǫj(u) = 1 − dj(u). The last quantity ǫj(u) is the
probability that a path of M ′′

A of length j starting at u is not determined. Thus,
by the definition and our discussion above, ǫj(u) → 0 as j → ∞.

Consider a path β from u to v of length j that is determined of type t, i.e.
β contributes weight w(β) to dj(u, t, v). As we said above, no node (u, t′) with
t′ 6= t has a path corresponding to β. For every node (v, s) of H ′ there is a path
ending at (v, s) that corresponds to β; this path has to start at (u, t). Therefore
β contributes weight w(β) to Bj [(u, t), (v, s)] for every s, and does not contribute
to any Bj [(u, t′), (v, s) with t′ 6= t. Therefore, for any s we have dj(u, t, v) ≤
Bj [(u, t), (v, s)].

Conversely, consider a path β ofM ′′

A that contributes its weight toBj [(u, t), (v, s)],
i.e. β is the projection of a path in H ′ of length j from (u, t) to (v, s). If β is de-
termined then its type must be t and its weight is included in dj(u, t, v). The
set of paths of length j that are not determined have total weight ǫj(u). There-
fore, Bj [(u, t), (v, s)] ≤ dj(u, t, v) + ǫj(u). Since limj→∞ ǫj(u) = 0, it follows that
limj→∞(Bj [(u, t), (v, s)] − dj(u, t, v)) = 0.

Note that if a path β is determined then so are all its extensions and they have
the same type t. Therefore, dj(u, t) is a non-decreasing function of j, and since it is
bounded from above by 1, it has a limit d∞(u, t). If z is any solution to the system
(2) then for any j it satisfies z = Bj

z. Thus, z(u, t) =
∑

(v,s)B
j [(u, t), (v, s)]z(v, s)

=
∑

(v,s)(B
j [(u, t), (v, s)] − dj(u, t, v))z(v, s) +

∑
(v,s) dj(u, t, v)z(v, s). As j tends

to ∞, the first term tends to 0 and the second term tends to d∞(u, t). It follows
that z(u, t) = d∞(u, t).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

