Model Checking of Recursive Probabilistic Systems

KOUSHA ETESSAMI University of Edinburgh MIHALIS YANNAKAKIS Columbia University

Recursive Markov Chains (RMCs) are a natural abstract model of procedural probabilistic programs and related systems involving recursion and probability. They succinctly define a class of denumerable Markov chains that generalize several other stochastic models, and they are equivalent in a precise sense to probabilistic Pushdown Systems. In this paper, we study the problem of model checking an RMC against an ω -regular specification, given in terms of a Büchi automaton or a Linear Temporal Logic (LTL) formula. Namely, given an RMC A and a property we wish to know the probability that an execution of A satisfies the property. We establish a number of strong upper bounds, as well as lower bounds, both for qualitative problems (is the probability = 1, or = 0?), and for quantitative problems (is the probability $\geq p$?, or, approximate the probability to within a desired precision). The complexity upper bounds we obtain for automata and LTL properties are similar, although the algorithms are different.

We present algorithms for the qualitative model checking problem that run in polynomial space in the size |A| of the RMC and exponential time in the size of the property (the automaton or the LTL formula). For several classes of RMCs, including single-exit RMCs (a class that encompasses some well-studied stochastic models, e.g., stochastic context-free grammars) the algorithm runs in polynomial time in |A|. For the quantitative model checking problem, we present algorithms that run in polynomial space in the RMC and exponential space in the property. For the class of linearly recursive RMCs we can compute the exact probability in time polynomial in the RMC and exponential in the property. For deterministic automata specifications, all our complexities in the specification come down by one exponential.

For lower bounds, we show that the qualitative model checking problem, even for a fixed RMC, is already EXPTIME-complete. On the other hand, even for simple reachability analysis, we know from our prior work that our PSPACE upper bounds in A can not be improved substantially without a breakthrough on a well-known open problem in the complexity of numerical computation.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; D.2.4 [Software Engineering]: Model checking; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonumerical Algorithms and

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Büchi automata, Markov chains, model checking, probabilistic systems, pushdown systems, recursive systems, stochastic context-free grammars, temporal logic

Authors' addresses. Kousha Etessami: School of Informatics, University of Edinburgh, UK. Mihalis Yannakakis: Department of Computer Science, Columbia University, New York, USA. Email addresses: kousha@inf.ed.ac.uk, mihalis@cs.columbia.edu

Research partially supported by NSF Grants CCF-07-28736 and CCF-10-17955.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1529-3785/20YY/0700-0001 \$5.00

1. INTRODUCTION

Recursive Markov Chains (RMCs) are a natural abstract model of systems that involve probability and recursion, such as procedural probabilistic programs. Informally, an RMC consists of a collection of finite state component Markov chains (MC) that can call each other in a potentially recursive manner. Each component MC has a set of *nodes* (ordinary states), a set of *boxes* (each of which is mapped to a component MC), a well-defined interface consisting of a set of *entry* and *exit* nodes (the nodes where it may start and terminate), and a set of probabilistic transitions connecting the nodes and boxes. A transition to a box specifies the entry node and models the invocation of the component MC associated with the box; when (and if) the component MC terminates at an exit, execution of the calling MC resumes from the corresponding exit of the box.

RMCs are a probabilistic version of Recursive State Machines (RSMs) ([Alur et al. 2005)). RSMs and closely related models like Pushdown Systems (PDSs) have been studied extensively in recent research on model checking and program analysis, because of their applications to verification of sequential programs with procedures ([Bouajjani et al. 1997]). Recursive Markov Chains subsume, in a certain precise sense, several other well-studied models involving probability and recursion: Stochastic Context-Free Grammars (SCFGs), have been extensively studied mainly in natural language processing (NLP) (see [Manning and Schütze 1999]) as well as biological sequence analysis [Durbin et al. 1999]. A subclass of SCFGs corresponds to a model of web surfing called backoff or back-button process, studied in Fagin et al. 2000]. Stochastic context-free grammars can be modeled by a subclass of RMCs, in particular the class of 1-exit RMCs, in which all components have one exit. Multi-Type Branching Processes (MT-BPs), are an important family of stochastic processes, modeling the stochastic evolution of a population of entities of various types (species), with many applications in a great variety of areas such as biology, population dynamics and many others (see, e.g., [Harris 1963; Haccou et al. 2005; Kimmel and Axelrod 2002]). As shown in [Etessami and Yannakakis 2009], the extinction probabilities of branching processes (the central quantities of interest) can be expressed as the termination probabilities of 1-exit RMCs.

RMCs can be viewed also as a recursive version of ordinary finite state Markov chains, in the same way that RSMs are a recursive version of ordinary finite state machines. Markov chains have been used to model non-recursive probabilistic programs and analyze their properties. Probabilistic models of programs and systems are of interest for several reasons. First, a program may use randomization, in which case the transition probabilities reflect the random choices of the algorithm. Second, we may want to model and analyse a program or system under statistical conditions on its behaviour (e.g., based on profiling statistics or on statistical assumptions), and to determine the induced probability of properties of interest.

We introduced RMCs in ([Etessami and Yannakakis 2009]), where we developed some of their basic theory and focused on algorithmic reachability analysis: what is the probability of reaching a given state starting from another? In this paper, we study the more general problem of model checking an RMC against an ω -regular specification: given an RMC A and an ω -regular property, we wish to know the probability that an execution of A satisfies the property. The techniques we develop

in this paper for model checking go far beyond what was developed in [Etessami and Yannakakis 2009] for reachability analysis.

General RMCs are intimately related to probabilistic Pushdown Systems (pPDSs), an equivalent model introduced in [Esparza et al. 2004], and there are efficient translations between RMCs and pPDSs ([Etessami and Yannakakis 2009]). Thus, our results apply with the same complexity to the pPDS model. There has been recent work on model checking of pPDSs ([Esparza et al. 2004; Brázdil et al. 2005]). As we shall describe below, our results yield substantial improvements, when translated to the setting of pPDSs, on the best upper and lower bounds known for the complexity of ω -regular model checking of pPDSs.

We now outline the main results in this paper. We consider the two most popular formalisms for the specification of ω -regular properties over words, (non-deterministic) Büchi automata (BA for short) and Linear Temporal Logic (LTL). The automata formalism can express all ω -regular properties, while LTL expresses a (important) proper subset. On the other hand, LTL is a common and more succinct formalism. The complexity results turn out to be similar for the two formalisms (even though automata are more general and LTL is more succinct), but require different algorithms.

We are given an RMC A and a property in the form of a (non-deterministic) Büchi automaton (BA) B, whose alphabet corresponds to (labels on) the vertices of A, or a LTL formula φ whose propositions correspond to properties of (labels on) the vertices of A. Let $P_A(L(B))$ (respectively, $P_A(\varphi)$) denote the probability that an execution of A is accepted by B (resp. satisfies the property φ). The qualitative model checking problems are: (1) determine whether almost all executions of A satisfy the property (i.e. is $P_A(L(B)) = 1$?, resp. $P_A(\varphi) = 1$?); this corresponds to B or φ being a desirable correctness property, and (2) whether almost no executions of A satisfy the property (i.e. is $P_A(L(B)) = 0$?, resp. $P_A(\varphi) = 0$?), corresponding to B or φ being an undesirable error property. In the quantitative model checking problems we wish to compare $P_A(L(B))$ (or $P_A(\varphi)$) to a given rational threshold P, i.e., is $P_A(L(B)) \geq P$?, or alternatively, we may wish to approximate $P_A(L(B))$ to within a given number of bits of precision. Note that in general the probabilities $P_A(L(B))$, $P_A(\varphi)$ may be irrational and may not even be expressible by radicals [Etessami and Yannakakis 2009], and hence they cannot be computed exactly.

We show that for both Büchi automata and LTL specifications, the qualitative model checking problems can be solved with an algorithm that runs in polynomial space in the size |A| of the given RMC and exponential time in the size of the property specification (i.e., the size |B| of the given automaton B or the size $|\varphi|$ of the given LTL formula φ). More specifically, in a first phase the algorithm analyzes the RMC A by itself (using polynomial space). In a second phase it analyses further A in conjunction with the property, using polynomial time in A and exponential time in the size of the automaton B or the formula φ . If the property is specified by a deterministic automaton B, then the time is polynomial in B.

For several important classes of RMCs we can obtain better complexity. First, if A is a single-exit RMC then the first phase, and hence the whole algorithm, can be done in polynomial time in A. This result applies in particular to (qualitative) model checking of stochastic context-free grammars and backoff processes.

Qualitative problems

	reachability	det. Büchi	nondet. Büchi or LTL formula
1-exit	Р	Р	P in RMC, EXPTIME in property
bounded	Р	Р	P in RMC, EXPTIME in property
linear	Р	Р	P in RMC, EXPTIME in property
general	PSPACE	PSPACE	PSPACE in RMC, EXPTIME in property

_			•
()	intitative	mmah	I am a
CHILL	max_{i}	: 111100	LP.TILS

	1 1 1 Division Provides				
	reachability	det. Büchi	nondet. Büchi or LTL formula		
1-exit	PSPACE PSPACE		PSPACE in RMC,		
			EXPSPACE in property		
bounded	ounded P P in RMC		P in RMC,		
		for fixed Büchi	for fixed property		
linear	P	Р	P in RMC, EXPTIME in property		
general	eneral PSPACE PSPACE		PSPACE in RMC,		
			EXPSPACE in property		

Fig. 1. Complexity of Qualitative and Quantitative problems

Another class of RMCs that we can model-check qualitatively in polynomial time in A is when the total number of entries and exits in A is bounded (we call them bounded RMCs). In terms of probabilistic program abstractions, this class of RMCs corresponds to programs with a bounded number of different procedures, each of which has a bounded number of input/output parameter values. The internals of the components of the RMCs (i.e. the procedures) can be arbitrarily large and complex. A third class of RMCs with efficient model checking is the class of linear RMCs, i.e. RMCs with linear recursion.

For quantitative model checking, we show that deciding whether $P_A(L(B)) \geq p$ (resp. $P_A(\varphi) \geq p$) for a given rational $p \in [0,1]$ can be decided in space polynomial in |A| and exponential in |B| (resp., $|\varphi|$). For a deterministic automaton B, the space is polynomial in both A, B. For linear RMCs we show that the probability $P_A(L(B))$ or $P_A(\varphi)$ is rational and can be computed exactly in polynomial time in the RMC A and exponential time in the specification B or φ . For A a bounded RMC, and when the property is fixed, there is an algorithm that runs in polynomial time in |A|; however, in this case (unlike the others) the exponent of the polynomial depends on the property. Table 1 summarizes our complexity upper bounds.

For lower bounds, we prove that the qualitative model checking problem, even for a fixed, single entry/exit RMC, is already EXPTIME-complete, both for automata and for LTL specifications. On the other hand, even for reachability analysis, we showed in [Etessami and Yannakakis 2009] that our PSPACE upper bounds in A, even for the quantitative 1-exit problem, and the general qualitative problem, can not be improved substantially without a breakthrough on the complexity of the square root sum problem, a well-known open problem in the complexity of numerical computation (see Section 2.2).

Related Work.

Model checking of ordinary flat (i.e., non-recursive) finite Markov chains has received extensive attention both in theory and practice (eg. [Courcoubetis and Yannakakis 1995; Kwiatkowska 2003; Pnueli and Zuck 1993; Vardi 1985]). It is known that model checking of a Markov chain A with respect to a Büchi automaton B or a LTL formula φ is PSPACE-complete, and furthermore the probability $P_A(L(B))$ or $P_A(\varphi)$ can be computed exactly in time polynomial in A and exponential in B or φ (see [Courcoubetis and Yannakakis 1995]). Recursive Markov chains were introduced recently in [Etessami and Yannakakis 2009], where we developed some of their basic theory and investigated the termination and reachability problems; we summarize the main results in Section 2.2. Recursion introduces a number of new difficulties that are not present in the flat case. For example, in the flat case, the qualitative problems depend only on the structure of the Markov chain (i.e., which transitions are present) and not on the precise values of the transition probabilities; this is not the case for RMCs and numerical issues have to be dealt with even in the qualitative problem. Furthermore, unlike the flat case, the desired probabilities are irrational and cannot be computed exactly.

The equivalent model of probabilistic Pushdown Systems (pPDS) was introduced and studied in [Esparza et al. 2004; Brázdil et al. 2005]. They largely focus on model checking against branching-time properties, but they also study deterministic ([Esparza et al. 2004]) and non-deterministic ([Brázdil et al. 2005]) Büchi automaton specifications. There are efficient (linear time) translations between RMCs and pPDSs [Etessami and Yannakakis 2009], similar to translations between RSMs and PDSs (see [Alur et al. 2005]).

This paper combines, and expands on, the content of our two conference publications [Etessami and Yannakakis 2005a; Yannakakis and Etessami 2005] on model checking of Recursive Markov Chains. Those two papers treated separately the case of model checking against ω -regular properties and LTL properties. Our upper bounds for model checking, translated to pPDSs, improve substantially on those obtained in [Esparza et al. 2004; Brázdil et al. 2005], by at least an exponential factor in the general setting, and by more for specific classes like single-exit, linear, and bounded RMCs. Specifically, [Brázdil et al. 2005], by extending results in [Esparza et al. 2004], show that qualitative model checking for a pPDS and a Büchi automaton can be done in PSPACE in the size of the pPDS and 2-EXPSPACE in the size of the Büchi automaton, while quantitative model checking can be decided in EXPTIME in the size of the pPDS and in 3-EXPTIME in the size of the Büchi automaton. They do not obtain stronger complexity results for the class of pBPAs (equivalent to single-exit RMCs). Also, the class of bounded RMCs has no direct analog in pPDSs, as the total number of entries and exits of an RMC gets lost in translation to pPDSs. The above papers do not address directly LTL specifications.

The rest of this paper is organized as follows. In Section 2 we give the necessary definitions and background on RMCs from [Etessami and Yannakakis 2009]. We also indicate how the model checking problems for stochastic context-free grammars (and backoff processes) reduce to (1-exit) RMCs. In Section 3 we show how to construct from an RMC A a flat "summary" Markov chain M'_A which in some sense summarizes the recursion in the trajectories of A; this chain plays a central role analogous to that of the "summary graph" for Recursive State machines [Alur

et al. 2005]. In Section 4 we address the qualitative model checking problems for Büchi automata specifications, presenting both upper and lower bounds. In Section 5 we show a fundamental "unique fixed point theorem" for RMCs, which allows us to isolate the termination probabilities of an RMC as the unique solution of a set of constraints. In Section 6 we use this to address the quantitative model checking problem for Büchi automata. Section 7 concerns the qualitative model checking of LTL specifications, and Section 8 quantitative model checking of LTL.

2. DEFINITIONS AND BACKGROUND

We will first define formally Recursive Markov Chains and give the basic terminology. Then, in Subsection 2.1 we will recall the definitions of Büchi automata and Linear Temporal Logic, and define formally the qualitative and quantitative model checking problems for RMCs. In Subsection 2.2 we will summarize the basic theory of RMCs and results from [Etessami and Yannakakis 2009] regarding reachability and termination. In Subsection 2.3 we describe the reduction of stochastic context-free grammars to 1-exit RMCs, with respect to the model checking problems.

A Recursive Markov Chain (RMC), A, is a tuple $A = (A_1, ..., A_k)$, where each component graph $A_i = (N_i, B_i, Y_i, En_i, Ex_i, \delta_i)$ consists of:

- —A finite set N_i of nodes.
- —A subset of entry nodes $En_i \subseteq N_i$, and a subset of exit nodes $Ex_i \subseteq N_i$.
- —A finite set B_i of boxes, and a mapping $Y_i: B_i \mapsto \{1, \ldots, k\}$ that assigns to every box (the index of) one of the components, A_1, \ldots, A_k . To each box $b \in B_i$, we associate a set of call ports, $Call_b = \{(b, en) \mid en \in En_{Y_i(b)}\}$ corresponding to the entries of the corresponding component, and a set of return ports, $Return_b = \{(b, ex) \mid ex \in Ex_{Y_i(b)}\}$, corresponding to the exits of the corresponding component.
- —A finite transition relation δ_i , where transitions are of the form $(u, p_{u,v}, v)$ where:
 - (1) the source u is either a non-exit node $u \in N_i \setminus Ex_i$, or a return port u = (b, ex) of a box $b \in B_i$,
 - (2) The destination v is either a non-entry node $v \in N_i \setminus En_i$, or a call port u = (b, en) of a box $b \in B_i$,
 - (3) $p_{u,v} \in \mathbb{R}_{>0}$ is the transition probability from u to v,
 - (4) Consistency of probabilities: for each u, $\sum_{\{v'|(u,p_{u,v'},v')\in\delta_i\}} p_{u,v'} = 1$, unless u is a call port or exit node, neither of which have outgoing transitions, in which case by default $\sum_{v'} p_{u,v'} = 0$.

For computational purposes, we assume that the transition probabilities $p_{u,v}$ are rational numbers, given as the ratio of two integers, and we measure their size by the number of bits in the numerator and denominator. The size |A| of a given RMC A is the number of bits needed to specify it (including the size of the transition probabilities).

We will use the term *vertex* of A_i to refer collectively to its set of nodes, call ports, and return ports, and we denote this set by Q_i . Thus, the transition relation δ_i is a set of probability-weighted directed edges on the set Q_i of vertices of A_i . We will use all the notations without a subscript to refer to the union over all the

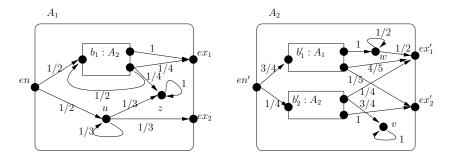


Fig. 2. A sample Recursive Markov Chain

components of the RMC A. Thus, $N = \bigcup_{i=1}^k N_i$ denotes the set of all the nodes of A, $Q = \bigcup_{i=1}^k Q_i$ the set of all vertices, $B = \bigcup_{i=1}^k B_i$ the set of all the boxes, $Y = \bigcup_{i=1}^k Y_i$ the map $Y : B \mapsto \{1, \ldots, k\}$ of all boxes to components, and $\delta = \bigcup_i \delta_i$ the set of all transitions of A.

An example RMC is shown in Figure 2. The RMC has two components A_1 , A_2 , each with one entry and two exits (in general different components may have different numbers of entries and exits). Component A_2 has two boxes, b'_1 which maps to A_1 and b'_2 which maps to A_2 . Note that the return ports of a box may have different transitions.

An RMC A defines a global denumerable Markov chain $M_A = (V, \Delta)$ as follows. The global states $V \subseteq B^* \times Q$ are pairs of the form $\langle \beta, u \rangle$, where $\beta \in B^*$ is a (possibly empty) sequence of boxes and $u \in Q$ is a vertex of A. More precisely, the states $V \subseteq B^* \times Q$ and transitions Δ are defined inductively as follows:

- (1) $\langle \epsilon, u \rangle \in V$, for $u \in Q$. (ϵ denotes the empty string.)
- (2) if $\langle \beta, u \rangle \in V$ and $(u, p_{u,v}, v) \in \delta$, then $\langle \beta, v \rangle \in V$ and $(\langle \beta, u \rangle, p_{u,v}, \langle \beta, v \rangle) \in \Delta$.
- (3) if $\langle \beta, (b, en) \rangle \in V$, where $(b, en) \in Call_b$, then $\langle \beta b, en \rangle \in V$ and $(\langle \beta, (b, en) \rangle, 1, \langle \beta b, en \rangle) \in \Delta$.
- (4) if $\langle \beta b, ex \rangle \in V$, where $(b, ex) \in Return_b$, then $\langle \beta, (b, ex) \rangle \in V$ and $(\langle \beta b, ex \rangle, 1, \langle \beta, (b, ex) \rangle) \in \Delta$.

Item 1 corresponds to the possible initial states, item 2 corresponds to a transition within a component, item 3 corresponds to a recursive call when a new component is entered via a box, item 4 corresponds to the end of a recursive call when the process exits a component and control returns to the calling component.

Some states of M_A are terminating, having no outgoing transitions. These are precisely the states $\langle \epsilon, ex \rangle$, where ex is an exit. We want to view M_A as a proper Markov chain, so we consider terminating states to be absorbing states, with a self-loop of probability 1.

A trace (or trajectory) $t \in V^{\omega}$ of M_A is an infinite sequence of states $t = s_0 s_1 s_2 \dots$ such that for all $i \geq 0$, there is a transition $(s_i, p_{s_i, s_{i+1}}, s_{i+1}) \in \Delta$, with $p_{s_i, s_{i+1}} > 0$. Let $\Omega \subseteq V^{\omega}$ denote the set of traces of M_A . For a state $s = \langle \beta, v \rangle \in V$, let Q(s) = v denote the vertex at state s. Generalizing this to traces, for a trace $t \in \Omega$, let $Q(t) = Q(s_0)Q(s_1)Q(s_2)\dots \in Q^{\omega}$. We will consider M_A with initial states from $Init = \{\langle \epsilon, v \rangle \mid v \in Q\}$. More generally we may have a probability distribution $p_{init} : V \mapsto [0, 1]$ on initial states (we usually assume p_{init} has support only in Init,

 ${\it ACM\ Transactions\ on\ Computational\ Logic,\ Vol.\ V,\ No.\ N,\ Month\ 20YY}.$

and we always assume it has finite support). This induces a probability distribution on traces generated by random walks on M_A . Formally, we have a probability space $(\Omega, \mathcal{F}, \mathbf{Pr}_{\Omega})$, parametrized by p_{init} , where $\mathcal{F} = \sigma(\mathcal{C}) \subseteq 2^{\Omega}$ is the σ -field generated by the set of basic cylinder sets, $\mathcal{C} = \{C(x) \subseteq \Omega \mid x \in V^*\}$, where for $x \in V^*$ the cylinder at x is $C(x) = \{t \in \Omega \mid t = xw, w \in V^{\omega}\}$. The probability distribution $\mathbf{Pr}_{\Omega} : \mathcal{F} \mapsto [0, 1]$ is determined uniquely by the probabilities of cylinder sets, which are given as follows (see, e.g., [Billingsley 1995]):

$$\mathbf{Pr}_{\Omega}(C(s_0s_1...s_n)) = p_{\text{init}}(s_0)p_{s_0,s_1}p_{s_1,s_2}...p_{s_{n-1},s_n}$$

We will consider three important subclasses of RMCs, and obtain better complexity results for them. We say that an RMC is *linearly recursive*, or simply *linear*, if there is no path in any component from a return port of any box to a call port of the same or another box. This corresponds to the usual notion of linear recursion in procedures. For example, the RMC of Fig. 1 is not linear because of the transition from the second exit of box b_1 to the entry of the box; if the transition was not present then the RMC would be linear.

An RMC where every component has at most one exit is called a *1-exit* RMC. As shown in [Etessami and Yannakakis 2009], these encompass in a certain sense several well-studied important stochastic models, e.g., Stochastic Context-free Grammars and (Multi-type) Branching Processes, as well as the 'back-button' model of websurfing studied in [Fagin et al. 2000].

Finally, RMCs where the total number of entries and exits is bounded by a constant c, (i.e., $\sum_{i=1}^{k} |En_i| + |Ex_i| \le c$) are called *bounded* RMCs. These correspond to recursive programs with a bounded number of different procedures which pass a bounded number of input and output values (the procedures themselves can be internally arbitrarily complicated).

2.1 The central questions for model checking of RMCs.

We first define termination (exit) probabilities that play an important role in our analysis. Given a vertex $u \in Q_i$ and an exit $ex \in Ex_i$, both in the same component A_i , let $q_{(u,ex)}^*$ denote the probability of eventually reaching the state $\langle \epsilon, ex \rangle$, starting at the state $\langle \epsilon, u \rangle$. Formally, we have $p_{\text{init}}(\langle \epsilon, u \rangle) = 1$, and $q_{(u,ex)}^* \doteq \mathbf{Pr}_{\Omega}(\{t = s_0s_1 \ldots \in \Omega \mid \exists i, s_i = \langle \epsilon, ex \rangle \})$. As we shall see, the probabilities $q_{(u,ex)}^*$ will play an important role in obtaining other probabilities.

Two popular formalisms for specifying properties of executions are Büchi automata and Linear Temporal Logic. A Büchi automaton (BA for short) $B = (\Sigma, S, q_0, R, F)$, has an alphabet Σ , a set of states S, an initial state $q_0 \in S$, a transition relation $R \subseteq S \times \Sigma \times S$, and a set of accepting states $F \subseteq S$. A run of B is a sequence $\pi = q_0v_0q_1v_1q_2\ldots$ of alternating states and letters such that for all $i \geq 0$ $(q_i, v_i, q_{i+1}) \in R$. The ω -word associated with run π is $w_\pi = v_0v_1v_2\ldots \in \Sigma^\omega$. The run π is accepting if for infinitely many $i, q_i \in F$. Define the ω -language $L(B) = \{w_\pi \mid \pi \text{ is an accepting run of } B\}$. Note that $L(B) \subseteq \Sigma^\omega$. Let $\mathcal{L}: Q \mapsto \Sigma$, be a given Σ -labelling of the vertices of RMC A. \mathcal{L} naturally extends to the state set V of the infinite Markov chain M_A , by letting $\mathcal{L}(\langle \beta, v \rangle) = \mathcal{L}(v)$ for each state $\langle \beta, v \rangle \in V$ of M_A , and it further generalizes to a mapping $\mathcal{L}: V^\omega \mapsto \Sigma^\omega$ from trajectories of M_A , i.e., executions (paths) of the RMC A, to infinite Σ -strings: for $t = s_0 s_1 s_2 \ldots \in V^\omega$, $\mathcal{L}(t) = \mathcal{L}(s_0) \mathcal{L}(s_1) \mathcal{L}(s_2) \ldots$. The execution t satisfies the

property specified by the automaton B iff $\mathcal{L}(t) \in L(B)$. Given RMC A, with initial state $s_0 = \langle \epsilon, u \rangle$, and given a Büchi automaton B over the alphabet Σ , let $P_A(L(B))$ denote the probability that a trace of M_A is in L(B). More precisely: $P_A(L(B)) \doteq \mathbf{Pr}_{\Omega}(\{t \in \Omega \mid \mathcal{L}(t) \in L(B)\})$. As in the case of flat (ordinary finite) Markov chains [Courcoubetis and Yannakakis 1995; Vardi 1985], it is easy to show that the sets $\{t \in \Omega \mid \mathcal{L}(t) \in L(B)\}$ are measurable (in \mathcal{F}).

Linear Temporal Logic (LTL) [Pnueli 1977] has formulas that are built from a finite set Prop of propositions using the usual Boolean connectives (e.g., \neg , \lor , \land), the unary temporal connective Next (denoted \bigcirc) and the binary temporal connective Until (U); thus, if ξ , ψ are LTL formulas then $\bigcirc \xi$ and $\xi U\psi$ are also LTL formulas. To specify a property of an RMC using LTL, every vertex of the given RMC A is labelled with a subset of Prop: the set of propositions that hold at that vertex. That is, there is a given labelling (often called a valuation function) $\mathcal{L}: Q \mapsto \Sigma = 2^{Prop}$. As noted above, the labelling function can be extended naturally to the infinite Markov chain M_A and to its trajectories. If $t = s_0, s_1, s_2 \ldots$ is a trajectory of M_A and φ is an LTL formula, then we define satisfaction of the formula by t at step t, denoted $t, t \models \varphi$ inductively on the structure of φ as follows.

```
\begin{split} -t, i &\models p \text{ for } p \in Prop \text{ iff } p \in \mathcal{L}(s_i). \\ -t, i &\models \neg \xi \text{ iff not } t, i \models \xi. \\ -t, i &\models \xi \lor \psi \text{ iff } t, i \models \xi \text{ or } t, i \models \psi. \\ -t, i &\models \bigcirc \xi \text{ iff } t, (i+1) \models \xi. \\ -t, i &\models \xi \mathcal{U} \psi \text{ iff there is a } j \geq i \text{ such that } t, j \models \psi, \text{ and } t, k \models \xi \text{ for all } k \text{ with } i \leq k < j. \end{split}
```

We say that the trajectory t satisfies φ iff $t, 0 \models \varphi$. Other useful temporal connectives can be defined using \mathcal{U} . The formula $True\ \mathcal{U}\psi$ means "eventually ψ holds" and is abbreviated $\Diamond \psi$. The formula $\neg(\Diamond \neg \psi)$ means "always ψ holds" and is abbreviated $\Box \psi$.

If φ is an LTL formula and A is an RMC with a labelling function over the propositions of φ , then the set of executions of A (i.e., trajectories of M_A) that satisfy φ is a measurable set. We use $P_A(\varphi)$ to denote the probability of this set. As is well known, LTL formulas specify ω -regular properties: From a given LTL formula φ over set of propositions Prop, one can construct a Büchi automaton B_{φ} with alphabet $\Sigma = 2^{Prop}$ such that $L(B_{\varphi})$ is precisely the set of infinite words that satisfy φ [Vardi and Wolper 1986]. The automaton has in general exponentially larger size than the formula (and this is inherent), i.e., LTL is in general a more succinct formalism. On the other hand, Büchi automata are a more general formalism in that they can express all ω -regular properties, whereas LTL expresses a proper subset.

The model checking problems for ω -regular properties of RMCs are defined as follows. We are given a RMC A and a property φ , in terms of either a given LTL formula or a given Büchi automaton B (i.e., $\varphi = L(B)$ in the latter case).

- (1) Qualitative model checking problems: Is $P_A(\varphi) = 1$? Is $P_A(\varphi) = 0$?
- (2) Quantitative model checking problems:
 - a. Decision problem: Given a rational $p \in [0,1]$ (in addition to the RMC A and

the property φ), is $P_A(\varphi) \geq p$?

b. Approximation problem. Given a number j in unary (in addition to the RMC A and the property φ), approximate $P_A(\varphi)$ to within j bits of precision, i.e., compute a value that is within an additive error 2^{-j} of $P_A(\varphi)$.

Note that if we have a routine for the decision problem $P_A(\varphi) \geq p$?, then we can approximate $P_A(\varphi)$ to within j bits of precision using binary search with j calls to the routine. Thus, for quantitative model checking it suffices to address the decision problem.

Note that probabilistic reachability (and termination) is a special case of model checking for a simple fixed automaton B (or LTL formula φ): Given a vertex u of the RMC A and a subset of vertices F, the probability that the RMC starting at uvisits eventually some vertex in F (with some stack context) is equal to $P_A(L(B))$, where we let the labelling \mathcal{L} map vertices in F to 1 and the other vertices of A to 0, and B is the 2-state automaton over alphabet $\{0,1\}$ that accepts strings that contain a 1. For the termination probability $q_{(u,ex)}^*$, i.e., the probability that the RMC starting at a vertex u terminates at the exit ex of the component A_i of u (with empty stack), let A' be the RMC obtained from A by adding a new component A'_i that is identical to the component A_i of u; then $q_{(u,ex)}^*$ is equal to the probability that A' starting at vertex u of A'_i reaches the exit ex of A'_i . Similarly, for the repeated reachability problem, where we are interested whether a trajectory from u visits infinitely often a vertex of a set F (with any stack context), we can let B be the (2-state deterministic) automaton that accepts strings with an infinite number of 1's. Similarly we can write small fixed LTL formulas for reachability and repeated reachability.

2.2 Basic RMC theory and reachability analysis

We recall some of the basic theory of RMCs developed in [Etessami and Yannakakis 2009], where we studied reachability analysis. Considering the termination probabilities $q_{(u,ex)}^*$ as unknowns, we can set up a system of (non-linear) polynomial equations, such that the probabilities $q_{(u,ex)}^*$ are the Least Fixed Point (LFP) solution of this system. Use a variable $x_{(u,ex)}$ for each unknown probability $q_{(u,ex)}^*$. We will often find it convenient to index the variables $x_{(u,ex)}$ according to a fixed order, so we can refer to them also as x_1, \ldots, x_n , with each $x_{(u,ex)}$ identified with x_j for some j. We thus have a vector of variables: $\mathbf{x} = (x_1 \ x_2 \dots x_n)^T$.

Definition 1. Given RMC $A=(A_1,\ldots,A_k)$, define the system of polynomial equations, S_A , over the variables $x_{(u,ex)}$, where $u\in Q_i$ and $ex\in Ex_i$, for $1\leq i\leq k$. The system contains one equation $x_{(u,ex)}=P_{(u,ex)}(\mathbf{x})$, for each variable $x_{(u,ex)}$, where $P_{(u,ex)}(\mathbf{x})$ is a multivariate polynomial with positive rational coefficients. There are 3 cases, based on the "type" of vertex u:

- (1) Type I: u = ex. In this case: $x_{(ex,ex)} = 1$.
- (2) Type II: either $u \in N_i \setminus \{ex\}$ or u = (b, ex') is a return port. In these cases:

$$x_{(u,ex)} = \sum_{\{v | (u,p_{u,v},v) \in \delta\}} p_{u,v} \cdot x_{(v,ex)}.$$

(3) Type III: u = (b, en) is a call port. In this case:

$$x_{((b,en),ex)} = \sum_{ex' \in Ex_{Y(b)}} x_{(en,ex')} \cdot x_{((b,ex'),ex)}$$

In vector notation, we denote $S_A = (x_j = P_j(\mathbf{x}) \mid j = 1, ..., n)$ by: $\mathbf{x} = P(\mathbf{x})$.

Given RMC A, we can construct the system $\mathbf{x} = P(\mathbf{x})$ in polynomial time: $P(\mathbf{x})$ has size $O(|A|\theta^2)$, where θ denotes the maximum number of exits of any component. For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, define $\mathbf{x} \leq \mathbf{y}$ to mean that $x_j \leq y_j$ for every coordinate j. For $D \subseteq \mathbb{R}^n$, call a mapping $H : \mathbb{R}^n \mapsto \mathbb{R}^n$ monotone on D, if: for all $\mathbf{x}, \mathbf{y} \in D$, if $\mathbf{x} \leq \mathbf{y}$ then $H(\mathbf{x}) \leq H(\mathbf{y})$. Define $P^1(\mathbf{x}) = P(\mathbf{x})$, and $P^k(\mathbf{x}) = P(P^{k-1}(\mathbf{x}))$, for k > 1. Let $\mathbf{q}^* \in \mathbb{R}^n$ denote the n-vector of probabilities $q^*_{(u,ex)}$, using the same indexing as used for \mathbf{x} . Let $\mathbf{0}$ denote the all 0 n-vector. Define $\mathbf{x}^0 = \mathbf{0}$, and $\mathbf{x}^k = P(\mathbf{x}^{k-1}) = P^k(\mathbf{0})$, for $k \geq 1$. The map $P : \mathbb{R}^n \mapsto \mathbb{R}^n$ is monotone on $\mathbb{R}^n_{>0}$.

THEOREM 2. ([Etessami and Yannakakis 2009], see also [Esparza et al. 2004]) The vector of termination probabilities $\mathbf{q}^* \in [0,1]^n$ is the Least Fixed Point solution, LFP(P), of $\mathbf{x} = P(\mathbf{x})$. Thus, $\mathbf{q}^* = P(\mathbf{q}^*)$ and for all $\mathbf{q}' \in \mathbb{R}^n_{\geq 0}$, if $\mathbf{q}' = P(\mathbf{q}')$, then $\mathbf{q}^* \leq \mathbf{q}'$. Furthermore, $\mathbf{x}^k \leq \mathbf{x}^{k+1} \leq \mathbf{q}^*$ for all $k \geq 0$, and $\mathbf{q}^* = \lim_{k \to \infty} \mathbf{x}^k$.

There are RMCs, even 1-exit RMCs, for which the probability $q_{(en,ex)}^*$ is irrational and not "solvable by radicals" ([Etessami and Yannakakis 2009]). Thus, we can't compute probabilities exactly.

Given a system x = P(x), and a vector $q \in [0,1]^n$, consider the following sentence in the *Existential Theory of Reals* (which we denote by $ExTh(\mathbb{R})$):

$$\varphi \equiv \exists x_1, \dots, x_m \bigwedge_{i=1}^m (P_i(x_1, \dots, x_m) = x_i) \land \bigwedge_{i=1}^m (0 \le x_i) \land \bigwedge_{i=1}^m (x_i \le q_i)$$

$$\varphi \text{ is true precisely when there is some } z \in \mathbb{R}^m, \ 0 \le z \le q, \text{ and } z = P(z). \text{ Thus,}$$
if we are decided the truth of this protection will tall place the rest.

 φ is true precisely when there is some $z \in \mathbb{R}^m$, $0 \leq z \leq q$, and z = P(z). Thus, if we can decide the truth of this sentence, we could tell whether $q_{(u,ex)}^* \leq p$, for some rational p, by using the vector $q = (1, \ldots, p, 1, \ldots)$. We will rely on decision procedures for $\textbf{\textit{ExTh}}(\mathbb{R})$. It is known that $\textbf{\textit{ExTh}}(\mathbb{R})$ can be decided in PSPACE [Canny 1988; Renegar 1992]. Furthermore it can be decided in exponential time, where the exponent depends (linearly) only on the number of variables; thus for a fixed number of variables the algorithm runs in polynomial time. As a consequence:

Theorem 3. ([Etessami and Yannakakis 2009]) Given RMC A and rational value ρ , there is a polynomial space algorithm that decides whether $q_{(u,ex)}^* \leq \rho$, with running time $O(|A|^{O(m)})$, where m is the number of variables in the system x = P(x) for A. Moreover $q_{(u,ex)}^*$ can be approximated to within j bits of precision within PSPACE and with running time at most j times the above.

Better results are possible for special classes of RMCs. For linear RMCs, the termination probabilities $q^*_{(u,ex)}$ are rational and can be computed exactly in polynomial time by solving two systems of linear equations. For bounded RMCs, the probabilities are irrational, but it is possible to solve efficiently the quantitative decision and approximation problems by constructing a system of (nonlinear) constraints in a bounded number of variables, and using the fact that $ExTh(\mathbb{R})$ is decidable in P-time when the number of variables is bounded. For single-exit RMC the qualitative termination (exit) problem can be solved efficiently. The algorithm does not use the $ExTh(\mathbb{R})$ but rather graph theory and an eigenvalue characterization. We summarize these results in the following theorem.

Theorem 4. ([Etessami and Yannakakis 2009])

 ${\it ACM\ Transactions\ on\ Computational\ Logic,\ Vol.\ V,\ No.\ N,\ Month\ 20YY}.$

- (1) For a linear RMC A, the termination probabilities $q_{(u,ex)}^*$ are rational and can be computed in polynomial time.
- (2) Given a bounded RMC A and a rational value $p \in [0,1]$, there is a P-time algorithm that decides for a vertex u and exit ex, whether $q_{(u,ex)}^* \ge p$ (or $\le p$).
- (3) Given a 1-exit RMC A, vertex u and exit ex, we can decide in polynomial time which of the following holds: (1) $q_{(u,ex)}^* = 0$, (2) $q_{(u,ex)}^* = 1$, or (3) $0 < q_{(u,ex)}^*$.

Hardness, such as NP-hardness, is not known for RMC reachability. However, in [Etessami and Yannakakis 2009] we gave strong evidence of "difficulty" in terms of two important open problems: The first one is the Square-root sum (SQRT-SUM) problem: given $(d_1, \ldots, d_n) \in \mathbb{N}^n$ and $k \in \mathbb{N}$, decide whether $\sum_{i=1}^n \sqrt{d_i} \leq k$. This problem arises often, especially in geometric computations. It is solvable in PSPACE, but it has been a longstanding open problem since the 1970's whether it is solvable even in NP [Garey et al. 1976]. The second problem, called PosSLP ('positive Straight-Line Program'), asks whether a given straight-line program (equivalently, arithmetic circuit) with integer inputs and operations +, -, *, computes a positive number or not. It was shown in [Allender et al. 2009] that PosSLP is complete under Cook reductions for the class of decision problems that can be solved in polynomial time in the unit-cost algebraic RAM model, a model with unit-cost exact rational arithmetic, i.e., all operations +, -, *, / on rational numbers take unit time, regardless of the size of the numbers. The square-root sum problem can be solved in polynomial time in this model [Tiwari 1992]. Both problems, PosSLP and SQRT-SUM, are in PSPACE (and actually in the Counting Hierarchy [Allender et al. 2009), but it is not known whether they are in P or even in NP.

In [Etessami and Yannakakis 2009] we showed that the PosSLP and SQRT-SUM problems are P-time (many-one) reducible to the quantitative termination problem (i.e. $q_{(u,ex)}^* \geq p$?) for 1-exit RMCs, and to the qualitative termination problem (i.e., $q_{(u,ex)}^* = 1$?) for 2-exit RMCs (see also [Brázdil et al. 2005]). Furthermore, even any nontrivial approximation of the termination probabilities (within any additive constant error c < 1) for 2-exit RMCs is at least as hard as the PosSLP and SQRT-SUM problems.

As a practical algorithm for numerically computing the probabilities $q_{(u,ex)}^*$, it was proved in [Etessami and Yannakakis 2009] that a version of multi-dimensional Newton's method converges monotonically to the LFP of $\mathbf{x} = P(\mathbf{x})$, and constitutes a rapid acceleration of iterating $P^k(\mathbf{0})$, $k \to \infty$.

2.3 Stochastic Context-free Grammars, Backoff Processes, and 1-exit RMCs

A Stochastic Context-Free Grammar (SCFG) is a context-free grammar whose rules (productions) have associated probabilities. Formally, a SCFG is a tuple $G = (T, V, R, S_1)$, where T is a set of terminal symbols, $V = \{S_1, \ldots, S_k\}$ is a set of nonterminals, and R is a set of rules $S_i \stackrel{p}{\to} \alpha$, where $S_i \in V$, $p \in (0,1]$, and $\alpha \in (V \cup T)^*$, such that for every nonterminal S_i , $\sum_{\langle p_j | (S_i \stackrel{p_j}{\to} \alpha_j) \in R \rangle} p_j = 1$. S_1 is specified as the starting nonterminal. A SCFG G generates a language $L(G) \subseteq T^*$ and associates a probability $p(\tau)$ to every terminal string τ in the language, according to the following stochastic process. Start with the starting nonterminal S_1 , pick a rule with left hand side S_1 at random (according to the probabilities

of the rules) and replace S_1 with the string on the right-hand side of the rule. In general, in each step we have a sentential form, i.e., a string $\sigma \in (V \cup T)^*$; take the leftmost nonterminal S_i in the string σ (if there is any), pick a random rule with left-hand side S_i (according to the probabilities of the rules) and replace this occurrence of S_i in σ by the right-hand side of the rule to obtain a new string σ' . The process stops only when (and if) the current string σ has only terminals. The above process defines a (infinite) Markov chain M_G with state set $(V \cup T)^*$, initial state S_1 , and set of terminating states T^* ; of course, the unreachable states can be ignored, and also we can add self-loops with probability 1 at the terminating states to make M_G into a proper Markov chain.

The probability $p(\tau)$ of a terminal string $\tau \in T^*$ is the probability that the process reaches (and thus terminates at) the string τ . The above definition of the SCFG process applies a leftmost derivation rule; the probabilities of the terminal strings are the same if one uses any other derivation rule, for example rightmost derivation, or simultaneous expansion in each step of all nonterminals in the current sentential form. The probability of the language L(G) of the SCFG G is $p(L(G)) = \sum_{\tau \in L(G)} p(\tau)$; this is the probability that the stochastic process starting with S_1 generates some terminal string (and terminates).

A probabilistic model of web surfing, called Random walk with "back buttons", or backoff process, was introduced and studied in [Fagin et al. 2000]. The model extends an ordinary finite Markov chain with a "back button" feature: There is a finite set of pages (states) $V = \{S_1, \ldots, S_n\}$, and the process starts from some initial page, say S_1 . In each step, if the current page is S_i then the process can either proceed along a forward link to a page S_j with probability p_{ij} , or it can 'press the back button' with probability $b_i = 1 - \sum_j p_{ij}$ and return to the previous page from which page S_i was entered. A backoff process C defines an infinite Markov chain M_C on state set V^* with initial state S_1 , where each state of M_C is the sequence of pages that led to the current page via forward links. As observed in [Etessami and Yannakakis 2009], backoff processes can be mapped to (a subclass of) SCFGs: Given a backoff process C as above, the SCFG G with rules $\{S_i \stackrel{p_{ij}}{\to} S_i S_i | p_{ij} > 0\}$ $\cup \{S_i \xrightarrow{b_i} \epsilon | b_i > 0\}$ defines the same infinite Markov chain $M_G = M_C$. Fagin et. al. ([Fagin et al. 2000]) provide a thorough study of backoff processes and efficient algorithms; for example they can approximate in polynomial time to any desired precision the termination probability, i.e. the probability p(L(G)) of the language of the associated SCFG. It is an open problem whether such an algorithm exists for the whole class of all SCFGs.

Stochastic context-free grammars (and thus also backoff processes) can be mapped to 1-exit RMCs in a probability-preserving manner [Etessami and Yannakakis 2009]: A SCFG G is mapped to a 1-exit RMC A that has one component A_i for each non-terminal S_i of G, the component has one entry en_i and one exit ex_i , and has one path from entry to exit for each rule $S_i \stackrel{p}{\rightarrow} \alpha$ of G with left hand side S_i ; the path contains a box for every nonterminal on the right-hand side α of the rule mapped to the corresponding component, a node for each terminal in α , the first edge of the path has probability P equal to the probability of the rule and the other edges have probability 1. An example of the mapping is given in Figure 3, which shows the RMC A corresponding to the SCFG G with nonterminals $V = \{S_1, S_2\}$, terminals

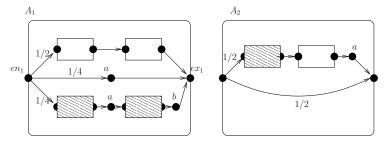


Fig. 3. RMC of a SCFG

 $T=\{a,b\}$ and rules $R=\{S_1\stackrel{1/2}{\to}S_1S_1,\ S_1\stackrel{1/4}{\to}a,\ S_1\stackrel{1/4}{\to}S_2aS_2b,\ S_2\stackrel{1/2}{\to}S_2S_1a,\ S_2\stackrel{1/2}{\to}\epsilon\}$. The unshaded boxes of the figure are mapped to A_1 and the shaded boxes are mapped to A_2 . All edges that do not have an attached probability label have probability 1.

There is a 1-to-1 correspondence between the trajectories of the infinite Markov chains M_G and M_A associated with a SCFG G and the corresponding RMC A, where the only difference between corresponding trajectories is that the one in M_A executes some additional probability 1 steps.

The mapping from SCFGs to 1-exit RMCs can be used in a straightforward way to reduce model checking questions from SCFGs to 1-exit RMCs. For example, we may consider an execution of the stochastic process of a SCFG G as a sequence of rule applications. Let φ be any ω -regular property over the set R of rules of G, and suppose we wish to know the probability $P_G(\varphi)$ that an execution of G (i.e. a trajectory of M_G) satisfies the property φ . For example, G may be the SCFG for a backoff process C and φ a property concerning the pattern of visits to the pages (states) of C. We can map the SCFG G to a RMC A as above, label the vertices of A that are immediate successors of the entries of the components with the rules corresponding to the edges leading to these vertices, label all the other vertices with some other label i that stands for 'ignore', and let φ' be the property on alphabet $R \cup \{i\}$ obtained from φ by ignoring label i; for example, if φ is given by an automaton B, we add self-loops on letter i to all states of B. It is easy to see then that $P_G(\varphi) = P_A(\varphi')$. Hence, the results we show for 1-exit RMCs apply in particular to SCFGs. Thus for example, the qualitative problems can be solved in polynomial time in the size of the SCFG G and exponential in the size of the property φ (polynomial if φ is given by a deterministic automaton).

A special, finite-string, case of an ω -regular property is the following: given a SCFG $G=(T,V,R,S_1)$ and a regular language (on finite strings) $K\subseteq T^*$, what is the probability $P_G(K)$ that the SCFG G generates a string in K? The problem can be reduced to a model checking problem for 1-exit RMCs as above, but it is not necessary to use the set R of rules for the labels of the RMC, we can simply use the terminal alphabet T of the SCFG and label the RMC as indicated in the figure. In more detail, assume w.l.o.g that the starting nonterminal S_1 of G does not appear on the right-hand-side of any rule; if it does appear, add a new starting nonterminal S_1' and a rule $S_1' \stackrel{1}{\to} S_1$. Construct the 1-exit RMC A corresponding to the SCFG G, label the nodes corresponding to terminals in the rules by the terminals as shown

in the figure, label the exit of the component of the starting nonterminal by a new 'endmarker' symbol e, label all other vertices by a new symbol i (for 'ignore'), and let K' be the ω -regular language over alphabet $T \cup \{e, i\}$ whose projection to $T \cup \{e\}$ is Ke^{ω} . Then $P_G(K) = P_A(K')$.

In fact, in the case of finite-string regular language properties K, the model checking problem can be reduced to a termination problem for RMCs. This holds actually more generally, for all RMCs, not only SCFGs. Let A be a labeled RMC (e.g. the 1-exit RMC corresponding to a SCFG G), let B be a deterministic finite automaton (on finite strings) for the language K over the label set of A, and let $P_A(K)$ be the probability, that A generates a terminating trajectory that is in K (e.g., if A is the RMC for a SCFG G, then $P_A(K)$ is the probability $P_G(K)$ that G derives a string in K). From A and B we can construct a (multi-exit) RMC A'of size $|A| \cdot |B|$ (A' is essentially the product of A and B) such that the probability of termination of A' is equal to the probability $P_A(K)$. The RMC A' has generally multiple exits, even if A is a 1-exit RMC (the number of exits is multiplied by |B|). For the qualitative problems however, it suffices to deal only with the original RMC A, and thus, if A is a 1-exit RMC, we can solve the qualitative problems in polynomial time in |A| and |B|. First, regarding the question ' $P_A(K) = 0$?', note that this is equivalent to the question whether A generates any terminating trajectory that is in K; this can be determined in polynomial time by the RSM algorithm of [Alur et al. 2005]. (In the special case of a SCFG G, the equivalent question is $L(G) \cap K = \emptyset$?', which can be tested in polynomial time in the sizes of G and B by standard methods.) Second, regarding the question ' $P_A(K) = 1$?', note that this is equivalent to the conjunction of two conditions: (i) the RMC A terminates with probability 1, and (ii) all terminating trajectories are in K, equivalently, there is no terminating trajectory that is accepted by the DFA B that accepts the complement of K (in the SCFG case, condition (i) is p(L(G)) = 1, and (ii) is $L(G) \cap \overline{K} = \emptyset$.) Condition (ii) can be tested again in polynomial time in |A| and $|B| = |\overline{B}|$ using the RSM algorithms (and by standard methods in the SCFG case). Thus, the question reduces to condition (i), i.e., whether A terminates with probability 1 (whether p(L(G)) = 1 in the SCFG case), which can be solved in polynomial time for 1-exit RMCs and SCFGs.

We finish this section with a remark concerning Multi-type Branching Processes [Harris 1963], a classical stochastic model related to SCFGs. We will not give the formal definition here, but we just mention that they involve a finite set of types, corresponding to nonterminals in SCFGs, and they have also a set of probabilistic rules like SCFGs, except that there are no terminals and the right hand sides of the rules are unordered multi-sets of types (nonterminals) rather than strings. A significant difference in a branching process is that the evolution of the system (i.e., the induced infinite Markov chain) involves in each step a simultaneous expansion of all the types in the current state, rather than a leftmost derivation rule that we used for SCFGs. If we are interested in the probability of termination of the process (called the extinction probability), the derivation rule does not make any difference, and thus the extinction probability can be reduced to the termination probability of a 1-exit RMC [Etessami and Yannakakis 2009]. However, if we are interested in other temporal properties of the process, then the derivation rule can matter.

Thus, our results in this paper on model checking RMCs do not imply, at least immediately, analogous results for the model checking of more general properties of branching processes.

3. THE CONDITIONED SUMMARY CHAIN M_A^\prime

For an RMC A, suppose we somehow have the probabilities $q_{(u,ex)}^*$ "in hand". Based on these, we construct a conditioned summary chain, M_A' , a finite Markov chain that will will play a key role to model checking RMCs. Since probabilities $q_{(u,ex)}^*$ are potentially irrational, we can not compute M_A' exactly. However, M_A' will be important in our correctness arguments, and we will in fact be able to compute the "structure" of M_A' , i.e., what transitions have non-zero probability. The structure of M_A' will be sufficient for answering various "qualitative" questions.

We will assume, w.l.o.g., that each RMC has one initial state $s_0 = \langle \epsilon, en_{\text{init}} \rangle$, with en_{init} the only entry of some component A_0 that does not contain any exits. Any RMC with any initial node can readily be converted to an "equivalent" one in this form, while preserving relevant probabilities: Given an RMC $A = (A_1, \ldots, A_k)$ with initial node u, which belongs say to component A_i , add a new component A_0 that is a copy of A_i except that it has one new entry node en_{init} which has the same transitions as u, and all the exit nodes of A_i are changed in A_0 into ordinary nodes with probability 1 self-loops.

The conditioned summary chain is the probabilistic analogue of the "summary graph" of a Recursive State Machine, defined in [Alur et al. 2005]. The summary graph of a RSM is a finite graph with the same vertex set as the RSM, whose paths correspond to a 'summarized' version of the executions of the RSM, where the summarization involves shortcutting all the recursive calls that terminate, i.e. only the steps of non-terminated calls of the execution are retained, while terminated recursive calls are replaced by a direct transition from the call vertex to the return vertex, and for each retained step we only record the current vertex (and not the stack of boxes). We will define formally the summarization operation on executions further on, after the definition of the summary graph.

We recall from [Alur et al. 2005], the construction of the summary graph $H_A = (Q, E_{H_A})$ of the underlying RSM of a RMC A; the construction of H_A ignores probabilities and is based only on information about reachability in the underlying RSM of A. Let R be the binary relation between entries and exits of components such that $(en, ex) \in R$ precisely when there exists a path from $\langle \epsilon, en \rangle$ to $\langle \epsilon, ex \rangle$, in the underlying graph of M_A . The edge set E_{H_A} is defined as follows. For $u, v \in Q$, $(u, v) \in E_{H_A}$ iff one of the following holds:

- (1) u is not a call port, and $(u, p_{u,v}, v) \in \delta$, for $p_{u,v} > 0$.
- (2) u = (b, en) is a call port, and $(en, ex) \in R$, and v = (b, ex) is a return port.
- (3) u = (b, en) is a call port, and v = en is the corresponding entry.

We call the edges of the above types 1, 2, 3 respectively, ordinary, summary, and nesting edges.

A 'summarization' map ρ^H from executions of the underlying RSM of A to sequences of vertices, which form paths in the summary graph H_A , is defined as follows. Let $t = s_0 s_1 \dots s_i \dots$ be an execution of the RSM starting at an arbitrary vertex w, i.e. t is a trace of the infinite graph of M_A starting at $s_0 = \langle \epsilon, w \rangle$. We

define $\rho^H(t)$ sequentially based on prefixes of t, as follows. For the basis, we let $\rho^H(s_0) = w$, i.e., the path $\rho^H(t)$ in the summary graph starts at w. Inductively, suppose that ρ^H maps the prefix $s_0 \dots s_i$ to the path $w \dots u$ of H_A , where $s_i = \langle \beta, u \rangle$ for some β , i.e. the vertex of s_i is u. If u is not a call port then the next state of t is $s_{i+1} = \langle \beta, v \rangle$ for some transition $(u, p_{u,v}, v) \in \delta$ of A; in this case we let ρ^H map the prefix $s_0 \dots s_i s_{i+1}$ to $w \dots uv$, i.e. the path in H_A continues from u to v along the corresponding ordinary edge (u, v). Next, suppose u = (b, en) is a call port. The next state of t is $s_{i+1} = \langle \beta b, en \rangle$. There are two cases: (i) If the trace eventually returns from this call of b, i.e. if there exists j > i+1, such that $s_j = \langle \beta b, ex \rangle$ and $s_{j+1} = \langle \beta, (b, ex) \rangle$, and such that each of the states $s_{i+1} \dots s_j$, has βb as a prefix of the call stack, then $s_0 \dots s_{j+1}$ is mapped by ρ^H to $w \dots u(b, ex)$, i.e the path in H_A follows from u the summary edge (u, (b, ex)) to the corresponding return port (b, ex) of b. (ii) If the trace never returns from this call of b, then $s_0 \dots s_i s_{i+1}$ maps to $w \dots u$ en, i.e the path in H_A follows from u the nesting edge (u, en) to the corresponding entry en of the component Y(b).

The conditioned summary chain $M'_A = (Q_{M'_A}, \delta_{M'_A})$ of RMC A plays an analogous role for the RMC as the summary graph H_A plays for the underlying RSM. The summary chain M'_A is a finite-state Markov chain whose underlying graph is the subgraph of the summary graph H_A induced on a subset of vertices $Q_{M'_A}$; the subset has the property that the executions of the RMC A starting at the initial state en_{init} of the RMC are mapped by the summarization map ρ^H to paths in this subgraph with probability 1, i.e. they do not use any of the other missing vertices almost surely. Furthermore, the transition probabilities of M'_A are set so that the probability distribution of the trajectories of M'_A is the same (up to a set of measure 0) as the probability distribution of the summarizations of the executions of the RMC A starting at its initial vertex en_{init} .

The state set $Q_{M'_A}$ of the conditioned summary chain M'_A is defined as follows. For each vertex $v \in Q_i$, let us define the probability of never exiting: $\operatorname{ne}(v) = 1 - \sum_{ex \in Ex_i} q^*_{(v,ex)}$. Call a vertex v deficient (or a survivor) if $\operatorname{ne}(v) > 0$, i.e. there is a nonzero probability that if the RMC starts at v it will never terminate (reach an exit of the component), and let $\operatorname{Def}(A)$ be the set of deficient vertices of A. The state set $Q_{M'_A}$ of the summary chain M'_A is the set of deficient vertices: $Q_{M'_A} = \operatorname{Def}(A) = \{v \in Q \mid \operatorname{ne}(v) > 0\}$.

The transition set $\delta_{M'_A}$ of the conditioned summary chain M'_A is defined as follows. For $u, v \in Q_{M'_A}$, there is a transition $(u, p'_{u,v}, v)$ in $\delta_{M'_A}$ if and only if one of the following conditions holds:

- (1) u is not a call port and $(u, p_{u,v}, v) \in \delta$ (where $p_{u,v} > 0$), and $p'_{u,v} = \frac{p_{u,v} \cdot \text{ne}(v)}{\text{ne}(u)}$. We call these ordinary transitions.
- (2) $u = (b, en) \in Call_b$ and $v = (b, ex) \in Return_b$ and $q^*_{(en, ex)} > 0$, and $p'_{u,v} = \frac{q^*_{(en, ex)} \operatorname{ne}(v)}{\operatorname{ne}(u)}$. We call these summary transitions.
- (3) $u = (b, en) \in Call_b$ and v = en, and $p'_{u,v} = \frac{\text{ne}(v)}{\text{ne}(u)}$. We call these transitions, from a call port to corresponding entry, nesting transitions.

Intuitively, for all three types of transitions, the probability $p'_{u,v}$ of a transition ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

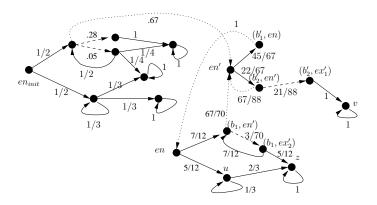


Fig. 4. The conditioned summary Markov chain

of M_A' from a vertex u to a vertex v is set equal to the conditional probability that the summarization of an execution of the RMC A starting at u transitions next to v, conditioned on the event that the execution does not terminate (does not reach an exit of the component of u). Note that in all three cases, $p'_{u,v}$ is well-defined (the denominator is nonzero, since $u \in Def(A)$) and it is positive.

Recall that we assumed that the initial vertex en_{init} is the entry of a component A_0 , and A_0 has no exits. Thus for all $v \in Q_0$, ne(v) = 1, and thus $Q_0 \subseteq Q_{M_A'}$, and if $(u, p_{u,v}, v) \in \delta_0$, then $(u, p_{u,v}, v) \in \delta_{M_A'}$.

 M'_A is an ordinary (flat) finite Markov chain. Let $(\Omega', \mathcal{F}', \mathbf{Pr}_{\Omega'})$ denote the probability space on traces of M'_A starting from the initial state e_{init} . We can define a mapping $\rho: \Omega \mapsto \Omega' \cup \{\star\}$ that maps every trace t of the original (infinite) Markov chain M_A starting at its initial state $\langle \epsilon, e_{init} \rangle$, either to a unique trajectory $\rho(t) \in \Omega'$ of the Markov chain M'_A , or to the special symbol \star , as follows. If $\rho^H(t)$ contains only deficient vertices, i.e., if they are all in $Q_{M'_A}$, then we let $\rho(t) = \rho^H(t)$; otherwise, we let $\rho(t) = \star$. We will show that the probability that the summarization of a trace of M_A contains a deficient vertex is 0, i.e., $\mathbf{Pr}_{\Omega}(\rho^{-1}(\star)) = 0$, and moreover, that M'_A preserves the probability measure of M_A : for all $D \in \mathcal{F}'$, $\rho^{-1}(D) \in \mathcal{F}$, and $\mathbf{Pr}_{\Omega'}(D) = \mathbf{Pr}_{\Omega}(\rho^{-1}(D))$.

Example 5. Consider the sample RMC of Figure 2, and suppose that the initial vertex is entry en of component A_1 . We first add a new component A_0 that is a copy of A_1 except that the copies of the exit nodes ex_1 and ex_2 are ordinary nodes that have self-loops with probability 1. Let A be the resulting RMC with initial vertex en_{init} the copy of en in A_0 . The conditioned summary chain M'_A of A is shown in Figure 4. The vertex set consists of all the deficient vertices of the RMC; this includes all the vertices of component A_0 (en_{init} and the unlabelled vertices in the upper left part of Figure 4), but not all the vertices of A_1 and A_2 . For example, in component A_2 , the two exits, the vertex w, both return ports of box b'_1 and the second return port of box b'_2 can reach an exit with probability 1 and hence they are not included in the summary chain. The summary transitions are shown in Figure 4 as dashed arcs and the nested transitions are shown as dotted arcs.

To compute the transition probabilities, we first set up and solve the system of ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

equations for the RMC to compute for each vertex the probability that it can reach the exits of its component, and from these we compute the no-exit probabilities of the vertices. For example, the entry vertex en of component A_1 can reach the first exit ex_1 with probability 0.15, the second exit ex_2 with probability 0.25, and hence its no-exit probability is $\operatorname{ne}(en)=0.6$. The other vertices of A_1 have the following no-exit probabilities: $(b_1,en'):0.7,\ u:0.5,\ z:1,\ (b_1,ex_1'):0,\ (b_1,ex_2'):0.6$. The entry vertex en' of A_2 can reach the first exit ex_1' with probability 0.28, the second exit ex_2' with probability 0.05, and thus its no-exit probabilities: $(b_1',en):0.6$, $(b_2',en'):0.88,\ (b_2',ex_1'):0.75,\ v:1$. All vertices of A_0 have no-exit probability 1. The transition probabilities of M_A' can be computed from these probabilities.

Every trajectory t of the RMC is mapped by ρ^H to a path of the summary graph H_A . However, the path may go through vertices that are not in the summary chain M'_A (i.e., vertices that are not in Def(A)), in which case the trajectory t is mapped by ρ to \star . For instance, in this example RMC, an execution t may eventually reach vertex w of A_2 and loop there forever; since ne(w) = 1, vertex w is not in M'_A and hence $\rho(t) = \star$ in this case. \square

We proceed now to show the properties of the conditioned summary chain M'_A . We will show first that M'_A is a proper Markov chain, i.e. the probabilities of the transitions out of each state sum to 1.

Proposition 6. The probabilities on the transitions out of each state in $Q_{M'_A}$ sum to 1.

PROOF. We split into cases.

Case 1: u is any vertex in $Q_{M_A'}$ other than a call port. In this case, $\sum_v p'_{u,v} = \sum_v \frac{p_{u,v} \operatorname{ne}(v)}{\operatorname{ne}(u)}$. Note that $\operatorname{ne}(u) = \sum_v p_{u,v} \operatorname{ne}(v)$. Hence $\sum_v p'(u,v) = 1$.

Case 2: Suppose u is a call port u=(b,en) in A_i , and box b is mapped to component A_j . Starting at u, the trace will never exit A_i iff either it never exits the box b (which happens with probability $\operatorname{ne}(en)$) or it exits b through some return vertex v=(b,ex) and from there it does not manage to exit A_i (which has probability $q_{(en,ex)}^* \operatorname{ne}((b,ex))$). That is, $\operatorname{ne}((b,en)) = \operatorname{ne}(en) + \sum_{ex \in Ex_j} q_{(en,ex)}^* \operatorname{ne}((b,ex))$. Dividing both sides by $\operatorname{ne}((b,en))$, we have

$$1 = \operatorname{ne}(en)/\operatorname{ne}((b,en)) + \sum_{ex} q^*_{(en,ex)} \operatorname{ne}((b,ex))/\operatorname{ne}((b,en))$$

which is the sum of the probabilities of the edges out of u = (b, en). \square

Recall the definition of the function ρ that maps executions of the RMC A starting at the initial state e_{init} (i.e. trajectories of the infinite Markov chain M_A) to trajectories of the summary chain M'_A or the symbol \star . We show next that the set of trajectories of the RMC that map to \star has probability 0.

LEMMA 7.
$$\mathbf{Pr}_{\Omega}(\rho^{-1}(\star)) = 0$$
.

PROOF. Let $D = \rho^{-1}(\star)$. We can partition D according to the first failure. For $t \in D$, let $\rho^H(t) = w_0 w_1 \ldots \in Q^{\omega}$. Let $i \geq 0$ be the least index such that $w_i \in Q_{M'_A}$ but $w_{i+1} \notin Q_{M'_A}$ (such an index must exist). We call $w' = w_0 \ldots w_{i+1}$ a failure

prefix. Let $C(w') = \{w \in \Omega' \mid w = w'w'' \text{ where } w'' \in Q^{\omega}\}$ be the cylinder at w', inside \mathcal{F}' . Let $D[w'] = \{t \in \Omega \mid \rho^H(t) \in C(w')\}$.

We claim $\mathbf{Pr}_{\Omega}(D[w']) = 0$ for all such "failure" prefixes, w'. (To be completely formal, we have to first argue that $D[w'] \in \mathcal{F}$, but this is not difficult to establish: D[w'] can be shown to be a countable union of cylinders in \mathcal{F} .)

By definition, $ne(w_i) > 0$, but $ne(w_{i+1}) = 0$. We distinguish cases, based on what type of vertex w_i and w_{i+1} are.

Case 1: Suppose $w_i \in Q$ is not a call port. In this case, $(w_i, w_{i+1}) \in E_{H_A}$ is an ordinary edge of the summary graph and corresponds to an edge in the RMC A. A trajectory $t \in D[w']$, is one that reaches $\langle \beta, w_i \rangle$ then moves to $\langle \beta, w_{i+1} \rangle$ and then never exits the component of w_i and w_{i+1} , i.e., retains β as a prefix of the call stack. (This follows from the definition of ρ^H , and the fact that in H_A there are no edges out of exit vertices). Since $\operatorname{ne}(w_{i+1}) = 0$ the probability of such trajectories t is 0, i.e., $\operatorname{Pr}_{\Omega}(D[w']) = 0$.

Case 2: $w_i = (b, en)$ is a call port, and $w_{i+1} = (b, ex)$. Thus $(w_i, w_{i+1}) \in E_{H_A}$ is a summary edge. Again, $\operatorname{ne}(w_i) > 0$, but $\operatorname{ne}(w_{i+1}) = 0$. Any trajectory $t \in D[w']$, reaches $\langle \beta, w_i \rangle$, then sometime later reaches $\langle \beta, w_{i+1} \rangle$, having always retained β as a prefix of the call stack in between, and thereafter it never exits the component of w_i and w_{i+1} . (Again, similar to case 1, this follows by definition of ρ^H , and H_A .) But since $\operatorname{ne}(w_{i+1}) = 0$, this $\operatorname{\mathbf{Pr}}_{\Omega}(D[w']) = 0$.

Case 3: $w_i = (b, en)$ and $w_{i+1} = en$. In other words, (w_i, w_{i+1}) is a nesting edge of E_{H_A} where we move from a call port of box b to the corresponding entry en of the component A_j , where Y(b) = j. Thus a trajectory $t \in D[w']$ enters component A_j at entry en, on step i + 1, and never exits this component thereafter. Note again, however, that $ne(w_{i+1}) = 0$. Thus, $\mathbf{Pr}_{\Omega}(D[w']) = 0$.

Now note that $D = \bigcup_{w'} D[w']$, where the union is over all failure prefixes, $w' \in Q^*$. Note that this is a countable union of sets, each having probability 0, thus $\mathbf{Pr}_{\Omega}(D) = 0$. \square

Thus, we can effectively ignore trajectories of M_A that are not mapped into trajectories of M'_A . We will now show that the mapping ρ preserves probabilities.

LEMMA 8. For all
$$D \in \mathcal{F}'$$
, $\rho^{-1}(D) \in \mathcal{F}$ and $\mathbf{Pr}_{\Omega}(\rho^{-1}(D)) = \mathbf{Pr}_{\Omega'}(D)$.

(The proof has been moved to the electronic appendix, due to space constraints. The proof shows by induction on k, using Lemma 7 as a base case, that the claim holds for all D that are basic cylinder sets defined by sequence of states of length k. From this, the full claim follows readily by standard facts in probability theory.)

Let $H'_A = (Q_{H'_A}, E_{H'_A})$ be the underlying directed graph of M'_A . In other words, the states $Q_{H'_A} = Q_{M'_A} = Def(A)$, and $(u,v) \in E_{H'_A}$ iff $(u,p'_{u,v},u) \in \delta_{M'_A}$. The graph H'_A is the subgraph of the summary graph H_A induced by the set Def(A) of deficient vertices. We will show that we can compute H'_A in P-time for linear RMCs, single-exit RMCs and bounded RMCs, and in PSPACE for arbitrary RMCs. The basic observation is that the structure of M'_A depends only on qualitative facts about the probabilities $q^*_{en,ex}$ and ne(u), for $u \in Q$.

PROPOSITION 9. For a RMC A (respectively, linear or single-exit or bounded RMC), and $u \in Q$, we can decide whether ne(u) > 0 in PSPACE (respectively, P-time).

PROOF. Suppose u is in a component A_i where $Ex_i = \{ex_1, \dots, ex_k\}$. Clearly, $\operatorname{ne}(u) > 0$ iff $\sum_{j=1}^{k} q_{(u,ex_j)}^* < 1$. Consider the following sentence, φ , in $\operatorname{ExTh}(\mathbb{R})$.

$$\varphi \equiv \exists x_1, \dots, x_n \bigwedge_{i=1}^n (P_i(x_1, \dots, x_n) = x_i) \land \bigwedge_{i=1}^n (0 \le x_i) \land \sum_{j=1}^k x_{(u, ex_j)} < 1$$
Since \mathbf{q}^* is the LFP solution of $\mathbf{x} = P(\mathbf{x})$, φ is true in the reals if and only if

 $\sum_{i=1}^{k} q_{(u,ex_i)}^* < 1$. This query can be answered in PSPACE.

For linear RMCs, the termination probabilities can be computed exactly in polynomial time. For single-exit RMCs, we have $Ex_i = \{ex_1\}$, and ne(u) > 0 iff $q_{(u,ex_1)}^* < 1$. As mentioned in section 2.2, this can be answered in P-time for singleexit RMCs ([Etessami and Yannakakis 2009]). Similarly, for bounded RMCs the question can be answered in P-time by the techniques developed in Etessami and Yannakakis 2009]. □

Once we determine the deficient vertices of A, the structure of M'_A can be determined in polynomial time.

COROLLARY 10. For a RMC A (respectively, linear, single-exit or bounded RMC), we can compute the underlying graph H'_A of the conditioned summary chain in polynomial space (respectively, in polynomial time).

PROOF. Recall that $u \in Q_{H'_A}$ precisely when $u \in Q$ and ne(u) > 0. Thus we can determine the set of nodes with the said complexities, respectively. The ordinary and nesting transitions in the definition of M'_A are immediately determined. For the summary transitions, where u = (b, en) and v = (b, ex), in order to determine whether to include the corresponding summary edge (u, v) we need to decide whether $q_{(en,ex)}^* > 0$. This can be done in polynomial time by invoking the reachability algorithm for RSMs [Alur et al. 2005]. \Box

4. QUALITATIVE MODEL CHECKING FOR BÜCHI AUTOMATA

We are given a RMC A and a (nondeterministic) Büchi automaton B. To simplify the descriptions of our results, we assume henceforth that the alphabet $\Sigma = Q$, the vertices of A. This is w.l.o.g. since the problem can be easily reduced to this case by relabelling the RMC A and modifying the automaton B (see eg. [Courcoubetis and Yannakakis 1995); however care must be taken when measuring complexity separately in the RMC, A, and in the automaton, B, since typically B and Σ are small in relation to A. Our complexity results hold with respect to the given inputs A, B.

We will first present our algorithms for qualitative model checking, and then we will prove a lower bound on the complexity of the problem.

4.1 Upper bounds.

Given an RMC $A = (A_1, ..., A_k)$ and a (nondeterministic) Büchi automaton B = (Σ, S, q_0, R, F) whose alphabet Σ is the vertex set of A, we wish to determine whether $P_A(L(B)) = 1$, = 0, or is in-between. We give a high-level view of the approach. We will construct a finite Markov chain $M'_{A,B}$ from the RMC A and the automaton B and we will classify its bottom strongly connected components

(SCCs) into "accepting" and "rejecting". The classification has the property that $P_A(L(B))$ is equal to the probability that a trajectory of $M'_{A,B}$, starting from its initial state, reaches eventually an accepting bottom SCC. Thus, $P_A(L(B)) = 1$ iff all reachable bottom SCCs are accepting and $P_A(L(B)) = 0$ iff they are all rejecting. The finite Markov chain $M'_{A,B}$ is the conditioned summary chain of an RMC formed by taking a product of the given RMC A with a simple determinization of the automaton B. The number of states and transitions of M'_{AB} is linear in those of A and exponential in B (but linear in B if B is deterministic). For the qualitative analysis we only need the structure (i.e., the states and transitions) of the Markov chain M'_{AB} and not the actual transition probabilities. The computational bottleneck in the construction of the underlying graph of $M'_{A,B}$ is the qualitative termination analysis of the RMC A to determine the deficient vertices; once we have determined the deficient vertices of A, we show that the construction can be carried out in polynomial time in A. Thus, for special classes of RMCs (e.g., 1-exit RMCs, bounded RMCs and linear RMCs) the construction takes polynomial time in A. In terms of the mathematical analysis, the most complex part is showing a necessary and sufficient condition that characterizes the accepting bottom SCCs. This involves an intricate combinatorial analysis of the interaction between the RMC and the automaton. Algorithmically however, once we have constructed the graph of the Markov chain $M'_{A,B}$, the condition can be tested efficiently and we can classify the bottom SCCs and hence determine whether $P_A(L(B)) = 1$, = 0, or is in-between.

We now proceed with the detailed development. First, let $B' = (\Sigma, 2^S, \{q_0\}, R', F')$ be the deterministic automaton obtained by the usual subset construction on B. In other words, the states of B' are subsets $T \subseteq S$, the set F' of accepting states is $F' = \{T | T \subseteq S, T \cap F \neq \emptyset\}$, and the transition function $R' : (2^S \times \Sigma) \mapsto 2^S$ is given by: $R'(T_1, v) = \{q' \in S \mid \exists q \in T_1 \text{ s.t. } (q, v, q') \in R\}$. (We are making no claim that L(B) = L(B').)

Next we define the standard product RMC, $A \otimes B'$, of the RMC A, and the deterministic Büchi automaton B'. $A \otimes B'$ has the same number of components as A. Call these A'_1, \ldots, A'_k . The vertices in component A'_i are pairs (u, T), where $u \in Q_i$ and $T \in 2^S$, and (u, T) is an entry (exit) iff u is an entry (exit). The transitions of A'_i are as follows: there is a transition $((u, T), p_{u,v}, (v, R'(T, v)))$ in A'_i iff there is a transition $(u, p_{u,v}, v)$ in A_i .

Define $M'_{A,B}$ as $M'_{A,B} = M'_{A\otimes B'}$. Thus $M'_{A,B}$ is the conditioned summary chain of RMC $A\otimes B'$. For qualitative analysis on $M'_{A,B}$, we need the underlying graph $H'_{A,B}$. Importantly for the complexity of our algorithms, we do not have to explicitly construct $A\otimes B'$ to obtain $H'_{A,B}$. Observe that states of $M'_{A,B} = (Q\times 2^S, \delta_{M'_{A,B}})$ are pairs (v,T) where v is a state of M'_A , and T a state of B'. The initial state of $M'_{A,B}$ is $(v_0,\{q_0\})$, where v_0 is the initial state of M'_A and q_0 of B. The transitions of $M'_{A,B}$ from a state (v,T) are of three types, corresponding to the types of the transitions out of v in M'_A , as follows:

- —Type 1: v is not a call port. Then for every transition $(v, p'_{v,v'}, v') \in \delta_{M'_A}$, we have a corresponding ordinary transition $((v, T), p'_{v,v'}, (v', R'(T, v'))) \in \delta_{M'_{A,R}}$.
- —Type 2: v is a call port, v = (b, en). If there is a nesting transition $(v, p_{v,en}, en) \in \delta_{M'_A}$ then there is a nesting transition $((v, T), p_{v,en}, (en, R'(T, en))) \in \delta_{M'_{A,B}}$ with

the same probability.

—Type 3: v is a call port, v = (b, en). If v has a summary transition $(v, p_{v,v'}, v')$ in M'_A , where v' = (b, ex), then we have summary transitions of the form ((v, T), p'', (v', T')) in $M'_{A,B}$ to states of the form (v', T') iff there exists a path in M_A from $\langle \epsilon, en \rangle$ to $\langle \epsilon, ex \rangle$ which, viewed as a string, drives B' from T to T'; the probability p'' of the transition is $p'' = p' \cdot ne(v')/ne(v)$ where p' is the probability of all such $v \cdot v'$ paths that drive B' from T to T'.

 $M'_{A,B}$ is a well-defined Markov chain, which is a refinement of M'_A . That is, every trajectory of $M'_{A,B}$ projected on the first component is a trajectory of M'_A and the projection preserves probabilities. We can define a mapping σ from the trajectories t of the original (infinite) Markov chain M_A to the trajectories of $M'_{A,B}$, or the special symbol \star , in a similar manner as we defined the mapping ρ from trajectories of M to M'_A . For a trajectory t of M_A , it is easy to see that if $\rho(t) \neq \star$ then also $\sigma(t) \neq \star$. Thus, with probability 1 a trajectory of M_A is mapped to one of $M'_{A,B}$. Furthermore, we can show along similar lines the analogue of Lemma 8, i.e. the mapping σ preserves probabilities.

Consider a product graph (without probabilities) $M'_A \otimes B$ between the Markov chain M'_A and the given nondeterministic Büchi automaton B (not B') as follows: The product has nodes (v,q), for all vertices v of M'_A and states q of B, and an edge $(v,q) \to (v',q')$ if either (i) $v \to v'$ is an ordinary edge or a nesting edge of M'_A and q has a transition to q' on input v', or (ii) $v \to v'$ is a summary edge and the RMC has a path from v to v' that corresponds to a run of B from q to q'; if the run goes through an accepting state then we mark the edge $(v,q) \to (v',q')$ as an accepting edge. Also, call a node (v,q) accepting if $q \in F$ is an accepting state of B.

With every transition (edge) of $M'_{A,B}$ and every edge of $M'_A \otimes B$ we associate a string γ over Σ (the vertex set of A) that caused the edge to be included; i.e., if edge $(v,T) \to (v',T')$ of $M'_{A,B}$ (respectively, edge $(v,q) \to (v',q')$ of $M'_A \otimes B$) corresponds to an ordinary or nesting edge of M'_A then $\gamma = v'$. If it corresponds to a summary edge then we let γ be any string that corresponds to a v-v' path that drives B' from T to T' (resp., for which B has a path from q to q'; if the edge $(v,q) \to (v',q')$ is marked as accepting then we pick a path that goes through an accepting state of B). In the case of a summary edge, there may be many strings γ as above; we just pick anyone of them.

Let t be any trajectory of M_A starting from $\langle \epsilon, v \rangle$, for some vertex v of M'_A and let r be a corresponding run of B starting from a state q. With probability 1, t maps to a trajectory $t' = \rho(t)$ of M'_A . The mapping ρ can be extended to pairs (t, r), where r is a run of B on t, i.e., the pair (t, r) is mapped to a run (path) $r' = \rho(t, r)$ of $M'_A \otimes B$. If r is an accepting run of B then r' goes infinitely often through an accepting node or an accepting edge. The converse does not hold necessarily: a non-accepting run r of B corresponding to a trajectory t may be mapped to a run r' of $M'_A \otimes B$ that traverses infinitely often an accepting edge.

If B is a deterministic Büchi automaton then $M'_{A,B}$ and $M'_A \otimes B$ are clearly the same, except that in $M'_A \otimes B$ we did not include the probabilities of the edges. In this case, the analysis is simpler. Let us say that a bottom strongly connected component (SCC) of $M'_{A,B}$ (and $M'_A \otimes B$) is accepting iff it contains an accepting

node or an accepting edge.

THEOREM 11. For a RMC A and a deterministic BA B, the probability $P_A(L(B))$ that a trajectory of A is accepted by B is equal to the probability that a trajectory of $M'_{A,B}$ starting from the initial node (v_0, q_0) reaches an accepting bottom SCC.

PROOF. With probability 1 a trajectory t of the RMC A maps to a trajectory $t' = \sigma(t)$ of $M'_{A,B}$ which reaches a bottom SCC C.

If C is not accepting then there is no accepting node or edge in C, hence the run of B on t goes only finitely often through accepting states, and thus t is not accepted by B.

If C is an accepting bottom SCC, then there is an accepting node or an accepting edge in C. If C has an accepting node $(v,q),q\in F$, then with probability 1 the trajectory $t'=\sigma(t)$ of $M'_{A,B}$ goes infinitely often through it, and thus t is accepted by B. Suppose C has an accepting edge $(v,q)\to (v',q')$ and let γ be the string associated with the edge, i.e., γ is a path from v to v' which drives B from q to q' going through an accepting state. With probability 1, a trajectory t whose image $t'=\sigma(t)$ reaches C has the property that t' visits infinitely often (v,q) and furthermore there is an infinite number of such visits where the next substring of t is γ . Thus again, conditioned on the event that t' reaches the bottom SCC C, t is accepted by B with probability 1. \square

Suppose now that B is nondeterministic. We will follow the approach of [Courcoubetis and Yannakakis 1995] for flat Markov chains, except that here we have to deal with recursive calls and with the summary edges of the constructed Markov chain $M'_{A,B}$ which correspond to sets of paths in the original chain M_A rather than single steps. This complicates things considerably. We will define a set of "special pairs" of the form (v,q), where v is a vertex of M'_A and $q \in F$, which will be useful in characterizing the accepting trajectories.

There are two types of special pairs. The first type is defined as follows. Let v be a vertex of M'_A and $q \in F$ an accepting state of B. Let D(v,q) be the subgraph of $M'_{A,B}$ induced by the node $(v,\{q\})$ and all nodes reachable from it . We say that the pair (v,q) is special of type 1 if some bottom SCC C of D(v,q) contains a state (v,T) with $q \in T$. We associate with such a pair (v,q) a string $\gamma(v,q) \in \Sigma^*$ that is the concatenation of the strings associated with the edges of D(v,q) on a path from $(v,\{q\})$ to a node of C. (There may be many such paths; just pick anyone.)

The second type of special pair is defined as follows. Let v=(b,en) be a vertex of M'_A that is a call port of a box b of A and let $q \notin F$ be a non-accepting state of B. Define a graph D(v,q) as follows. The graph contains a root node vq and a subgraph of $M'_{A,B}$ consisting of the nodes reachable from vq after we add the following edges. We add an edge from vq to a node $(v',\{q'\})$ of $M'_{A,B}$, where v'=(b,ex) is a return port of the same box b as v, iff there is a path γ from $\langle \epsilon,en\rangle$ to $\langle \epsilon,ex\rangle$ such that B has a run from q to q' on q that goes through an accepting state; we label the edge $vq \to (v',\{q'\})$ with such a string q. The graph D(v,q) consists of the root vq and the subgraph of $M'_{A,B}$ induced by all the nodes that are reachable from vq after adding the above edges. We call the pair v0 special of type 2 if some bottom SCC v0 of v0 contains a state v0, with v0 as that is the previous case, we associate with the pair v0, a string v0, a string v1. As in

concatenation of the strings associated with the edges of D(v,q) on a path from vq to a node of C.

Special pairs have the following important properties.

LEMMA 12. Suppose (v,q) is special and that RMC A starts at $\langle \epsilon, v \rangle$ and first performs the transitions in $\gamma(v,q)$. Then with probability 1 such a trajectory t of the RMC is accepted by B with initial state q. Specifically, there is a corresponding accepting run r of B such that $\rho(t,r)$ is a run of $M'_A \otimes B$ starting from (v,q) that infinitely repeats node (v,q) if (v,q) is special of type 1, or repeats an accepting edge out of (v,q) if (v,q) is special of type 2.

PROOF. We construct the accepting run r of B and run r' of $M'_A \otimes B$ one segment at a time. Suppose that (v,q) is special of type 1. Then $\gamma(v,q)$ corresponds to a path in D(v,q) (and $M'_{A,B}$) from $(v,\{q\})$ to a node of a bottom SCC C that contains a state (v,T) with $q \in T$. Consider a trajectory t of the RMC that starts with $\gamma(v,q)$ and the corresponding trajectory t' of $M'_{A,B}$ starting from $(v,\{q\})$. With probability 1, t' exists (i.e. t maps to a trajectory of of $M'_{A,B}$ starting from $(v,\{q\})$), and t' goes to the bottom SCC C and visits infinitely often all the states of C. For every visit to the state (v,T) there is a nonzero probability that in the following steps the trajectory t' will perform the transitions of $\gamma(v,q)$. Hence, with probability 1, at some finite step i, t' visits (v,T) and in the following steps the trajectory t performs t0. Let t1 be the first time this happens. Since t2 and in t3 B from t4 up to step t4 has a corresponding run in t5 from t6 t7 and in t8 from t9 to t9. This constitutes the first segment of the constructed run t9.

At step i, the trajectory t is at vertex v and the suffix from this point on starts again with the sequence $\gamma(v,q)$ of transitions. Since we have a Markov process we can repeat the argument for the remainder of T and construct the second and subsequent segments of r. In general, if E_k denotes the event that the procedure succeeds in constructing k segments, then the probability of E_{k+1} conditioned on E_k is 1. Therefore, the probability of $\cap_k E_k$ is also 1, and thus the required accepting run r will be constructed with probability 1.

Suppose that (v,q) is special of type 2 and let $vq \to (v',\{q'\})$ be the first edge (an accepting edge) in D(v,q) of the path corresponding to $\gamma(v,q)$ that leads from the root vq to the bottom SCC C that contains (v,T) with $q \in T$. Let α be the label of this edge; then $\gamma(v,q) = \alpha\beta$ for some β . The argument is similar to the case of type 1. Consider a trajectory t of the RMC starting from v with the transitions of $\gamma(v,q)$, and let $t=\alpha\tau$. After the prefix α , the trajectory t is at vertex v' (with empty stack, i.e the chain M_A is at vertex $\langle \epsilon, v' \rangle$). The remaining trajectory τ starts with β . With probability 1, τ maps to a trajectory τ' of $M'_{A,B}$ starting from state $(v', \{q'\})$, and since τ starts with β , τ' goes to the bottom SCC C. As in case 1, the trajectory hits with probability 1 infinitely often all the states of C, and furthermore there is a finite time i at which it reaches (v,T) and the following suffix of t starts again with $\gamma(v,q)$. We can map now the prefix of t up to step i to a run of B from q that goes first to q' passing on the way through an accepting state of B (this path corresponds to the prefix α) and then continues and reaches state q again at time i; the corresponding path of $M'_A \otimes B$ follows first the edge to (v',q') and then goes on to reach (v,q). This constitutes the first segment of the constructed run r. As in case 2, we can then repeat the process to construct the

subsequent segments, and the process will succeed with probability 1. \square

LEMMA 13. Suppose there is non-zero probability that a trajectory of the RMC A starting at any vertex $u \in M'_A$ has a corresponding run in $M'_A \otimes B$ starting from any node (u, p) which repeats an accepting state (v, q) infinitely often or repeats an accepting edge $(v, q) \rightarrow (v', q')$ infinitely often. Then (v, q) is special.

PROOF. Suppose that an accepting state (v,q) is not special. With probability 1, a trajectory t of the RMC that starts at v corresponds to a trajectory t' of $M'_{A,B}$ that starts at $(v,\{q\})$ and reaches a bottom SCC C of $M'_{A,B}$ (and of D(v,q)). Since (v,q) is not special, there is no state (v,T) of C with $q \in T$. Therefore, every run of $M'_A \otimes B$ starting at (v,q) that corresponds to t does not visit (v,q) after t' reaches C, hence, repeats (v,q) only finitely often.

Suppose that t starts at a vertex $u \in M'_A$ and corresponds to a run of $M'_A \otimes B$ starting at a node (u,p) that visits (v,q) infinitely often. Let i be the first step at which the run visits (v,q). The suffix of t from this point on corresponds to a run of $M'_A \otimes B$ starting from (v,q) that visits (v,q) infinitely often. By our above argument, the probability that a trajectory of the RMC has this property is equal to 0, and by the Markov property it follows that the probability that t has such a suffix is also 0.

Consider an accepting edge $(v,q) \to (v',q')$ and suppose that (v,q) is not special. The graph D(v,q) contains an edge $vq \to (v',\{q'\})$. Since (v,q) is not special, no bottom SCC contains any state (v,T) with $q \in T$. Suppose that a trajectory t of the RMC starting at v' corresponds to a run of $M'_A \otimes B$ starting at (v',q') that traverses the edge $(v,q) \to (v',q')$ infinitely often. With probability 1, t corresponds to a trajectory of $M'_{A,B}$ starting from $(v',\{q'\})$ that reaches a bottom SCC C of D(q,v). Since no such bottom SCC contains a state (v,T) with $q \in T$ it follows that every run of $M'_A \otimes B$ from (v',q') that corresponds to t does not visit (v,q) after some point, and hence does not traverse the edge.

Suppose that a trajectory t starts at a vertex $u \in M_A'$ and corresponds to a run of $M_A' \otimes B$ starting at a node (u,p) that visits the edge $(v,q) \to (v',q')$ infinitely often. The argument is similar to the type 1 case. Consider the first time that the edge is traversed and write t as $t = \alpha \tau$, where the prefix α corresponds to the run from (u,p) to (v',q') ending with the traversal of the edge. The suffix τ corresponds to a run starting from (v',q') that repeats the edge infinitely often. From the above argument, the probability that a trajectory τ of the RMC starting at v' has this property is 0, hence the probability that t has such a suffix is also 0. \square

PROPOSITION 14. $P_A(L(B)) > 0$ iff node (v_0, q_0) in $M'_A \otimes B$ can reach a special node (v, q).

PROOF. Suppose that a trajectory t of the RMC starting at v_0 is accepted by B (starting at q_0), With probability 1, t has a corresponding run in $M'_A \otimes B$ starting at (v_0, q_0) that repeats infinitely often some accepting state (v, q) or some accepting edge $(v, q) \to (v', q')$. It follows from the preceding lemma that (v, q) must be special, and obviously (v_0, q_0) can reach (v, q).

Conversely, suppose that (v_0, q_0) can reach the special pair (v, q) in the graph $M'_A \otimes B$ and let α be the label of such a path from (v_0, q_0) to (v, q). With nonzero probability, the RMC will execute first the sequence of transitions $\alpha \gamma(v, q)$. If this

occurs, then from that point on with probability 1 the trajectory will correspond to an accepting run of B. \square

Call a bottom SCC of the flat Markov chain $M'_{A,B}$ accepting if it contains a state (v,T) and T contains some q such that (v,q) is special; otherwise call the bottom SCC rejecting.

Theorem 15. $P_A(L(B))$ is equal to the probability that a trajectory of $M'_{A,B}$ starting from the initial state $(v_0, \{q_0\})$ reaches an accepting bottom SCC.

PROOF. With probability 1 a trajectory t of the RMC maps to a trajectory $t' = \sigma(t)$ of $M'_{A,B}$ which reaches a bottom SCC C.

If C is not accepting then there is no special pair (v,q) such that C contains a state (v,T) with $q \in T$. Then every run of $M'_A \otimes B$ starting from (v_0,q_0) that corresponds to t visits special nodes only finitely many times. It follows that with probability 1, t is not accepted by B.

If C is an accepting bottom SCC, then there is a special pair (v,q) such that C contains a state (v,T) with $q \in T$. The trajectory will visit (v,T) infinitely often, and at every visit there is nonzero probability that the RMC will execute next the sequence $\gamma(v,q)$. Hence, with probability 1 this will occur at some finite point. Then the trajectory t will be accepted by B with probability 1. \square

It follows that $P_A(L(B)) = 1$ iff all the bottom SCCs of $M'_{A,B}$ reachable from $(v_0, \{q_0\})$ are accepting, and $P_A(L(B)) = 0$ iff no reachable bottom SCC is accepting (or equivalently by Proposition 14, there is no path in $M'_A \otimes B$ from (v_0, q_0) to any special node (v, q)).

As with M_A' and H_A' , let $H_{A,B}'$ denote the underlying directed graph of $M_{A,B}'$. For the qualitative problem, we only need (1) to construct $H_{A,B}'$ and thus only need to know which nodes and edges are present, and (2) to determine which pairs (v,q) are special, and hence which bottom SCCs are accepting. Thus we first have to identify the vertices u of the RMC A for which $\operatorname{ne}(u)>0$, which can be done in PSPACE for general RMCs, and P-time for single-exit RMCs, linear RMCs, and for bounded RMCs. Then, the edges of $H_{A,B}'$ can be determined by the standard reachability algorithm for RSMs ([Alur et al. 2005]). This works by first constructing the genuine product of the underlying RSM of A (ignoring probabilities on transitions) together with the Büchi automaton B'. This defines a new RSM $A\otimes B'$ (no probabilities), whose size is polynomial in A and B', and thus is exponential in the original non-deterministic Büchi automaton B. The time required for reachability analysis for RSMs is polynomial ([Alur et al. 2005]). Thus, once we have identified the deficient vertices of the RMC A, the rest of the construction of $H_{A,B}'$ takes time polynomial in A and B'.

To determine which pairs (v,q) are special, we construct for each candidate pair (v,q) the graph D(v,q). For a pair (v,q) with $q \in F$, this is immediate from $H'_{A,B}$. For a pair (v,q) with $q \notin F$ and v = (b,en) a call port of a box b, we test for each return port v' = (b,ex) of the box and each state q' of B whether there should be an edge $vq \to (v',\{q'\})$; this involves a call to the RSM algorithm of [Alur et al. 2005] to determine whether there is a path in the RSM $A \otimes B$ from (en,q) to (ex,q') (with empty stack) that goes through a vertex whose second component is an accepting state of B. Once we determine these edges, we can construct D(v,q). This takes

time polynomial in A and B'. Then compute the SCCs of D(v,q), examine the bottom SCCs and check if one of them contains (v,T) with $q \in T$.

Finally, once we have identified the special pairs, we examine the reachable bottom SCCs of $H'_{A,B}$ and determine which ones are accepting and which are rejecting. The dependence of the time complexity on the size of the given RMC A is polynomial except for the identification of the vertices u for which $\mathrm{ne}(u)>0$. The dependence on |B| is exponential because of the subset construction. If B is deterministic to begin with, we avoid the exponential blow-up and thus have polynomial complexity in B. Thus we have:

THEOREM 16. Given a RMC A and a Büchi automaton B, we can decide whether $P_A(L(B)) = 0$, $P_A(L(B)) = 1$, or $0 < P_A(L(B)) < 1$ in PSPACE in A, and EXPTIME in B. If the given RMC A is a linear, or a bounded, or a 1-exit RMC then the time complexity is polynomial in A. Furthermore, if B is deterministic, the dependence of the time complexity on |B| is also polynomial.

4.2 Lower Bounds.

We show conversely that the exponential time complexity of qualitative model checking for a nondeterministic Büchi automaton is in general unavoidable.

THEOREM 17. The qualitative problem of determining whether a given RMC A satisfies a property specified by a Büchi automaton B with probability = 1, (i.e., whether $P_A(L(B)) = 1$) is EXPTIME-complete. Furthermore, this holds even if the RMC is fixed and each component has one entry and one exit. Moreover, the qualitative "emptiness" problem, namely determining whether $P_A(L(B)) = 0$, is also EXPTIME-complete, again even when the RMC is fixed and each component has one entry and one exit.

(The proof has been moved to the electronic appendix, due to space constraints.)

5. THE UNIQUE FIXED POINT THEOREM

As we have mentioned, the transition probabilities of the chain $M'_{A,B}$ are in general irrational and cannot be computed exactly, but instead have to be determined implicitly. To do quantitative model checking in polynomial space in |A|, it will be crucial to use $ExTh(\mathbb{R})$ to uniquely identify these probabilities. For this, we need first to have a set of constraints that uniquely identify the termination probabilities of a RMC. These probabilities are the least fixed point of the system x = P(x). However, the system has in general multiple fixed points. We will show in this section that adding a certain set of additional constraints ensures a unique fixed point, the desired LFP(P).

Consider a RMC A. First, we can determine in polynomial time the vertex-exit pairs (u, ex) for each component such that the probability $q_{(u, ex)}^* = 0$. Introduce variables $x_{u, ex}$ only for the remaining pairs. (Alternatively, we could include also variables $x_{(u, ex)}$ for the pairs with 0 probability, and include the equation $x_{(u, ex)} = 0$.) Note that if a vertex u cannot exit its component, i.e. $q_{(u, ex)}^* = 0$ for all ex then there is no variable involving u. Consider the set of fixed point equations x = P(x), where we omit the terms that involved "missing" variables. The least fixed point q^* is the true vector of probabilities of each vertex u reaching exit ex (with empty

stack). Recall that a vertex u is called deficient (or a survivor) if $\sum_{ex} q_{(u,ex)}^* < 1$, i.e. ne(u) > 0; otherwise u is full. Note that by the qualitative analysis, we can determine which vertices are deficient and which are full in PSPACE. The vector $q^* = \text{LFP}(P)$ of termination probabilities satisfies clearly the following set of constraints: $q^* \geq 0$; $\sum_{ex} q_{(u,ex)}^* \leq 1$ for all vertices $u \in Q$, and furthermore $\sum_{ex} q_{(u,ex)}^* < 1$ for all deficient vertices $u \in Def(A)$. We will show that P has a unique (exactly one) fixed point in the region defined by these constraints, and that fixed point is of course the vector q^* .

THEOREM 18. (The Unique Fixed Point Theorem) The set of equations x = P(x), restricted to the domain $\{x|x \geq 0, \sum_{ex} x_{(u,ex)} \leq 1 \text{ for all } u \in Q, \text{ and } \sum_{ex} x_{(u,ex)} < 1 \text{ for all } u \in Def(A)\}$, has a unique fixed point. This fixed point, of course, is $q^* = LFP(P)$.

PROOF. Suppose that there is another nonnegative fixed point y, besides the least fixed point, that satisfies the constraints on $\sum_{ex} x_{(u,ex)}$. Since q^* is the least fixed point we have $q^* \leq y$. If u is a full vertex then $\sum_{ex} y_{(u,ex)} \leq 1 = \sum_{ex} q^*_{(u,ex)}$ and $q^* \leq y$ imply that $y_{(u,ex)} = q^*_{(u,ex)}$ for every ex.

We will show below that y agrees with q^* also on the deficient vertices. Let (u, ex) be a pair such that $y_{(u,ex)} > q_{(u,ex)}^*$. We will derive a contradiction.

Let $x_{(u,ex)} = f_1(x)$ be the equation for variable $x_{(u,ex)}$ in the system x = P(x). The right hand side $f_1(x)$ is a sum of monomials and possibly a constant term. If u is not a call port then each monomial is of the form $p_{u,v}x_{(v,ex)}$, where v is a successor of u. If u = (b,en) is a call port of a box b then each monomial is of the form $x_{en,ex'}x_{(b,ex'),ex}$ where ex' is an exit of the component corresponding to box b; in the latter case we consider the variables of the monomial as ordered. We will rewrite iteratively the right hand side $f_1(x)$ as follows. In the ith iteration we have an expression $f_i(x)$ which is the sum of a constant term (possibly 0) and of a set of ordered monomials; i.e. each monomial has a constant coefficient and the product of a sequence of variables (with possible repetitions allowed) in a specific order. We take every non-constant monomial and replace the leftmost variable of the monomial by the right hand side of its equation in the system x = P(x). We combine like terms (treated again as ordered monomials) and let $f_{i+1}(x)$ be the resulting expression.

Observe first that both fixed points, q^* and y satisfy the equation $x_{(u,ex)} = f_n(x)$ for all n. Second, we claim that $f_n(x)$ is related to the (infinite) Markov chain M_A corresponding to the RMC A in the following way. Let Z_n be the state at time n of the chain M_A with initial state $\langle \epsilon, u \rangle$. Note that if the chain hits $\langle \epsilon, ex \rangle$ at some time t then it stays there forever, i.e. $Z_n = \langle \epsilon, ex \rangle$ for all $n \geq t$.

LEMMA 19. The constant term of $f_n(x)$ is equal to $Prob(Z_n = \langle \epsilon, ex \rangle)$. Furthermore, for each state $\langle \beta, v \rangle$ where $\beta = b_1 \dots b_j$ is a sequence of boxes and v is a vertex such that $Prob(Z_n = \langle \beta, v \rangle) > 0$, and for every sequence $\gamma = w_1, \dots, w_j$ of exits of the components corresponding to the boxes such that the variables with indices $(v, w_j), ((b_j, w_j), w_{j-1}), \dots ((b_2, w_2), w_1), ((b_1, w_1), ex)$ exist, the expression $f_n(x)$ has an ordered monomial

$$Prob(Z_n = \langle \beta, v \rangle) x_{(v,w_j)} x_{((b_j,w_j),w_{j-1})} \dots x_{((b_2,w_2),w_1)} x_{((b_1,w_1),ex)}.$$
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

If β is the empty string ϵ then the monomial is simply $Prob(Z_n = \langle \epsilon, v \rangle) x_{(v,ex)}$. These are all the monomials of $f_n(x)$.

PROOF. By induction, starting with $f_0(x) = x_{(u,ex)}$. The basis is trivial: $Prob(Z_0 = \langle \epsilon, u \rangle) = 1$. For the induction step, consider a monomial of $f_n(x)$ corresponding to the state $\langle \beta, v \rangle$ and a sequence γ of exits to the boxes (if β is nonempty). If v is an exit and $\beta = \epsilon$, then v must be ex (because for other exits the variable does not exist since it is 0), and $x_{v,ex}$ will be replaced by 1, increasing the constant term. If v is an exit and $\beta \neq \epsilon$, then v must be w_j (again because otherwise the variable does not exist). In this case we will replace also $x_{(v,w_j)}$ by 1, which corresponds to the chain M_A moving from state $\langle b_1 \dots b_j, v \rangle$ to state $\langle b_1 \dots b_{j-1}, (b_j, w_j) \rangle$, i.e. returning from the call of box b_j to the return port (b_j, w_j) .

If v is not a call port (or an exit) then the equation for the leftmost variable $x_{(v,w_j)}$ is $\sum_{v'} p_{v,v'} x_{(v',w_j)}$ where the sum ranges over all successors v' of v for which the variable $x_{(v',w_j)}$ exists. In particular, if $\beta = \epsilon$, then $x_{(v,ex)} = \sum_{v'} p_{v,v'} x_{(v,ex)}$. Note also that $Prob(Z_{n+1} = \langle \beta, v' \rangle | Z_n = \langle \beta, v \rangle) = p_{v,v'}$.

Finally, if v = (b', v') is a call port of a box b' corresponding to some component A_k with an entry v', then we will replace the leftmost variable $x_{(v,w_j)}$ with $\sum_{w'} x_{(v',w')} x_{((b',w'),w_j)}$ where the sum ranges over all exits w' of A_k for which both variables $x_{(v',w')}, x_{((b',w'),w_j)}$ exist. This corresponds to the chain moving with probability 1 from state $\langle \beta, v \rangle$ to state $\langle \beta b', v' \rangle$, and including all feasible extensions $w'\gamma$ of γ . \square

Let N be any fixed positive integer and consider n going to infinity. We can write $f_n(x)$ as the sum of three terms $c_n, g_n(x), h_n(x)$, where $c_n = Prob(Z_n = \langle \epsilon, ex \rangle)$ is the constant term. A monomial

$$Prob(Z_n = \langle \beta, v \rangle) x_{(v,w_j)} x_{((b_j,w_j),w_{j-1})} \dots x_{((b_2,w_2),w_1)} x_{((b_1,w_1),ex)}$$

corresponding to a state $\langle \beta, v \rangle$, and a sequence $\gamma = w_1, \ldots, w_j$ of exits is included in the second term $g_n(x)$ iff at most N of the vertices $v, (b_j, w_j) \ldots (b_2, w_2)(b_1, w_1)$ are deficient; otherwise it is included in $h_n(x)$. Clearly, as $n \to \infty$, the first term $c_n \to q^*_{(u,ex)}$. For q^* , the second and third term $g_n(q^*), h_n(q^*)$ tend to 0 as $n \to \infty$, because by definition $q^*_{(u,ex)} = c_n + g_n(q^*) + h_n(q^*)$. Now, consider the two terms $g_n(y)$ and $h_n(y)$.

Let r be the minimum component in q^* (recall, r is positive, because we have removed variables $x_{(u,ex)}$ where $q^*_{(u,ex)}=0$). Then clearly $y \leq 1 \leq q^*/r$ (coordinatewise inequality). Since in every monomial of the second term, $g_n(x)$, at most N of the vertices are deficient, and since q^* and y have the same value for each index pair whose first component is a full vertex, it follows that the value of each monomial of $g_n(x)$ evaluated at y is bounded from above by the value of the monomial evaluated at q^* divided by r^N . Hence $g_n(y) \leq g_n(q^*)/r^N$. Since N is fixed and $g_n(q^*) \to 0$ as $n \to \infty$, it follows that also $g_n(y) \to 0$ as $n \to \infty$.

Consider all the monomials in the third term $h_n(y)$ corresponding to a state $\langle \beta, v \rangle$ of M_A , and let $\beta = b_1 \cdots b_j$. Let G be the following (ordinary) layered Markov chain: G has a source node v, then it has j layers (numbered from j down to 1) and finally it has a sink node ex. Each layer i contains a node labelled w_i for each exit w_i of the component corresponding to the box b_i . In addition there is a dead

state d. Nodes ex and d have self-loops with probability 1. There is a transition from v to a node w_j in layer j with probability $y_{(v,w_j)}$ iff the corresponding variable $x_{(v,w_j)}$ exists. For each pair of nodes w_i,w_{i-1} in successive layers, i,i-1 there is a transition from node w_i of layer i to node w_{i-1} of layer i-1 with probability $y_{((b_i,w_i),w_{i-1})}$ if the corresponding variable exists. Finally there is a transition from each node w_1 of layer 1 to the sink ex with probability $y_{((b_1,w_1),ex)}$ (if the variable exists). Note that the probabilities of the above transitions out of a node of G sum to less than 1 iff the corresponding vertex v or (b_i,w_i) of the RMC is deficient. Let D be the set of these 'deficient' nodes of G. For every deficient node add a transition to the dead state d with the missing probability. Let U be the set of deficient vertices of the RMC, and let $p = \min\{1 - \sum_{ex'} y_{(u',ex')} | u' \in U\}$. Note that p > 0. Each deficient node of G has a transition to d with probability at least p. We need the following fact about (ordinary) finite Markov chains.

LEMMA 20. Let G be a finite Markov chain, and let D be a subset of states such that each state $u \in D$ has a transition with probability at least p > 0 to a dead (absorbing) state d. Then for every positive integer N, the probability that, a trajectory of G starting at any state visits at least N times a state of D and is not absorbed in the dead state d, is at most $(1-p)^N$.

PROOF. Every time the chain visits a state in D it has probability at least p of transitioning to d, and probability at most 1-d of surviving (continuing without being absorbed in d). Hence if it visits D N times then the probability that it is still surviving is at most $(1-p)^N$. We can give a formal proof of this by induction on N. The basis, N=0, is trivial. For the induction step, suppose the claim holds for N-1. Let $E_i(s)$ be the event that G starting from state s survives i visits to D. Then $P(E_N(s)) = \sum_{u \in D} P(u$ is the first visited state of $D)P(E_N(u))$. Now, $P(E_N(u)) = \sum_{v \neq d} p_{u,v} P(E_{N-1}(v))$. By the induction hypothesis $P(E_{N-1}(v)) \leq (1-p)^{N-1}$ for all v, and $\sum_{v \neq d} p_{u,v} \leq 1-p$ since $u \in D$. Therefore, $P(E_N(u)) \leq (1-p)^N$, and hence $P(E_N(s)) \leq (1-p)^N$. \square

By our construction of G, every monomial of $h_n(y)$ involving the state $\langle \beta, v \rangle$ corresponds to a path in G from v to ex that goes through at least N deficient nodes; the value of the monomial is equal to $Prob(Z_n = \langle \beta, v \rangle)$ times the probability of the path in G. The lemma implies then that the contribution to $h_n(y)$ of the set of monomials for state $\langle \beta, v \rangle$ is at most $Prob(Z_n = \langle \beta, v \rangle)(1-p)^N$. Therefore, $h_n(y) \leq (1-p)^N$. Since (1-p) < 1 and N is an arbitrary integer, the right hand side can be made arbitrarily small.

Recall the earlier established facts that $c_n \to q^*_{(u,ex)}$ and $g_n(y) \to 0$, as $n \to \infty$. Note also that we must have, for all n, $y_{(u,ex)} = f_n(y) = c_n + g_n(y) + h_n(y)$. Thus note that, for any $\epsilon > 0$, we can pick N and n large enough, with $N \le n$, such that $f_n(y) \le q^*_{(u,ex)} + \epsilon$. But if $0 < \epsilon < y_{(u,ex)} - q^*_{(u,ex)}$, then $f_n(y) < y_{(u,ex)}$, which contradicts the fact that $y_{(u,ex)} = f_n(y)$ for all n. Hence $q^*_{(u,ex)} = \lim_{n \to \infty} f_n(y) = y_{(u,ex)}$. \square

6. QUANTITATIVE MODEL CHECKING FOR BÜCHI AUTOMATA

We now provide algorithms for the quantitative model checking of an RMC A with respect to a given Büchi automaton B. The algorithms extend the analysis and

algorithms of Section 4. Recall that, from the RMC A and the automaton B, we can construct a finite Markov chain $M'_{A,B}$ and classify the bottom SCCs of $M'_{A,B}$ into accepting and rejecting, with the property that the desired probability $P_A(L(B))$ that a trace of A is accepted by B is equal to the probability that a trajectory of the finite chain $M'_{A,B}$ reaches an accepting bottom SCC. The overall approach for the quantitative analysis is as follows. We will construct a set of constraints in the existential theory of the reals, whose variables include among others a certain variable t for the desired probability $P_A(L(B))$, such that the set of constraints has a unique solution, and the value of the variable t in the unique solution is precisely $P_A(L(B))$. Thus, we can solve the quantitative decision and approximation problems using a procedure for the $ExTh(\mathbb{R})$ on the constructed set of constraints.

THEOREM 21. Given a Recursive Markov Chain, A, and Büchi automaton, B, and a rational value $p \in [0,1]$, we can decide whether $P_A(L(B)) \ge p$ in space that is polynomial in |A| and exponential in |B|, specifically in space $O(|A|^{c_1}2^{c_2|B|})$ for some constants c_1, c_2 . Furthermore, if B is deterministic we can decide this in polynomial space in both A and B.

PROOF. We make crucial use of Theorem 18, and we combine this with use of the summary chain $M'_{A,B}$, and queries to $ExTh(\mathbb{R})$. Observe that by Theorem 15, all we need to do is "compute" the probability that a trajectory of $M'_{A,B}$, starting from the initial state $(v_0, \{q_0\})$ reaches an accepting bottom SCC. We can not compute $M'_{A,B}$ exactly, since it is irrational. However, we will be able to identify the transition probabilities uniquely inside a $ExTh(\mathbb{R})$ query, and will, inside the same query identify the probability of reaching an accepting bottom SCC.

Let $\mathbf{q}^* = \mathrm{LFP}(P)$ be the solution vector of probabilities for the system $\mathbf{x} = P(\mathbf{x})$ associated with RMC A. Recall that by Proposition 9, we can compute in polynomial space in |A| the set $Q' = \{u \in Q \mid \mathrm{ne}(u) > 0\}$ of deficient vertices. We do this as a first step. Consider next the following quantifier-free formula, where c(u) is the index of the component of a vertex u:

$$\varphi_1(\mathbf{x}) \equiv (\mathbf{x} = P(\mathbf{x})) \land (0 \leq \mathbf{x}) \land \\ \bigwedge_{u \in Q'} (\sum_{ex \in Ex_{c(u)}} x_{(u,ex)} < 1) \land \bigwedge_{u \in Q \backslash Q'} \sum_{ex \in Ex_{c(u)}} (x_{(u,ex)} = 1)$$

By Theorem 18, the only solution vector \mathbf{x} in \mathbb{R}^n for which $\varphi_1(\mathbf{x})$ holds true is \mathbf{q}^* . In other words, φ_1 uniquely identifies LFP(P).

Recall that $ne(u) = 1 - \sum_{ex \in Ex_{c(u)}} q^*_{(u,ex)}$. Now, let \mathbf{y} be a vector of variables indexed by vertices of A, and let $\varphi_2(\mathbf{x}, \mathbf{y}) \equiv \bigwedge_{u \in Q} (y_u = 1 - \sum_{ex \in Ex_{c(u)}} x_{(u,ex)})$. The only vector of reals (\mathbf{x}, \mathbf{y}) that satisfies $\varphi_1 \wedge \varphi_2$ is the one where $x_{(u,ex)} = q^*_{(u,ex)}$ and $y_u = ne(u)$.

Recall the construction of $M'_{A,B}$. The states of $M'_{A,B}$ are pairs (v,T), where $v \in Q'$, and $T \subseteq S$ is a set of states of B. The transitions of $M'_{A,B}$ come in three varieties

Case 1: v is not a call port, and $(v, p'_{v,v'}, v') \in \delta_{M'_A}$. Then we have a corresponding transition $((v, T), p'_{v,v'}, (v', R'(T, v'))) \in \delta_{M'_{A,B}}$, where $p'_{v,v'} = p_{v,v'} \operatorname{ne}(v') / \operatorname{ne}(v)$,

and thus $p'_{v,v'}$ ne $(v) = p_{v,v'}$ ne(v'). Associate a variable $z_{v,v'}$ with each such probability $p'_{v,v'}$, and define the formula: $\varphi_3(\mathbf{y}, \mathbf{z}) \equiv \bigwedge_{(v,v') \in \text{Case}1} (z_{v,v'}y_v = p_{v,v'}y_{v'})$. Case 2: v is a call port, v = (b, en) where v is vertex in component A_i and box b is mapped to component A_j , and v' = en, and there is a nesting transition $(v, p'_{v,v'}, v') \in \delta_{M'_A}$. Then there is a nesting transition $((v, T), p'_{v,v'}, (v', R'(T, v')) \in \delta_{M'_{A,B}}$ with the same probability. Here $p'_{v,v'} = \text{ne}(v')/\text{ne}(v)$, and thus $p'_{v,v'}$ ne(v) = ne(v'). Associate a variable $z_{v,v'}$ with each such probability $p'_{v,v'}$, and define: $\varphi_4(\mathbf{y}, \mathbf{z}) \equiv \bigwedge_{(v,v') \in \text{Case}2} (z_{v,v'}y_v = y_{v'})$.

Case 3: v is a call port that has a summary transition $(v, p'_{v,v'}, v')$ in M'_A to a vertex v' = (b, ex). Then we have summary transitions of the form ((v, T), p'', (v', T')) in $M'_{A,B}$ to the following set of states of the form (v', T'): If there exists a path of M_A that starts at the entry en of A_j and ends at the exit ex (with empty call stack) which, viewed as a string drives B' from T to T', then we include the edge $((v,T),p'_{(v,T),(v',T')},(v',T'))$ in $\delta_{M'_{A,B}}$, where $p'_{(v,T),(v',T')}=q^*_{((en,T),(ex,T'))}\cdot ne(v')/ne(v)$, and where $q^*_{((en,T),(ex,T'))}$ is the probability of reaching $\langle \epsilon, (ex,T') \rangle$ from $\langle \epsilon, (en,T) \rangle$ in the product RMC $A \otimes B'$. First, compute $A \otimes B'$ and its associated equations $\mathbf{w} = P^{\otimes}(\mathbf{w})$ explicitly. Note that $|A \otimes B'| = O(|A||B'|)$. Let Q^{\otimes} be the set of vertices of $A \otimes B'$. We can compute the set Q'^{\otimes} of vertices v of $A \otimes B'$, for which ne(v) > 0 in polynomial space in $|A \otimes B'|$. Consider now the quantifier-free formula:

$$\varphi_5(\mathbf{w}) \equiv (\mathbf{w} = P^{\otimes}(\mathbf{w})) \land (0 \leq \mathbf{w}) \land \\ \bigwedge_{u \in Q'^{\otimes}} (\sum_{ex \in Ex_{c(u)}} w_{(u,ex)} < 1) \land \bigwedge_{u \in Q^{\otimes} \backslash Q'^{\otimes}} (\sum_{ex \in Ex_{c(u)}} w_{(u,ex)} = 1)$$

By Theorem 18, LFP(P^{\otimes}), is the only vector in \mathbb{R}^n for which $\varphi_5(\mathbf{w})$ holds true. In other words, φ_5 uniquely identifies LFP(P^{\otimes}). Now, associate a variable $z_{(v,T),(v',T')}$ with each probability $p'_{(v,T),(v',T')}$, where v=(b,en) and v'=(b,ex), and define: $\varphi_6(\mathbf{y},\mathbf{w},\mathbf{z}) \equiv \bigwedge_{((v,T),(v',T')) \in \text{Case3}} (z_{(v,T),(v',T')}y_v = w_{((en,T),(ex,T'))}y_{v'})$.

 $\varphi_6(\mathbf{y}, \mathbf{w}, \mathbf{z}) \equiv \bigwedge_{((v,T),(v',T')) \in \text{Case3}} (z_{(v,T),(v',T')} y_v = w_{((en,T),(ex,T'))} y_{v'}).$ Observe that $\bigwedge_{j=1}^6 \varphi_j$ has a unique solution, and the values of variables \mathbf{z} in this solution identify the probabilities p' on transitions of $M'_{A,B}$. By the qualitative methods of section 4, we compute the underlying graph $H'_{A,B}$ of $M'_{A,B}$, and we compute the SCCs of $H'_{A,B}$ that contain either an accepting node or an accepting edge.

Let us define a revised finite Markov chain, $M_{A,B}''$, in which we remove all bottom SCCs in $M_{A,B}'$ that contain an accepting node or edge, and replace them by a new absorbing node v^* , with a probability 1 transition to itself. Transitions that were directed into these accepting bottom SCCs are now directed to v^* . Furthermore, in $M_{A,B}''$ we also remove all nodes that can not reach v^* , and all transitions into those nodes. (Technically, some nodes of $M_{A,B}''$ may no longer have full probability on the transitions leaving them, but that is ok for our purposes.)

Now, recall from standard Markov chain theory (see, e.g., [Billingsley 1995]) that for such a finite (sub)Markov chain $M''_{A,B}$, there is a *linear* system of equations $\mathbf{t} = F(\mathbf{t})$, over variables t_{u,v^*} , where u is any node of $M''_{A,B}$, and where the coefficients in the linear system $F(\mathbf{t})$ are the probabilities p' on transitions of $M''_{A,B}$, such that

the least fixed point solution, LFP(F), of $\mathbf{t} = F(\mathbf{t})$ assigns to variable t_{u,v^*} the probability that v^* is reachable from u. (In particular, one of the linear equations is $t_{v^*,v^*}=1$.) Moreover, because we have eliminated from $M''_{A,B}$ all nodes that can not reach v^* , LFP(F) is the unique solution to this linear system. Thus consider the formula: $\varphi_7(\mathbf{w}, \mathbf{t}) \equiv (\mathbf{t} = F(\mathbf{t}))$. Thus the quantifier-free formula $\bigwedge_{i=1}^r \varphi_i$ has a unique solution in the reals, and the values assigned to variables $t_{(u,v^*)}$ in this solution identify the probability of reaching an accepting SCC from node u in $M'_{A,B}$. Thus, for the initial node $u^* = (v_0, \{q_0\})$ of $M'_{A,B}$, the value of the corresponding variable $t_{(u^*,v^*)}$ in the unique solution of $\bigwedge_{j=1}^7 \varphi_j$ is equal to $P_A(L(B))$. For a given rational $p \in [0,1]$, the following $\textit{ExTh}(\mathbb{R})$ sentence, ψ , is true in \mathbb{R}

iff $P_A(L(B)) \ge p$: $\psi \equiv \exists \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}, \mathbf{t} \bigwedge_{j=1}^7 \varphi_j \land (t_{u^*,v^*} \ge p)$. \square

Better complexity bounds can be obtained for the class of linear RMCs and for bounded RMCs.

Theorem 22. For a linear RMC A and Büchi automaton B, the probability $P_A(L(B))$ is rational and can be computed exactly in polynomial time in |A|, and exponential time in |B|. If B is deterministic then the time is polynomial in both |A| and |B|.

Proof. Use subset construction on B to construct the deterministic automaton B', and take the product with A to obtain the RMC $A \otimes B'$. If the given RMC A is linear, then the product RMC $A \otimes B'$ is also a linear RMC and obviously can be constructed in time polynomial in |A| and |B'|. As shown in [Etessami and Yannakakis 2009, the exit probabilities of a linear RMC are rational and can be computed in time polynomial in the size of the RMC. Applying that algorithm on $A \otimes B'$ we can compute explicitly the conditioned summary Markov chain of $A \otimes B'$, which is $M'_{A,B}$, including the exact transition probabilities, in time polynomial in |A|, |B'|. We can identify the accepting bottom SCCs with the same complexity, and then solve a linear system to compute the probability that a trajectory of $M'_{A,B}$ starting at the initial state $u^* = (v_0, \{q_0\})$ hits an accepting bottom SCC. \square

For bounded RMCs we can achieve polynomial time if the size of the Büchi automaton is bounded (though the time bound is very impractical).

Theorem 23. For a fixed Büchi automaton B, given a bounded RMC, A, and a rational value $p \in [0,1]$, we can decide whether $P_A(L(B)) \geq p$ in time polynomial in |A|.

(The proof has been moved to the electronic appendix, due to space constraints.)

QUALITATIVE MODEL CHECKING FOR LINEAR TEMPORAL LOGIC

We build on both the techniques developed in the previous sections for model checking of RMCs with respect to automata specifications, as well as the techniques developed for LTL model checking of flat Markov Chains in [Courcoubetis and Yannakakis 1995]. The algorithm of [Courcoubetis and Yannakakis 1995] for model checking LTL properties of flat Markov chains employs an iterative approach, whereby the chain is refined in each iteration and the formula is simplified by elimination of temporal operators, until at the end the formula becomes propositional

and can be verified directly. There are serious technical obstacles however for effectively extending this approach to the recursive setting, and this is not what we do. Instead, we follow a different approach which is more global in nature. We use an idea from another method of [Courcoubetis and Yannakakis 1995], used there for another purpose (for 'Extended Temporal Logic'), and we extend it with other techniques to handle recursion and LTL.

We are given RMC A and an LTL formula φ . We assume wlog that the RMC starts at the entry node en_{init} of component A_0 of A, which has no exit. First, we construct from A (the graph of) the summary Markov chain M'_A ; we only need the nodes and edges of M'_A and not the precise transition probabilities. We identify the formula φ with its parse tree T. The leaves of the tree are labelled with atomic propositions and its non-leaf nodes are labelled with temporal or Boolean connectives. Let n be the number of propositions and internal nodes of T; number the propositions and internal nodes from 1 to n bottom-up: first the propositions and then the internal nodes. For each i, let φ_i be the subformula of φ corresponding to the tree T_i rooted at node i.

Let M_A be the (infinite) Markov chain represented by the RMC A. Let $X = x_0x_1x_2...$ be an infinite trajectory of M_A starting at some state $x_0 = \langle \beta, u \rangle$. We define the type of the trajectory to be a Boolean vector t of length n, where for each i, $t_i = 1$ iff X satisfies the formula φ_i . From the definition of the satisfaction of LTL formulas it follows that the pair (u, t) satisfies the following properties:

- (1) If φ_i is a proposition p, then $t_i = 1$ if p holds at u, else $t_i = 0$.
- (2) If i is an internal node of the parse tree labelled with a Boolean connective \neg (resp. \vee , \wedge) and has child j (resp. children j, l), then $t_i = \neg t_j$ (resp. $t_i = t_j \vee t_l$, $t_i = t_j \wedge t_l$).
- (3) If i is labelled with a temporal connective \mathcal{U} and has children j, l, i.e., $\varphi_i = \varphi_j \mathcal{U}\varphi_l$, then (a) if $t_l = 1$ then also $t_i = 1$, and (b) if $t_j = t_l = 0$ then also $t_i = 0$.

We call any pair (u,t) consisting of a vertex u of the RMC A and a Boolean n-vector t consistent if it satisfies these three properties. Similarly we say that the pair (x_0,t) consisting of a state $x_0 = \langle \beta, u \rangle$ of M_A and a vector t is consistent if the pair (u,t) is consistent. Observe that if (u,t) is consistent then the temporal coordinates of t (those corresponding to nodes of φ labelled with a temporal connective) determine uniquely the rest of the coordinates of t because of properties (1), (2).

Consider a trajectory $X = x_0x_1x_2...$ and suppose we know the type s of its suffix $x_1x_2...$. Then we can determine uniquely the type t of X from s and the state x_0 (more precisely, the vertex u of x_0) as follows: The coordinates t_i corresponding to propositions are determined from u by property (1). For the internal nodes of the parse tree, proceed bottom-up in the tree. Let i be an internal node and suppose that we have determined the coordinates corresponding to the children of i. If i is labelled by a Boolean connective then t_i is determined by property (2) of consistency. If i is labelled by a temporal connective then t_i is determined by property (3) unless i is labelled (i) \bigcap (Next) or (ii) it is labelled \mathcal{U} (Until) with children j, l and $t_j = 1, t_l = 0$. In case (i), if i has child j, i.e. $\varphi_i = \bigcap \varphi_j$ then $t_i = s_j$; in case (ii) we must have $t_i = s_i$. Thus, these two properties (i), (ii) and

the consistency conditions (1-3) above determine uniquely t from u and s. We will say t is the type backwards implied for the vertex u and the state x_0 from type s.

The backward implication extends to finite paths: If $\pi = x_0 x_1 \dots x_k$ is a finite path of M_A and s is a type consistent with the final state x_k , then there is a unique type t that is backwards implied from s and π for the initial state x_0 of the path and its vertex.

We construct a graph G as follows. The nodes of G are all pairs (u,t) where u is a node of the summary chain M'_A and t is a Boolean n-vector such that the pair (u,t) is consistent. We include an edge $(u,t) \to (v,s)$ between two nodes of G if M'_A has an edge $u \to v$ and (a) either the edge is not a summary edge and t is the type that is backwards implied from s for the node u, or (b) $u \to v$ is a summary edge, i.e. u = (b, en), v = (b, ex) for some box b, and there is a path π in the RMC corresponding to the summary edge (i.e., a path π in M_A from $\langle \epsilon, u \rangle$ to $\langle \epsilon, v \rangle$) such that t is the type that is backwards implied from π and s.

We can check in case (b) whether there exists a path π in the RMC from uto v satisfying the above requirement, as follows: Construct a Recursive State Machine (RSM) \dot{A} , called the augmented RSM, which has a component \dot{A}_i for each component A_i of the RMC A. There is a node (u,t) for each vertex u of A and each type t that is consistent with u; if u is an entry or exit of a component A_i , then (u,t) is an entry or exit of the corresponding component A_i . If b is a box of A_i mapped to A_i , then there is a corresponding box b in A_i that is mapped to A_i ; for every entry en of A_i and consistent tuple t, the box \hat{b} has a corresponding call port which we will denote ((b, en), t) (the vertex is labelled with the same propositions as en), and we define similarly the return ports of b. Note that the vertices of the form (u,t), where u=(b,en) or u=(b,ex) was a call port or return port of box b of A, are now ordinary nodes of \hat{A} . We include an edge $(u,t) \to (v,s)$ for each pair of vertices (u,t),(v,s) of A such that t is the type backwards implied from s for u, and either A contains an edge $u \to v$, or u = (b, en) and v = (b, en) for some box b of A, or $u = (\hat{b}, ex)$ and v = (b, ex). (Note: The reason that we introduced new call ports and return ports is that the trajectories of the Markov chain M_A contain explicit steps corresponding to the recursive calls and returns from the calls. This is a small technical detail.) It is easy to see now that there is a path π in the RMC A from u = (b, en) to v = (b, ex) (with empty context) that corresponds to the summary edge $u \to v$ and such that t is the type that is backwards implied from π and s iff the RSM \hat{A} contains a path from (u,t) to (v,s) with empty context (i.e., $M_{\hat{A}}$ has a path from $\langle \epsilon, (u,t) \rangle$ to $\langle \epsilon, (v,s) \rangle$). We can check this by applying the RSM reachability algorithm of [Alur et al. 2005] to the augmented RSM \hat{A} .

Consider again a trajectory $X = x_0 x_1 x_2 \dots$ of M_A . For each j, let t^j be the type of the path $x_j x_{j+1} \dots$ By our previous remarks, the pair (x_j, t^j) is consistent. Also, note that t^j is the type backwards implied by t^{j+1} and x_i . Let \hat{X} be the sequence $(x_0, t^0), (x_1, t^1), (x_2, t^2) \dots$; we call this the augmented trajectory corresponding to X. It corresponds to a trajectory of the RSM \hat{A} .

Recall that there is a mapping ρ from trajectories X of the original Markov chain M_A to a trajectory of the summary chain M'_A , or to the symbol \star , with the property that $P_A(\rho^{-1}(\star)) = 0$. Suppose that $\rho(X) \neq \star$. Then $\rho(X)$ consists of the vertex parts $u_0u_{i1}u_{i2}\ldots$ of a subsequence $x_0x_{i1}x_{i2}\ldots$ of X obtained by

shortcutting subpaths of X by summary edges. The mapping ρ can be extended to the augmented trajectory \hat{X} : $\rho(\hat{X}) = (u_0, t^0), (u_{i1}, t^{i1})...$ is obtained from the corresponding subsequence of \hat{X} by keeping only the vertex parts and the types. By our construction of the graph G, $\rho(\hat{X})$ is a path of G.

If $(v_0, s_0), (v_1, s_1), (v_2, s_2)...$ is a sequence of vertex-type pairs, then the *projection* of the sequence on the first component is the sequence $v_0, v_1, v_2...$ of vertices.

Lemma 24. 1. Every finite or infinite path of G projected on the first component yields a path of M'_A .

2. Conversely, every path of M_A' is the projection of at least one path in G.

PROOF. (1) follows directly from the construction of G. (2) is obvious for finite paths by construction. For infinite paths, note that every path of M'_A is the image $\rho(X)$ of some trajectory X of M_A . Let \hat{X} be the augmented trajectory. Then $\rho(\hat{X})$ is a path of G whose projection is $\rho(X)$. \square

Recall that a vertex u of A is included in summary chain M'_A iff ne(u) > 0. Call a pair (u,t) probable if there is positive probability that a trajectory of A starting at u does not exit the component of u (does not terminate) and has type t. We denote by P'(u,t) the probability that a trajectory from u has type t conditioned on the event that it does not exit u's component.

Lemma 25. 1. If G contains an edge $(u,t) \rightarrow (v,s)$ and (v,s) is probable then (u,t) is also probable.

2. In particular, in every strongly connected component C of G, either all nodes are probable or none is.

PROOF. With nonzero probability, a trajectory starting at u will go to v following the edge $u \to v$ (if it is an ordinary edge or a nesting edge) or following some path π (if $u \to v$ is a summary edge) such that t is the type implied back by s and π . There is positive probability that the trajectory from v does not exit v's component and has type s. If this happens, then the trajectory from u will also not exit its component and will have type t. This proves claim 1. Claim 2 follows immediately from 1. \square

Let H be the subgraph of G consisting of probable nodes. By the above lemma, in order to compute H, it suffices to identify which strongly connected components of G are the bottom SCCs of H. Then H consists of all the nodes that are ancestors of these bottom SCCs. Once we compute the graph H, we can answer the qualitative model checking problem: The trajectories of the given RMC A satisfy the given formula φ almost surely if and only if H does not include any node of the form (en_{init},t) , where en_{init} is the initial node of A (the entry node of the top component) and t is a type with $t_n=0$. Note that n corresponds to the root of the parse tree of φ , i.e., $\varphi_n=\varphi$, so (en_{init},t) probable with $t_n=0$ would mean that there is positive probability that a trajectory starting at en_{init} does not satisfy φ . (Recall that the top component has no exit, so all the trajectories from en_{init} do not exit its component.)

A trajectory X of the RMC (i.e. of the infinite chain M_A) maps with probability 1 to a trajectory $X' = \rho(X)$ of the summary chain M'_A , and the augmented trajectory \hat{X} maps to an augmented trajectory $\hat{X}' = \rho(\hat{X})$ that is a path in G. Call a trajectory

X of M_A typical if $X' = \rho(X)$ is defined and all pairs of $\hat{X}' = \rho(\hat{X})$ are probable, i.e. if \hat{X}' is a path of the subgraph H. It follows easily from the Markov property that the set of typical trajectories of the RMC starting at the initial state has probability 1. More generally it is easy to show the following:

LEMMA 26. For every vertex u of the RMC A with ne(u) > 0, the probability that a trajectory starting at u does not exit its component and is typical with type t is ne(u)P'(u,t).

We wish to find the improbable nodes of G and remove them to obtain H. As we noted, it suffices to identify the bottom SCCs of H. From the definition of G, if G contains a path from (u,t) to (v,s) then M'_A contains a path from u to v. Therefore, for every SCC C of G, the first components of all the nodes of C belong to the same SCC K of M'_A . We will say that the SCC C corresponds to K.

LEMMA 27. If C is a bottom SCC of H, then it corresponds to a bottom SCC K of M'_A .

PROOF. Let (u,t) be a node of C. A trajectory X of the RMC starting at u does not exit u's component with probability ne(u), and conditioned on this event, with probability 1 it is typical and its summary image $\rho(X)$ is absorbed in a bottom SCC of the summary chain M'_A . Since (u,t) is probable, the summary image $\rho(X)$ of such a typical trajectory of type t must be the projection of a path in H starting at (u,t). Since C is a bottom SCC of H, it follows that its corresponding SCC K of M'_A must be also a bottom SCC. \square

We will now give a necessary condition for a node of G to be probable. Consider a summary edge $(u,t) \to (v,s)$ of G. We say that the edge is probable if the nodes are probable. We label the edge with a subset of $\{1,\ldots n\}$ as follows. A label $l\in\{1,\ldots n\}$ is included in the subset iff the infinite chain $M_{\hat{A}}$ of the augmented RMC \hat{A} has a path from $\langle \epsilon, (u,t) \rangle$ to $\langle \epsilon, (v,s) \rangle$ that goes through some node $\langle \beta, (z,r) \rangle$ with $r_l=1$. This can be determined in polynomial time in the size of \hat{A} using the algorithm for Recursive State Machines of [Alur et al. 2005].

LEMMA 28. If (u,t) is probable, then it satisfies the following condition. For every node i of (the parse tree of) φ labelled \mathcal{U} , with corresponding subexpression $\varphi_i = \varphi_j \mathcal{U} \varphi_l$, if $t_i = 1$ then node (u,t) can reach in \mathcal{H} (and in \mathcal{G}) some probable node (v,s) with $s_l = 1$ or some probable summary edge whose label set includes l.

PROOF. Consider a typical trajectory $X = \langle \epsilon, u \rangle x_1 x_2 \dots$ starting at u that does not exit its component and has type t. Its summary image $Y = \rho(X) = uv_{i1}v_{i2}\dots$, consists of the vertex parts of a subsequence $\langle \epsilon, u \rangle x_{i1}x_{i2}$ of X. Some suffix $x_k x_{k+1}\dots$ of X satisfies φ_l . Since X is typical, its augmented trajectory \hat{X} maps to a path $\hat{Y} = \rho(\hat{X}) = (u,t)(v_{i1},t^{i1})\dots$ in H. If v_k is included in the summary path Y, then the node (v_k,t^k) is in the path \hat{Y} of H, hence it is a probable node with $t_l^k = 1$. If v_k is not included in the summary path Y, then let v_p, v_r be the nodes that are included with p the maximum index less than k and r the minimum index greater than k. Then $(v_p,t^p),(v_r,t^r)$ is a probable summary edge with label l. \square

It is convenient for the purposes of the analysis to refine the summary graph M'_A into a multigraph M''_A as follows. For each summary edge $u=(b,en) \to v=(b,ex)$ consider all paths of the RMC that give rise to the edge, i.e. paths of the form $\langle \epsilon, u \rangle \to \langle b, en \rangle \to \dots \langle b, ex \rangle \to \langle \epsilon, v \rangle$. For every type s for the final state, each path implies backwards a type t for u. Let us call two paths equivalent if they induce the same mapping from types s at v to types t at u. This gives us a partition of the paths into equivalence classes. Replace the summary edge $u \to v$ with a set of parallel edges, one for each equivalence class. Do the same for all summary edges of M'_A and let M''_A be the resulting multigraph. We can view M''_A also as a (refined) Markov chain where the probability of the summary edges is divided among the parallel edges that replaced it according to the total probability of all paths in each equivalence class. (We do not actually perform this transformation; it is only for the purposes of the analysis.) The multigraph M''_A has the property that for every edge $u \to v$ (whether an ordinary, a summary, or a nesting edge) and every type s for v there is a unique type t that is implied for u by s and the edge. Note that, by construction, the graph G contains an edge $(u,t) \to (v,s)$; we will say that the edge $u \to v$ of M''_4 is a projection of the edge $(u,t) \to (v,s)$ of G. (More than one parallel summary edges of M_A'' from u to v may be the projection of the same edge of G.) We can extend the notion of projection to paths of G. Obviously M'_A and M''_A have the same SCCs (replacing an edge by a set of parallel edges does not change the SCCs).

LEMMA 29. Let C be a SCC of G and let K be the corresponding SCC of M''_A . The following are equivalent.

- (1) For every node (v, s) of C, every edge $u \to v$ of K is a projection of some edge $(u, t) \to (v, s)$ of C into (v, s).
- (2) Every finite path in K is a projection of some path in C.
- (3) No other SCC of G corresponding to K is ancestor of C.

The proof is nontrivial but it is very similar to the proof of Lemma 5.10 of [Courcoubetis and Yannakakis 1995], so we will omit it and refer to that paper.

The characterization of bottom SCCs of H is given by the following Theorem.

Theorem 30. A SCC C of G is a bottom SCC of H if and only if the following three conditions are satisfied.

- (1) C corresponds to a bottom SCC K of M'_A .
- (2) No other SCC of G corresponding to K is ancestor of C.
- (3) For every subexpression $\varphi_i = \varphi_j \mathcal{U} \varphi_l$ of φ , either all nodes (u,t) of C have $t_i = 0$ or there is a node $(v,s) \in C$ with $s_l = 1$ or there is a summary edge of C whose label set includes l.

PROOF. Suppose that C is a bottom SCC of H. Then C satisfies conditions 1 and 3 by Lemmas 27 and 28 respectively. Suppose that it does not satisfy (2). Then from Lemma 29 there is a finite path β of K that is not the projection of any path in C. Let (u,t) be any node of C. A trajectory of M''_A starting at u contains with probability 1 the path β (in fact the path occurs infinitely often in the trajectory). Such a trajectory is not the projection of any path in C. It follows that (u,t) is not probable.

Conversely, suppose C satisfies the three conditions. We show that C contains all probable pairs (u,t) whose first component u is in K. From this it follows that C is the only SCC of H that corresponds to K, and C is a bottom SCC of H because any descendant SCC must then also correspond to K. To prove the above fact we show the following lemma. \square

LEMMA 31. Suppose that C satisfies the three conditions of Theorem 30. For every probable pair (u,t) with $u \in K$, the following are true for each $i = 1, \ldots, n$.

- (1) There is a node (u, t') of C such that t and t' agree in the first i coordinates.
- (2) There is a finite path $\alpha(u,t,i)$ of M''_A starting at u such that the type of almost all trajectories of the RMC from u that do not exit u's component, whose summary image has prefix $\alpha(u,t,i)$, agrees with t in the first i coordinates.

(The proof has been moved to the electronic appendix, due to space constraints.)

Summarizing, the qualitative model checking algorithm for a RMC A and a LTL formula φ works as follows.

- (1) Construct the graph of the summary chain M'_A .
- (2) Generate all consistent pairs (u,t), $u \in M'_A$, t a type.
- (3) Construct the graph G on the consistent pairs.
- (4) Find the strongly connected components of G, and construct the DAG of SCCs.
- (5) While there is a bottom SCC that violates one of the conditions of Theorem 30, remove it from G.
- (6) If the final graph H contains a node (en_{init}, t) with $t_n = 0$ then reject, else accept.

By our analysis, the final graph is the subgraph H of G induced by the probable pairs.

Step 1 (which depends only on the RMC A, not on formula φ) can be done in polynomial space in A. The rest of the steps can be done in polynomial time in the size of the graph G and the RSM \hat{A} , both of which are polynomial in |A| and exponential in $|\varphi|$ (specifically, the exponent only depends on the number of temporal operators in φ). If A is a 1-exit RMC, or bounded RMC, or linear RMC, then Step 1 can be done in polynomial time in A. Thus:

THEOREM 32. Given RMC A and LTL formula φ , we can check whether A satisfies φ with probability 1 in polynomial space in A and exponential time in φ . If A is a 1-exit RMC or a bounded RMC or linear RMC then the time complexity is polynomial in A.

Conversely, we can show that qualitative model checking of LTL formulas requires exponential time.

THEOREM 33. The qualitative problem of determining whether a given RMC A satisfies a LTL formula φ with probability 1 (i.e., whether $P_A(\varphi) = 1$) is EXPTIME-hard (thus EXPTIME-complete). Furthermore, this holds even if the RMC is fixed and each component has one entry and one exit.

(The proof is in the electronic appendix, due to space constraints.) The proof is similar to the proof of Theorem 17 for Büchi automata, and to the proof of a theorem in [Bouajjani et al. 1997] which shows that LTL model checking for (non-probabilistic) Pushdown Systems (equivalent to RSMs) is EXPTIME-hard. The latter proof encodes a finite accepting computation tree of an alternating linear space Turing Machine as a finite path in a RSM, and uses LTL formulas to check that the path is consistent with an accepting sequence of configurations of the alternating Turing machine. Since all finite paths have non-zero probability in an RMC, we can in principle use the same proof and ignore probabilities on transitions to get EXPTIME-hardness for RMCs. In fact, using a construction similar to that of Theorem 17, together with a suitable LTL formula, we can show that the result holds even for a fixed RMC (and for a fixed RSM), with each component having 1 entry and 1 exit. See the proof in the electronic appendix for details.

8. QUANTITATIVE MODEL CHECKING OF LTL PROPERTIES

We are given a Recursive Markov Chain A and an a LTL formula φ . We are also given a rational number p, and we want to determine whether the probability $P_A(\varphi)$ that a trajectory of A satisfies φ is at least (or at most) p. As mentioned in Section 2, the probability $P_A(\varphi)$ is in general irrational and thus it cannot be computed explicitly. We will construct a system of polynomial equations and inequalities in a set of real variables, one of which stands for the desired probability $P_A(\varphi)$. The system will be constructed in such a way that it has a unique solution. Then we will attach the inequality $P_A(\varphi) \geq p$ (or $P_A(\varphi) \leq p$) and invoke a procedure for the existential theory of the reals to check whether the resulting system is satisfiable.

First we set up the system (1a) $\mathbf{x} = P(\mathbf{x})$ of fixed point equations for the RMC A which contains one variable $x_{(u,ex)}$ for every vertex u and exit ex of u's component. Recall that we can compute in polynomial space in |A| the set $Q' = \{u \in Q \mid ne(u) > 0\}$ of deficient vertices. We add to (1a) the constraints (1b) $\mathbf{x} \geq 0$; (1c) $y_u = 1 - \sum_{ex \in Ex_{c(u)}} x_{(u,ex)}$ for every vertex u; (1d) $y_u > 0$ for every vertex u in Q'; and (1e) $y_u = 0$ for every vertex u in Q - Q'. Let (1) be the system of constraints (1a)-(1e). From the Unique Fixed Point Theorem for RMCs, Theorem 18, system (1) has a unique solution (\mathbf{x}, \mathbf{y}) , and this solution is $x_{(u,ex)} = q^*_{(u,ex)}$ and $y_u = ne(u)$.

Now, we carry out the algorithm for the qualitative model checking. As a result we compute all probable pairs (u,t). For a deficient vertex u and a type t, let P'(u,t) be the probability that a trajectory X starting at u has type t conditioned on the event that X does not exit u's component. We have a corresponding variable z(u,t) (we only need to include the probable pairs, since the others have probability 0). These variables satisfy several constraints:

- (2a) $\sum_{t} z(u,t) = 1$ for all $u \in Q'$.
- (2b) If u is not a call port, then $z(u,t) = \sum_{(v,s)} p'_{u,v} z(v,s)$, where $p'_{u,v}$ is the probability of transition $u \to v$ in the summary Markov chain M'_A , and the sum ranges over all probable pairs (v,s) such that H contains an edge $(u,t) \to (v,s)$.
- (2c) If u = (b, en) is a call port, then $z(u, t) = p'_{u,en} \sum_s z(en, s) + \sum_{(v,s)} p'_{u,v} f_{u,v,t,s} z(v, s)$, where the first sum ranges over all types s such that H contains an edge $(u, t) \rightarrow (en, s)$, and the second sum ranges over all exits v = (b, ex) of the box b and types s such that H contains an edge $(u, t) \rightarrow (v, s)$ and $f_{u,v,t,s}$ is the fraction of the

probability of u-v paths of the RMC for which the type s at v implies backwards the type t at u.

These constraints are justified by the following lemma.

Lemma 34. Probabilities P'(u,t) satisfy constraints 2a-2c.

(The proof has been moved to the electronic appendix, due to space constraints.)

The transition probabilities $p'_{u,v}$ of M'_A are rational functions of the probabilities captured by the variables (\mathbf{x}, \mathbf{y}) of system (1). The quantities $f_{u,v,t,s}$ are in general irrational, so we cannot compute them explicitly; however, we will later present a system of constraints with a unique solution that gives precisely these quantities. Suppose for now that we have also determined the parameters $f_{u,v,t,s}$. Then the constraints (2) form a linear system in the variables z(u,t). It turns out that this system has a unique solution.

Lemma 35. The system (2) of linear equations in the variables z(u,t) has a unique solution.

(The proof has been moved to the electronic appendix, due to space constraints.)

We will now construct a system of constraints that determines uniquely the parameters $f_{u,v,t,s}$. Recall the augmented Recursive State machine \hat{A} that we constructed. We add weights to its edges and convert it to a weighted RSM; it will not necessarily be a RMC because the weights out of a node may not sum to 1. The edges of \hat{A} are of the form $(u,t) \to (v,s)$. If A contains the edge $u \to v$ then we let the weight of $(u,t) \to (v,s)$ be the probability of the edge $u \to v$. The other cases are that u = (b,en) and $v = (\hat{b},en)$, or $u = (\hat{b},ex)$ and v = (b,ex); in these cases we give these edges weight 1.

Let u = (b, en), v = (b, ex) be a call port and a return port of a box b, and let π be a path in the RMC corresponding to the summary edge $u \to v$ in the summary graph, i.e. π is a path $\langle \epsilon, u \rangle \to \langle b, en \rangle \to \dots \langle b, ex \rangle \to \langle \epsilon, v \rangle$, where all the intermediate nodes include b in the context. For every type s for the final vertex v, we can infer uniquely types for the vertices along the path, and in particular a type t for the initial vertex u. Thus, the augmented RSM \hat{A} contains for every type s a unique path $\hat{\pi}_s$ corresponding to π which goes from a vertex (u,t) for some t (with empty context) to (v,s) and that path $\hat{\pi}_s$ has the same weight as the probability of the path π . The path $\hat{\pi}_s$ is composed of an edge from (u,t)to an entry ((b,en),t') of the box b, then a path that eventually reaches an exit ((b, ex), s') of the box b and finally an edge from the exit to (v, s). Suppose that we have at hand for each entry (en, t') and exit (ex, s') of each component \hat{A}_i of the weighted RSM \hat{A} the sum h(en, t', ex, s') of the weights of all the paths from the entry to the exit. Then we can use them to compute the quantity $x_{en.ex} \cdot f_{u.v.t.s}$ which is the sum of the probabilities of all the paths π corresponding to summary edges $u \to v$ for which type s at v is mapped back to type t at u. Namely, (3a) $x_{en,ex} \cdot f_{u,v,t,s} = \sum h(en,s',ex,t')$ where the summation ranges over all s',t' such that \hat{A} has edges $(u,t) \to ((\hat{b},en),t')$ and $((\hat{b},ex),s') \to (v,s)$.

We introduce a variable h(u, t, ex, s) for every pair consisting of a vertex (u, t) of \hat{A} and an exit (ex, s) of its component, to represent the sum of the weights of ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

all the paths from (u,t) that exit at (ex,s). We will construct a set of fixed point equations, whose solution will be the desired weights. The fixed point equations are similar to the system of equations for an RMC, given in Section 2. The only difference now is that the weights on the edges out of a vertex may not sum to 1. Let $(3b) \mathbf{h} = \hat{P}(\mathbf{h})$ be this system of equations. We add the constraints (3c): $\mathbf{h} \geq 0$. Finally we add the following constraints (3d): $\sum_t h(u,t,ex,s) = x(u,ex)$ for every triple u,ex,s where u is a vertex of component A_i of the RMC A, ex is an exit of the same component and s is a type. Note that (u,t) is a vertex of component \hat{A}_i and (ex,s) is an exit of the component. The justification for these constraints is the following. For every path π from u to ex (with empty context) and every type s there is a unique corresponding path in \hat{A} to (ex,s), and this path starts at a vertex (u,t) for some t and has weight equal to the probability of the path π . Summing over all such paths π gives the constraint (3d).

We claim now that having fixed the x variables (from constraints (1)), the system (3b-d) has a unique solution. First, note that the intended solution \mathbf{h} representing the weights of the vertex-exit paths is the least fixed point solution of the system (3b-c). This can be shown in the same way as it is shown for Recursive Markov Chains. Namely, if we start with $\mathbf{h} = 0$ and apply repeatedly the operator \hat{P} then the vector will converge to the least fixed point solution and this coincides with the desired vector of weights. If we pick a fixed point solution that is strictly greater in some component h(u, t, ex, s) than the correct weights, then the solution will violate a constraint (3d). We conclude that the system (3b-d) has a unique solution. It follows then that (3a) determine uniquely the parameters $f_{u,v,t,s}$.

To summarize, we have three sets of constraints (1),(2),(3). The quantities $p'_{u,v}$ in constraints (2) (the transition probabilities of the summary chain) are ratios, so we first rewrite (2) to clear the denominators so that they become also polynomial equations. If we want to check whether the probability $P_A(\varphi)$, that a trajectory of A satisfies φ , is at least a given threshold p, then we add the constraint (4) $\sum z(en_{init},t) \geq p$, where the summation ranges over all t with $t_n=1$. Then we call a procedure for the existential theory of the reals on the system (1-4). Similarly we can determine if the probability is less than p. We can also approximate the probability $P_A(\varphi)$ within any number k of bits of precision by doing a binary search using the above procedure k times.

The size of the system of constraints is polynomial in |A| and exponential in $|\varphi|$. It follows that the complexity is polynomial space in |A| and exponential in $|\varphi|$. For linear RMCs, we can solve the constraints explicitly by solving a series of linear systems of equations.

THEOREM 36. Given RMC A, LTL formula φ and rational value p, we can determine whether the probability $P_A(\varphi)$ that a trajectory of A satisfies φ is \geq (or \leq) p in space polynomial in A and exponential in φ . If A is a linear RMC, then we can compute $P_A(\varphi)$ exactly in time polynomial in A and exponential in φ .

9. CONCLUSIONS

We presented algorithms and lower bounds for the model checking of Recursive Markov chains against ω -regular specifications, given by Büchi automata or LTL formulas. The complexity results for the two formalisms turn out to be similar,

though they require different algorithms because of the difference of the two formalisms in expressiveness and succinctness. We studied both the qualitative problem, i.e., testing whether the specification is satisfied with probability 1 or 0, and the quantitative problem, i.e. determining whether the probability of satisfaction meets a given threshold, or approximating the probability to a desired precision. For a given RMC A and property (Büchi automaton B or LTL formula φ) we showed that the qualitative problem can be solved in polynomial space in the size of the RMC and exponential time in the size of the property, and on the other hand it is EXPTIME-complete even for fixed RMC A. We saw that the bottleneck with respect to the RMC is the computation of the deficient (survivor) vertices u of the RMC, i.e., the vertices that have positive probability ne(u) > 0 of not terminating. We showed that once we identify these vertices, then the rest of the qualitative model checking problem involves an intricate combinatorial analysis which depends polynomially on the size of the RMC. As a consequence, for several important classes of RMCs (linear, bounded, and 1-exit RMCs) the complexity is polynomial in the size of the RMC. Also if the property is given by a deterministic Büchi automaton B, then the complexity in |B| is polynomial. For the quantitative problem we showed that it can be solved in polynomial space in the size of the RMC and exponential space in the size of the property.

In the non-recursive case, there has been algorithmic work on the model checking of systems that have both probabilistic and non-probabilistic actions, modeled by a Markov Decision Process (or equivalently a Concurrent Markov Chain) (see e.g., [Courcoubetis and Yannakakis 1995; Vardi 1985]) resulting in algorithms and tight complexity results. In the recursive case, this is in general not possible: as shown in [Etessami and Yannakakis 2005b], there are ω -regular properties whose model checking problem already for Recursive Markov Decision Processes (even for 1-exit linear RMDPs) is undecidable.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library by visiting the following URL: http://www.acm.org/pubs/citations/journals/tocl/20YY-V-N/p1-URLend.

REFERENCES

Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., and Miltersen, P. B. 2009. On the complexity of numerical analysis. SIAM J. Comput. 38, 5, 1987–2006. Earlier version appeared in Proc. 21st IEEE Conference on Computational Complexity, 2006.

Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., and Yannakakis, M. 2005. Analysis of recursive state machines. *ACM Trans. Program. Lang. Syst.* 27, 4, 786–818.

BILLINGSLEY, P. 1995. Probability and Measure, 3rd ed. J. Wiley and Sons.

BOUAJJANI, A., ESPARZA, J., AND MALER, O. 1997. Reachability analysis of pushdown automata: Applications to model checking. In *Proc. 8th Int. Conf. on Concurrency Theory (CONCUR)*. 135–150.

Brázdil, T., Kučera, A., and Stražovský, O. 2005. Decidability of temporal properties of probabilistic pushdown automata. In *Proc. 22nd Symp. on Theoretical Aspects of Comp. Sci.* (STACS)

Canny, J. 1988. Some algebraic and geometric computations in PSPACE. In *Proc. 20th ACM Symp. on Theory of Computing (STOC)*. 460–467.

 ${\it ACM\ Transactions\ on\ Computational\ Logic,\ Vol.\ V,\ No.\ N,\ Month\ 20YY}.$

- Courcoubetis, C. and Yannakakis, M. 1995. The complexity of probabilistic verification. Journal of the ACM 42, 4, 857–907.
- Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. 1999. Biological Sequence Analysis: Probabilistic models of Proteins and Nucleic Acids. Cambridge U. Press.
- ESPARZA, J., KUČERA, A., AND MAYR, R. 2004. Model checking probabilistic pushdown automata. In *Proc. 19th IEEE Symp. on Logic in Computer Science (LICS)*. 12–21.
- ETESSAMI, K. AND YANNAKAKIS, M. 2005a. Algorithmic verification of recursive probabilistic state machines. In *Proc. 11th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)*. 253–270.
- ETESSAMI, K. AND YANNAKAKIS, M. 2005b. Recursive Markov decision processes and recursive stochastic games. In *Proc. 32nd Int. Coll. on Automata, Languages, and Programming (ICALP)*. 891–903.
- ETESSAMI, K. AND YANNAKAKIS, M. 2009. Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. *Journal of the ACM 56*, 1. (Preliminary version appeared in *Proc. of 22nd STACS*, Springer, 2005.).
- FAGIN, R., KARLIN, A., KLEINBERG, J., RAGHAVAN, P., RAJAGOPALAN, S., RUBINFELD, R., SUDAN, M., AND TOMKINS, A. 2000. Random walks with "back buttons" (extended abstract). In Proc. ACM Symp. on Theory of Computing (STOC). 484–493.
- GAREY, M. R., GRAHAM, R. L., AND JOHNSON, D. S. 1976. Some NP-complete geometric problems. In *Proc. 8th ACM Symp. on Theory of Computing (STOC)*. 10–22.
- HACCOU, P., JAGERS, P., AND VATUTIN, V. A. 2005. Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge U. Press.
- HARRIS, T. E. 1963. The Theory of Branching Processes. Springer-Verlag.
- KIMMEL, M. AND AXELROD, D. E. 2002. Branching processes in biology. Springer.
- KWIATKOWSKA, M. 2003. Model checking for probability and time: from theory to practice. In *Proc. 18th IEEE LICS.* 351–360.
- MANNING, C. AND SCHÜTZE, H. 1999. Foundations of Statistical Natural Language Processing. MIT Press.
- PNUELI, A. 1977. The temporal logic of programs. In *Proc. 18th Symp. on Foundations of Computer Science*. 46–57.
- PNUELI, A. AND ZUCK, L. D. 1993. Probabilistic verification. Inf. and Comp. 103, 1, 1–29.
- Renegar, J. 1992. On the computational complexity and geometry of the first-order theory of the reals, parts I-III. *J. Symbolic Computation* 13, 3, 255–352.
- Tiwari, P. 1992. A problem that is easier to solve on the unit-cost algebraic ram. *Journal of Complexity*, 393–397.
- VARDI, M. 1985. Automatic verification of probabilistic concurrent finite-state programs. In Proc. of 26th IEEE FOCS. 327–338.
- Vardi, M. Y. and Wolper, P. 1986. An automata-theoretic approach to automatic program verification. In *Proc. 1st Symp. on Logic in Comp. Sci. (LICS)*. 322–331.
- Yannakakis, M. and Etessami, K. 2005. Checking LTL properties of Recursive Markov Chains. In *Proceedings 2nd Int. Symp. on Quantitative Evaluation of Systems (QEST)*. 155–165.

Received July 2008; revised April 2010; accepted November 2010