
A

The Complexity of Proving the Discrete Jordan Curve Theorem

PHUONG NGUYEN, Mcgill University

STEPHEN COOK, University of Toronto

The Jordan Curve Theorem (JCT) states that a simple closed curve divides the plane into exactly two
connected regions. We formalize and prove the theorem in the context of grid graphs, under different input
settings, in theories of bounded arithmetic that correspond to small complexity classes. The theory V0(2)

(corresponding to AC0(2)) proves that any set of edges that form disjoint cycles divides the grid into at
least two regions. The theory V0 (corresponding to AC0) proves that any sequence of edges that form a
simple closed curve divides the grid into exactly two regions. As a consequence, the Hex tautologies and
the st-connectivity tautologies have polynomial size AC0(2)-Frege-proofs, which improves results of Buss

which only apply to the stronger proof system TC0-Frege.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Proof Theory

General Terms: Theory

Additional Key Words and Phrases: Jordan Curve Theorem, bounded arithmetic, bounded reverse mathe-
matics

ACM Reference Format:

Nguyen, P. and Cook, S. 2011. The Complexity of Proving the Discrete Jordan Curve Theorem ACM Trans.
Comput. Logic V, N, Article A (January YYYY), 24 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

1.1. Proof Complexity Background

This paper is a contribution to “Bounded Reverse Mathematics” [CN10; Ngu08], a
theme whose goal is to formalize and prove discrete versions of mathematical theorems
in weak theories of bounded arithmetic. (Reverse Mathematics is a program introduced
by Friedman and Simpson (see [Sim99]) to classify mathematical theorems according
to the strength of the axiomatic theories needed to prove them.) Razborov’s simpli-
fied proof (in the theory V 1

1) of Hastad’s Switching Lemma [Raz95] demonstrates the
advantage of formalizing non-trivial arguments by reducing the complexity of the con-
cepts needed in the proof, and can be regarded as an early important example of this
theme. Here we are concerned with theories which capture reasoning in complexity
classes in the low end of the hierarchy

AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1 ⊆ L ⊆ P (1)

The class AC0 (problems expressible by polynomial size constant depth Boolean cir-
cuits with unbounded fanin AND gates and OR gates) can compute binary addition,

Author’s addresses: P. Nguyen, School of Computer Science, McGill University, H3A 2A7, Montréal, Quebéc,
Canada; S. Cook, Department of Computer Science, University of Toronto, M5S 3G4, Toronto, Ontario,
Canada.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Nguyen and S. Cook

but not binary multiplication, and cannot determine the parity of the number of input
1’s. The classAC0(2) strengthensAC0 by allowing parity gates with unbounded fanin.
TC0 allows threshold gates and can compute binary multiplication, whileNC1 has the
computing power of polynomial size Boolean formulas. L stands for deterministic log
space, and P for polynomial time.
Our theories are “second order” (as are those in Simpson’s book [Sim99]), or more

properly two-sorted first order. The first sort is the set N of natural numbers, and the
second sort is the set of finite subsets of N. We think of a finite subset X ⊂ N as a finite
bit string X(0)X(1) · · · , where X(i) is 1 or 0 depending on whether i ∈ X. A function F
on bit strings is definable in a two-sorted theory T if its graph Y = F (X) is expressible
by a bounded existential formula ϕ(X,Y) such that

T ⊢ ∀X∃!Y ϕ(X,Y)

The complexity class associated with T is given by the set of functions definable in T .
We have a theory for each of the complexity classes in (1), and these theories form the
hierarchy [CN10]

V0 ⊂ V0(2) ⊆ VTC0 ⊆ VNC1 ⊆ VL ⊆ TV0 (2)

Our base theory is V0, where the definable functions are those in AC0. Thus V0 can
define F+(X,Y) = X + Y (binary addition) but V0 cannot define parity(X) (the num-
ber of ones in X mod 2). The theory V0(2) is associated with AC0(2), and can define
parity(X) but not F×(X,Y) = X · Y (binary multiplication). The theory VTC0 can
define F×(X,Y) but not any function that is not in TC0.
All these theories are finitely axiomatizable, and have the same finite vocabulary.
We are interested in finding the weakest theory that can prove a given universal

combinatorial principle. The best known result here is due to Ajtai [Ajt88], which
(stated in our terms) says that the Pigeonhole Principle PHP (n,X) (asserting there
is no one-one map from {0, 1, . . . , n} to {0, 1, . . . n − 1}) is not a theorem of V0. It is
known that VTC0 proves PHP (n,X), but it is an open question whether V0(2) proves
PHP (n,X).
The study of the proof complexity of combinatorial principles is often formulated in

terms of propositional proof systems, rather than theories such as (2). In fact there
are propositional proof systems corresponding to each of the theories in (2), so that
we have a three-way correspondence between complexity classes, theories, and proof
systems as follows:

class AC0 AC0(2) TC0 NC1 P

theory V0 V0(2) VTC0 VNC1 TV0

system AC0-Frege AC0(2)-Frege TC0-Frege Frege eFrege

For example a Frege system is a standard Hilbert-style propositional proof system in
which a formal proof is a sequence of propositional formulas which are either axioms
or follow from earlier formulas from rules. In an AC0-Frege proof the formulas must
have depth at most d, where d is a parameter. In an AC0(2)-Frege proof the formulas
are allowed parity gates, and in a TC0-Frege proof the formulas are allowed threshold
gates.
There is a simple correspondence between ΣB

0 formulas ϕ(x,X) (i.e. bounded formu-
las in the language of the theories, with no second-order quantifiers) and a polynomial
size family 〈ϕ(x,X)[n], n ∈ N〉 of propositional formulas such that the propositional
formulas are all valid iff ∀x∀Xϕ(x,X) holds in the standard model. Further, for each
theory T and associated proof system ST there is a simple translation which takes

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:3

each ΣB
0 formula ϕ(x,X) provable in T into a polynomial size family of ST -proofs of

the tautologies ϕ(x,X)[n].
For example, in the case of the Pigeonhole Principle, the ΣB

0 formula PHP (x,X)
translates into a family PHPn+1

n of tautologies, in which the variables have the form
pij , 0 ≤ i ≤ n, 0 ≤ j < n, and pij is intended to assert that i gets mapped to j. Ajtai

[Ajt88] proved that the tautologies PHPn+1
n do not have polynomial size AC0-Frege

proofs. From this it follows that PHP (x,X) is not provable in V0, as we mentioned
earlier.

In general, the propositional proof systems can be regarded as nonuniform versions
of the corresponding theories (more precisely the ∀ΣB

0 -consequences of the theories).
Showing that a given ΣB

0 formula ϕ(x,X) is provable in a theory T establishes that
the tautology family ϕ(x,X)[n] has polynomial size ST proofs. However the converse is
false in general: The tautologies ϕ(x,X)[n] might have polynomial size ST proofs even
though ϕ(x,X) is not provable in T .

In the present paper our main results are positive and uniform: we show various
principles are provable in various theories, and polynomial size upper bounds on the
proof size of the corresponding tautologies follow as corollaries.

1.2. Discrete Planar Curves

We are concerned with principles related to the Jordan Curve Theorem (JCT), which
asserts that a simple closed curve divides the plane into exactly two connected compo-
nents. The authors were inspired by a talk by Thomas Hales [Hal05; Hal07] explaining
his computer-verified proof of the theorem (involving 44,000 proof steps), which in turn
is based on Thomassen’s five-page proof [Tho92]. The latter proof starts by provingK3,3

is not planar, which in turn implies the JCT.
Hales first proves the JCT for grid graphs, and this is the setting for the present

paper. A grid graph has its vertices among the planar grid points {(i, j) | 0 ≤ i, j ≤ n}
and its edges among the horizontal and vertical lines connecting adjacent grid points.
Buss [Bus06] has extensive results on the propositional proof complexity of grid

graphs, and nicely summarizes what was known on the subject before the present
paper. The st-connectivity principle states that it is not possible to have a red path
of edges and a blue path of edges which connect diagonally opposite corners of the
grid graph unless the paths intersect. In this paper we focus on the following two
ways of expressing this principle as a family of tautologies: the harder tautologies
STCONN(n) [Bus06] express the red and blue edges as two sets, with the condition
that every node except the corners has degree 0 or 2 (thus allowing disjoint cycles as
well as paths). The easier tautologies STSEQ(n) express the paths as sequences of
edges.

In 1997 Cook and Rackoff [CR97] showed that the easier tautologies STSEQ(n) ex-
pressing st-connectivity have polynomial size TC0-Frege-proofs. Their proof is based
on winding numbers. Buss [Bus06] improved this by showing that the harder tau-
tologies STCONN(n) also have polynomial size TC0-Frege-proofs. Buss’s proof shows
how the red and blue edges in each column of the grid graph determine an element
of a certain finitely-generated group. The first and last columns determine different
elements, but assuming the red and blue paths do not cross, adjacent columns must
determine the same element. This leads to a contradiction.

The Hex tautologies, proposed by Urquhart [Urq01], assert that every completed
board in the game of Hex has a winner. [Bus06] shows that the Hex Tautologies can
be reduced to the hard st-connectivity tautologies STCONN(n), and hence also have
polynomial size TC0-Frege-proofs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Nguyen and S. Cook

1.3. New Results

We work in the uniform setting, formalizing proofs of principles in the theories V0 and
V0(2), which imply upper bounds on the propositional proof complexity of the princi-
ples. In Section 3 we show that V0(2) proves the part of the discrete JCT asserting a
closed curve divides the plane into at least two connected components, for the (harder)
case in which the curve and paths are given as sets of edges. The proof is inspired
by Buss’s TC0-Frege proof of STCONN(n) and is based on the idea that a vertical
line passing through a grid curve can detect which regions are inside and outside the
curve by the parity of the number of horizontal edges it intersects. It follows thatV0(2)
proves the st-connectivity principle for edge sets.
As a corollary we conclude that the STCONN(n) tautologies and the Hex tautologies

have polynomial size AC0(2)-Frege proofs, thus strengthening Buss’s [Bus06] result
that is stated for the stronger TC0-Frege system. Our result is stronger in two senses:
the proof system is weaker, and we show the existence of uniform proofs by showing the
st-connectivity principle is provable in V0(2). In fact, showing provability in a theory
such as V0(2) is often easier than directly showing its corollary that the correspond-
ing tautologies have polynomial size proofs. This is because we can use the fact that
the theory proves the induction scheme and the minimization scheme for formulas
expressing concepts in the corresponding complexity class.
In Section 4 we prove the surprising result that when the input curve and paths are

presented as sequences of grid edges then even the very weak theory V0 proves the
Jordan Curve Theorem. This is the most technically interesting result in this paper.
The key idea in the proof is to show (using only AC0-concepts) that in every column
of the grid, the horizontal edges of the curve alternate between pointing right and
pointing left. It follows that V0 proves the st-connectivity principle for sequences of
edges. As a corollary we conclude that the STSEQ(n) tautologies have polynomial size
AC0-Frege-proofs. This strengthens the early result [CR97] (based on winding num-
bers) that STSEQ(n) have polynomial size TC0-Frege-proofs.

This is the full version of [NC07]. We have extended Section 5 substantially, and
added Sections 6, 7.

2. PRELIMINARIES

The material in this section is from [Coo05; CN10; NC05].

2.1. Complexity Classes and Reductions

It will be convenient to define the relevant complexity classes AC0 and AC0(2) in
a form compatible with our theories, so we start by giving the syntax of the latter.
We use a two-sorted language with variables x, y, z, ... ranging over N and variables
X,Y, Z, ... ranging over finite subsets of N (interpreted as bit strings). Our basic two-
sorted vocabulary L2

A includes the usual symbols 0, 1,+, ·,=,≤ for arithmetic over N,
the length function |X| on strings, the set membership relation ∈, and string equality
=2 (where we usually drop mention of the subscript 2). The function |X| denotes 1
plus the largest element in the set X, or 0 if X is empty (roughly the length of the
corresponding string). We will use the notation X(t) for t ∈ X, and we will think of
X(t) as the t-th bit in the string X.
Number terms are built from the constants 0,1, variables x, y, z, ..., and length terms

|X| using + and ·. The only string terms are string variables X,Y, Z, The atomic
formulas are t = u, X = Y , t ≤ u, t ∈ X for any number terms t, u and string variables
X,Y . Formulas are built from atomic formulas using ∧,∨,¬ and both number and
string quantifiers ∃x, ∃X, ∀x, ∀X. Bounded number quantifiers are defined as usual,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:5

and the bounded string quantifier ∃X ≤ t ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ t ϕ
stands for ∀X(|X| ≤ t ⊃ ϕ), where X does not occur in the term t.

ΣB
0 is the set of all L2

A-formulas in which all number quantifiers are bounded and

with no string quantifiers. ΣB
1 (corresponding to strict Σ1,b

1 in [Kra95]) formulas begin
with zero or more bounded existential string quantifiers, followed by a ΣB

0 formula.
These classes are extended to ΣB

i , i ≥ 2, (and ΠB
i , i ≥ 0) in the usual way.

We use the notationΣB
0 (L) to denoteΣB

0 formulas which may have symbols from the
vocabulary L in addition to the basic vocabulary L2

A.

Two-sorted complexity classes contain relations R(~x, ~X) (and possibly number-

valued functions f(~x, ~X) or string-valued functions F (~x, ~X)), where the arguments

~x = x1, . . . , xk range over N, and ~X = X1, . . . , Xℓ range over finite subsets of N. In
defining complexity classes using machines, the number arguments xi are presented
in unary notation (a string of xi ones), and the arguments Xi are presented as bit
strings. Thus the string arguments are the important inputs, and the number argu-
ments are small auxiliary inputs useful for indexing the bits of strings.

In the uniform setting, the complexity class AC0 has several equivalent character-
izations [Imm99], including LTH (the log time hierarchy on alternating Turing ma-
chines) and FO (describable by a first-order formula using < and Bit predicates). This
motivates the following definition for the two-sorted setting (see the number/string
input conventions above).

Definition 2.1. A relation R(~x, ~X) is in AC0 iff some alternating Turing machine
accepts R in time O(log n) with a constant number of alternations.

The following result [Imm99; CN10] nicely connects AC0 and our two-sorted L2
A-

formulas.

THEOREM 2.2 (ΣB
0 REPRESENTATION THEOREM). A relation R(~x, ~X) is in AC0 iff

it is represented by some ΣB
0 formula ϕ(~x, ~X).

In general, if C is a class of relations (such as AC0) then we want to associate a

class FC of functions with C. Here FC will contain string-valued functions F (~x, ~X)

and number-valued functions f(~x, ~X). We require that these functions be p-bounded;

i.e. for each F and f there is a polynomial g(n) such that |F (~x, ~X)| ≤ g(max(~x, | ~X|) and
f(~x, ~X) ≤ g(max(~x, | ~X|).

We define the bit graph BF (i, ~x, ~X) by

BF (i, ~x, ~X) ↔ F (~x, ~X)(i)

Definition 2.3. If C is a two-sorted complexity class of relations, then the corre-
sponding functions class FC consists of all p-bounded number functions whose graphs
are in C, together with all p-bounded string functions whose bit graphs are in C.

For example, binary addition F+(X,Y) = X+Y is in FAC0, but binary multiplication
F×(X,Y) = X · Y is not.

Definition 2.4. A string function is ΣB
0 -definable from a collection L of two-sorted

functions and relations if it is p-bounded and its bit graph is represented by a ΣB
0 (L)

formula. Similarly, a number function is ΣB
0 -definable from L if it is p-bounded and its

graph is represented by a ΣB
0 (L) formula.

It is not hard to see that FAC0 is closed under ΣB
0 -definability, meaning that if the

bit graph of F is represented by a ΣB
0 (FAC0) formula, then F is already in FAC0.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Nguyen and S. Cook

B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y
B3. x+ 0 = x B9. 0 ≤ x
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)
SE. [|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))] ⊃ X = Y

Fig. 1. 2-BASIC

In order to define complexity classes such as AC0(2) and TC0 we need to iterate
ΣB

0 -definability to obtain the notion of AC0 reduction.

Definition 2.5. We say that a string function F (resp. a number function f) is AC0-
reducible to L if there is a sequence of string functions F1, . . . , Fn (n ≥ 0) such that

Fi is Σ
B
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (3)

and F (resp. f) isΣB
0 -definable from L∪{F1, . . . , Fn}. A relationR isAC0-reducible to L

if there is a sequence F1, . . . , Fn as above, andR is represented by aΣB
0 (L∪{F1, . . . , Fn})

formula.

We define the number function numones(x,X) to be the number of elements of X
which are less than x. We define mod2 by

mod2(x,X) = numones(x,X) mod 2

Definition 2.6. AC0(2) (resp. FAC0(2)) is the class of relations (resp. functions)
AC0-reducible to mod2.

We note that the classes TC0 and FTC0 can be defined as in the above definition
from the function numones , although we will not need these classes here.

2.2. The Theories

Our base theory V0 [Coo05; CN10], called Σp
0 − comp in [Zam96] and IΣ1,b

0 (without #)
in [Kra95] is associated with the complexity class AC0. The theory V0 uses the two-
sorted vocabulary L2

Adescribed in Section 2.1, and is axiomatized by the set 2-BASIC

given in Figure 1, together with the ΣB
0 -Comprehension scheme

∃X ≤ y∀z < y(X(z) ↔ ϕ(z)),

where ϕ(z) is any ΣB
0 formula not containing X (but may contain other free variables).

It is not hard to show that V0 proves the ΣB
0 -IND scheme

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(z), (4)

where ϕ(x) is any ΣB
0 -formula.

It follows from a Buss-style witnessing theorem that theΣB
1 -definable function inV0

are precisely the functions in FAC0. Thus binary addition F+(X,Y) is ΣB
1 -definable in

V0 but binary multiplication F×(X,Y) = X · Y is not. Simple properties of definable
functions can usually be proved in V0, including commutativity and associativity of
binary addition.
The pigeonhole principle PHPn+1

n can be formulated in V0 by a ΣB
0 formula

PHP (n,X), where X(〈i, j〉) asserts that pigeon i gets mapped to hole j. However it
follows from Ajtai’s Theorem [Ajt88] that V0 does not prove PHP (n,X), nor does V0

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:7

prove the (weaker) surjective pigeonhole principle, in which it is assumed that every
hole gets at least one pigeon.

It is sometimes convenient to work in the theory V
0
, which is a universal conserva-

tive extension of V0 with vocabulary LFAC0 containing symbols (and defining axioms)

for all FAC0-functions. The theory V
0
proves the induction scheme (4), where now ϕ

is any ΣB
0 (LFAC0)-formula.

The theory V0(2) [NC05; CN10] has the same vocabulary L2
A as V0, and extends V0

by adding the single axiom

∃Y δMOD2
(x,X, Y)

where

δMOD2
(x,X, Y) ≡ ¬Y (0) ∧ ∀z < x, Y (z + 1) ↔ (Y (z)⊕X(z))

(here ⊕ is exclusive or).
Note that δMOD2

(x,X, Y) defines Y as a kind of parity vector for the first x bits of X,
in the sense that if δMOD2

(x,X, Y) and z ≤ x then

Y (z) ↔ mod2(z,X) = 1

The ΣB
1 -definable functions of V0(2) are precisely those in FAC0(2) (see Definition

2.6).

As in the case of V0, it is sometimes convenient to work in the theory V
0
(2), which

is a universal conservative extension of V0(2) with vocabulary LFAC0 (2) containing

symbols (and defining axioms) for all FAC0(2)-functions. The theory V
0
(2) proves the

induction scheme (4), where now ϕ is any ΣB
0 (LFAC0 (2))-formula.

3. INPUT AS A SET OF EDGES

We start by defining the notions of (grid) points and edges, and certain sets of edges
which include closed curves, or connect grid points. All of these notions are definable
by ΣB

0 -formulas, and their basic properties can be proved in V0.
We assume a parameter n which bounds the x and y coordinates of points on the

curve in question. Thus a grid point (or simply a point) p is a pair (x, y) where 0 ≤
x, y ≤ n. We use a standard pairing function 〈x, y〉 to represent a point (x, y), where

〈x, y〉 = (x+ y)(x+ y + 1) + 2y

The x and y coordinates of a point p are denoted by x(p) and y(p) respectively. Thus if
p = 〈i, j〉 then x(p) = i and y(p) = j. An (undirected) edge is a pair (p1, p2) (represented
by 〈p1, p2〉) of adjacent points; i.e. either |x(p2)−x(p1)| = 1 and y(p2) = y(p1), or x(p2) =
x(p1) and |y(p2)−y(p2)| = 1. For a horizontal edge e, we also write y(e) for the (common)
y-coordinate of its endpoints.

Let E be a set of edges (represented by a set of numbers representing those edges).
The E-degree of a point p is the number of edges in E that are incident to p.

Definition 3.1. A curve is a nonempty set E of edges such that the E-degree of every
grid point is either 0 or 2. A set E of edges is said to connect two points p1 and p2 if the
E-degrees of p1 and p2 are both 1 and the E-degrees of all other grid points are either
0 or 2. Two sets E1 and E2 of edges are said to intersect if there is a grid point whose
Ei-degree is ≥ 1 for i = 1, 2.

Note that a curve in the above sense is actually a collection of one or more disjoint
closed curves. Also if E connects p1 and p2 then E consists of a path connecting p1
and p2 together with zero or more disjoint closed curves. So a curve can divide the
grid into more than two connected components. To say that there are at least two

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Nguyen and S. Cook

connected components we will show that there are two points off the curve that cannot
be connected without crossing the curve. An easy way of picking such a pair of points
is to use the following definition. We will consider points which are “close” to the curve.
It suffices to consider the case in which one point is above and one point is below an
edge in E. (Note that the case in which one point is to the left and one point is to the
right of E can be reduced to this case by rotating the (n+ 1)× (n+ 1) array of all grid
points by 90 degrees.)

Definition 3.2. Two points p1, p2 are said to be on different sides of E if

x(p1) = x(p2) ∧ |y(p1)− y(p2)| = 2

the E-degree of pi = 0 for i = 1, 2

the E-degree of p = 2

where p is the point with x(p) = x(p1) and y(p) = 1
2 (y(p1) + y(p2)). (See Figure 2.)

E

p

p1

p2

x = m

Fig. 2. p1, p2 are on different sides of E.

Now we show that any set of edges that forms at least one simple curve must divide
the plane into at least two connected components. This is formalized in the following
theorem.

THEOREM 3.3 (MAIN THEOREM FOR V0(2)). The theory V0(2) proves the follow-
ing: Suppose that B is a set of edges forming a curve, p1 and p2 are two points on
different sides of B, and that R is a set of edges that connects p1 and p2. Then B and R
intersect.

3.1. The Proof of the Main Theorem for V0(2)

In the following discussion we also refer to the edges in B as “blue” edges, and the
edges in R as “red” edges.
We argue in V0(2), and prove the theorem by contradiction. Suppose to the contrary

that B and R satisfy the hypotheses of the theorem, but do not intersect.

Notation A horizontal edge is said to be on column k (for k ≤ n − 1) if its endpoints
have x-coordinates k and k + 1.
Let m = x(p1) = x(p2). W.l.o.g., assume that 2 ≤ m ≤ n − 2. Also, we may assume

that the red path comes to both p1 and p2 from the left, i.e., the two red edges that are
incident to p1 and p2 are both horizontal and on columnm−1 (see Figure 3). (Note that
if the red path does not come to both points from the left, we could fix this by effectively
doubling the density of the points by doubling n to 2n, replacing each edge in B or R
by a double edge, and then extending each end of the new path by three (small) edges
forming a “C” shape to end at points a distance 1 from the blue curve, approaching
from the left.)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:9

b1

p1r1

p2r2

m− 1 m

Fig. 3. The red (dashed) path must cross the blue (undashed) curve.

We say that edge e1 lies below edge e2 if e1 and e2 are horizontal and in the same
column and y(e1) < y(e2). For each horizontal red edge r we consider the parity of the
number of horizontal blue edges b that lie below r. The following notion is definable in
V0(2).

Notation An edge r is said to be an odd edge if it is red and horizontal and

parity({b : b is a horizontal blue edge that lies below r}) = 1

For example, it is easy to show in V0(2) that exactly one of r1, r2 in Figure 3 is an
odd edge.

For each k ≤ n− 1, define using ΣB
0 (parity)-COMP the set

Xk = {r : r is an odd edge in column k}
The Main Theorem for V0(2) follows from the lemma below as follows. We may as

well assume that there are no edges in either B or R in columns 0 and n − 1, so
parity(X0) = parity(Xn−1) = 0. On the other hand, it follows by ΣB

0 (LFAC0(2))-IND
using b) that parity(X0) = parity(Xm−1) and parity(Xm) = parity(Xn−1), which contra-
dicts a).

LEMMA 3.4. It is provable in V0(2) that

a) parity(Xm−1) = 1− parity(Xm).
b) For 0 ≤ k ≤ n− 2, k 6= m, parity(Xk) = parity(Xk+1).

PROOF. First we prove b). For k ≤ n−1 and 0 ≤ j ≤ n, let ek,j be the horizontal edge
on column k with y-coordinate j. Fix k ≤ n− 2. Define the ordered lists (see Figure 4)

L0 = ek,0, ek,1, . . . , ek,n; Ln+1 = ek+1,0, ek+1,1, . . . , ek+1,n

and for 1 ≤ j ≤ n:

Lj = ek+1,0, . . . , ek+1,j−1, 〈(k + 1, j − 1), (k + 1, j)〉, ek,j , . . . , ek,n
A red edge r is said to be odd in Lj if r ∈ Lj , and

parity({b : b is a blue edge that precedes r in Lj}) = 1

(In particular, Xk and Xk+1 consist of odd edges in L0 and Ln+1, respectively.) For
0 ≤ j ≤ n+ 1, let

Yj = {r : r is an odd edge in Lj}
Thus Y0 = Xk and Yn+1 = Xk+1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Nguyen and S. Cook

0 1 2 3 4
0

1

2

3

4

Fig. 4. L2 (for n = 4, k = 1).

Claim: If k 6= m− 1 then

parity(Yj) = parity(Yj+1)

for j ≤ n.
This is because the symmetric difference of Yj and Yj+1 has either no red edges, or

two red edges with the same parity.
Thus by ΣB

0 (LFAC0(2))-IND on j we have parity(Y0) = parity(Yn+1), and hence
parity(Xk) = parity(Xk+1).
The proof of a) is similar. The only change here is that parity(Lj) and parity(Lj+1)

must differ for exactly one value of j: either j = y(p1)− 1 or j = y(p2)− 1.

4. INPUT AS A SEQUENCE OF EDGES

Now suppose that B is a sequence of edges

〈q0, q1〉, 〈q1, q2〉, . . . , 〈qt−2, qt−1〉, 〈qt−1, q0〉
that form a single closed curve (i.e, t ≥ 4 and q0, . . . , qt−1 are distinct). In this section
we will show that the weak base theory V0 proves two theorems that together imply
the Jordan Curve Theorem for grid graphs: The curve B divides the grid into exactly
two connected regions. Theorem 4.1 is the analog of Theorem 3.3 (Main Theorem for
V0(2)), and states that a sequence of edges forming a path connecting points p1 and p2
on different sides of the curve must intersect the curve. Theorem 4.9 states that any
point p in the grid off the curve can be connected by a path (in a refined grid) that does
not intersect the curve, and leads from p to one of the points p1 or p2.

There is no analog in Section 3 to the last theorem because in that setting it would
be false: the definition of a curve as a set of edges allows multiple disjoint curves.

4.1. There Are at Least Two Regions

THEOREM 4.1 (MAIN THEOREM FOR V0). The theory V0 proves the following: Let
B be a sequence of edges that form a closed curve, and let p1, p2 be any two points on
different sides of B. Suppose that R is a sequence of edges that connect p1, p2. Then R
and B intersect.

(See Definition 3.1 to explain the notion of points p1, p2 being on different sides of a
curve.)
We use the fact that the edges B can be directed (i.e., from qi to qi+1). The Main

Theorem follows easily from the Edge Alternation Theorem 4.3, which states that the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:11

horizontal edges on each column m of a closed curve must alternate between pointing
right and pointing left.

4.1.1. Alternating edges and proof of the Main Theorem. We start by defining the notion of
alternating sets, which is fundamental to the proof of the Main Theorem for V0. Two
sets X and Y of numbers are said to alternate if their elements are interleaved, in the
following sense.

Definition 4.2. Two disjoint sets X,Y alternate if between every two elements of X
there is an element of Y , and between every two elements of Y there is an element of
X. These conditions are defined by the following ΣB

0 formulas:

(i). ∀x1, x2 ∈ X(x1 < x2 ⊃ ∃y ∈ Y, x1 < y < x2),
(ii). ∀y1, y2 ∈ Y (y1 < y2 ⊃ ∃x ∈ X, y1 < x < y2)

The Main Theorem follows easily from the following result.

THEOREM 4.3 (EDGE ALTERNATION THEOREM). (Provable in V0) Let P be a se-
quence of edges that form a closed curve. For each column m, let Am be the set of
y-coordinates of left-pointing edges of P on the column, and let Bm be the set of y-
coordinates of right-pointing edges of P on the column. Then Am and Bm alternate.

The proof of this theorem is rather complicated. Note that a violation of the theo-
rem may occur on any column, so a simple proof by induction on the columns is not
possible. Here we will consider segments of the curve that lie entirely (except for its
two endpoints) to the left of a vertical line, say, x = m (see Definition 4.5). It suffices to
show that for any fixed m the endpoints of all such segments alternate (see the Edge
Alternation Lemma 4.6). For this we will need to establish a number of properties of
these segments. The theorem will be proved in Subsection 4.1.4, after presenting nec-
essary concepts and lemmas in Subsections 4.1.2 and 4.1.3. First, we show that the
Main Theorem can be obtained from the above theorem.

PROOF PROOF OF THE MAIN THEOREM 4.1 FROM THE EDGE ALTERNATION THEOREM.
The proof is by contradiction. Assume that R does not intersect B. We construct a
sequence of edges P from B and R that form a closed curve, but that violate the Edge
Alternation Theorem.

Without loss of generality, assume that p1, p2 and B, R are as in Figure 3. Also,
suppose that the sequence R starts from p1 and ends in p2. We may assume that
the edge b1 is from right to left (otherwise reverse the curve). Assume that the point
〈x(p1) + 1, y(p1)〉 is not on B or R. (This can be achieved by doubling the density of the
grid.)

We merge B and R into a sequence of edges as in Figure 5. Let P be the resulting
sequence of edges. Then P is a closed curve. However, the edges r1 and b1 have the
same direction, and thus violate the Edge Alternation Theorem.

4.1.2. Bijections between alternating sets. Suppose thatX and Y alternate and f : X → Y
is a bijection from X to Y . Let x1, x2 ∈ X, x1 < x2, and suppose that neither f(x1) nor
f(x2) lies between x1 and x2. Since the open interval (x1, x2) contains more elements of
Y than X, it must contain an image f(z) of some z ∈ X where either z < x1 or z > x2.

The above property can be formalized and proved in the theory VTC0, where f is
given by its graph: a finite set of ordered pairs. However, it is not provable in V0,
because it implies the surjective Pigeonhole Principle, which is not provable in V0

[CN10]. Nevertheless it is provable in V0 under the assumption that f satisfies the
condition that connecting each x to its image f(x) by an arc above the line N does not

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Nguyen and S. Cook

b1

p1r1

p2r2

m− 1 m

Fig. 5. Merging the red (dashed) path and the blue (undashed) curve.

create any “crossings”, i.e.

the sets {z1, f(z1)} and {z2, f(z2)} are not alternating, (5)

for all z1, z2 ∈ X, z1 6= z2.

(See Figure 6).

z1 f(z1)f(z2) z2

Fig. 6. f violates (5)

We need the following result to prove the Edge Alternation Theorem.

LEMMA 4.4 (ALTERNATION LEMMA). (Provable in V0) Suppose that X and Y al-
ternate and that f (given by a finite set of ordered pairs) is a bijection between X and Y
that satisfies (5). Let x1, x2,∈ X be such that x1 < x2 and neither f(x1) nor f(x2) is in
the interval (x1, x2). Then,

∃z ∈ X, (z < x1 ∨ z > x2) ∧ x1 < f(z) < x2 (6)

PROOF. We prove by contradiction, using the number minimization principle. Let
x1, x2 be a counter example with the least difference x2 − x1.
Let y1 = max({y ∈ Y : y < x2}). We have x1 < y1 < x2. Let x

′
2 be the pre-image of

y1: f(x
′
2) = y1. By our assumption that (6) is false, x1 < x′

2 < x2. In addition, since
y1 = max({y ∈ Y : y < x2}) and X, Y alternate, we have x1 < x′

2 < y1. (See Figure 7.)

x1 x′
2

y1 x2

Fig. 7. f(x1), f(x2) 6∈ (x1, x2), and f(x′

2) = y1.

Now by (5), for all z ∈ X, x′
2 < z < y1 implies that x′

2 < f(z) < y1. Hence the pair
x1, x

′
2 is another counter example, and x′

2 − x1 < x2 − x1, contradicts our choice of
x1, x2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:13

4.1.3. Alternating endpoints of curve segments. For the remainder of Section 4, P denotes
a sequence of edges

〈p0, p1〉, 〈p1, p2〉, . . . , 〈pt−2, pt−1〉, 〈pt−1, p0〉
that form a single closed curve (i.e, t ≥ 4 and p0, . . . , pt−1 are distinct).

For convenience, we assume that P has a point on the first vertical line (x = 0) and
a point on the last vertical line (x = n). To avoid wrapping around the last index, we
pick some vertical edge on the line (x = n) and define p0 to be the forward end of this
edge. In other words, the edge 〈pt−1, p0〉 lies on the line (x = n).

It is easy to prove in V0 that for every m, 0 ≤ m ≤ n, P must have a point on the
vertical line (x = m). For otherwise there is a largest m < n such that the line (x = m)
has no point on P , and we obtain a contradiction by considering the edge 〈pi−1, pi〉,
where i is the smallest number such that x(pi) ≤ m.

For a < b < t, let P[a,b] be the oriented segment of P that contains the points
pa, pa+1, . . . , pb, and let P[a,a] = {pa}. We are interested in the segments P[a,b] where
x(pa) = x(pb)

The next Definition is useful in identifying segments of P that are “examined” as we
scan the curve from left to right. See Figure 8 for examples.

Definition 4.5. A segment P[a,b] is said to stick to the vertical line (x = m) if x(pa) =
x(pb) = m, and for a < c < b, x(pc) ≤ m. A segment P[a,b] that sticks to (x = m) is said
to be minimal if b− a > 1, and for a < c < b we have x(pc) < m. Finally, P[a,b] is said to
be entirely on (x = m) if x(pc) = m, for a ≤ c ≤ b.

pc
pb

pa

pd
pu

pv

pw
m

Fig. 8. The segments P[a,b], P[a,c], . . . , P[u,w], P[v,w] all stick to the vertical line (x = m). Among these,

P[a,b], P[c,d] and P[u,v] are minimal, while P[b,c], P[d,u] and P[v,w] are entirely on (x = m).

Notice that minimal segments that stick to a vertical line (x = m) are disjoint. Also,
if P[a,b] is a minimal segment that sticks to (x = m), then the first and the last edges
of the segments must be horizontal edges in column m − 1, i.e., y(pa) = y(pa+1) and
y(pb) = y(pb−1). In fact, the left-pointing horizontal edges in columnm−1 are precisely
those of the form 〈pa, pa+1〉 for some minimal segment P[a,b] that sticks to the vertical
line (x = m), and the right-pointing horizontal edges in column m − 1 are precisely
those of the form 〈pb−1, pb〉 for some such minimal segment P[a,b].

These facts are provable in V0, and show that the Edge Alternation Theorem 4.3 is
equivalent to the following lemma (see Figure 9). Here (and elsewhere) the assertion

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Nguyen and S. Cook

that two sets of points on a vertical line alternate means that the two corresponding
sets of y-coordinates alternate.

LEMMA 4.6 (EDGE ALTERNATION LEMMA). (Provable in V0) Let P[a1,b1], . . .,

P[ak,bk] be all minimal segments that stick to the vertical line (x = m). Then the sets

{pa1
, . . . , pak

} and {pb1 , . . . , pbk} alternate.

Note that although in V0 we can define the set of all segments P[ai,bi] in the lemma
above, we are not able to define k, the total number of such segments. Thus the index
k is used only for readability.

pa3

pb6

pa8

pb5

x = m

b
b
b

b

b

u

u

Fig. 9. The end-edges of minimal segments that stick to (x = m) alternate.

Before proving the Edge Alternation Lemma we give two important lemmas needed
for the proof. The first of these states that the endpoints of two non-overlapping seg-
ments of P that stick to the same vertical line do not alternate on the vertical line.

LEMMA 4.7 (MAIN LEMMA). (Provable in V0) Suppose that a < b < c < d and
that the segments P[a,b] and P[c,d] both stick to (x = m). Then the sets {y(pa), y(pb)} and

{y(pc), y(pd)} do not alternate.

PROOF. We argue in V0 using induction on m. The base case (m = 0) is straightfor-
ward: both P[a,b] and P[c,d] must be entirely on (x = 0). For the induction step, suppose
that the lemma is true for some m ≥ 0. We prove it for m+ 1 by contradiction.
Assume that there are disjoint segments P[a,b] and P[c,d] sticking to (x = m+ 1) that

violate the lemma. Take such segments with smallest total length (b − a) + (d − c). It
is easy to check that both P[a,b] and P[c,d] must be minimal segments.

Now the segments P[a+1,b−1] and P[c+1,d−1] stick to the vertical line (x = m), and
their endpoints have the same y-coordinates as the endpoints of P[a,b] and P[c,d]. Hence
we get a contradiction from the induction hypothesis.

From the Main Lemma we can prove an important special case of the Edge Alterna-
tion Lemma.

LEMMA 4.8. (Provable in V0) Let P[a,b] be a segment that sticks to (x = m), and
let P[a1,b1], . . . , P[ak,bk] be all minimal subsegments of P[a,b] that stick to (x = m), where

a ≤ a1 < b1 < . . . < ak < bk ≤ b. Then the sets {pa1
, . . . , pak

} and {pb1 , . . . , pbk} alternate.

PROOF. We show that between any two pai
’s there is a pbj . The reverse condition

is proved similarly. Thus let i 6= j be such that y(pai
) < y(paj

). We show that there is
some ℓ such that y(pai

) < y(pbℓ) < y(paj
).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:15

pai

paj

pbj−1

x = m

Fig. 10. Proof of Lemma 4.8

Consider the case where i < j (the other case is similar). Then the segment P[bj−1,aj]

is entirely on (x = m). Now if y(pbj−1
) < y(paj

), then y(pai
) < y(pbj−1

), and we are done.
Thus, suppose that y(pbj−1

) > y(paj
) (see Figure 10).

From the Main Lemma for the segments P[ai,bj−1] and P[aj ,bj] it follows that y(pai
) <

y(pbj) < y(pbj−1
). Since P[bj−1,aj] is entirely on (x = m), it must be the case that y(pai

) <
y(pbj) < y(paj

).

4.1.4. Proof of the Edge Alternation Theorem. To prove Theorem 4.3 it suffices to prove the
Edge Alternation Lemma 4.6. The proof relies on Lemma 4.8, the Main Lemma, and
the Alternation Lemma 4.4.

PROOF PROOF OF LEMMA 4.6. We argue in V0 and use downward induction on m.
The base case, m = n, follows from Lemma 4.8, where the segment P[a,b] has a = 0 and
b = t− 1. (Recall our numbering convention that the edge 〈pt−1, p0〉 lies on the vertical
line (x = n).)

For the induction step, suppose that the conclusion is true for m+ 1, we prove it for
m by contradiction.

Let {P[a′

1
,b′

1
], . . . , P[a′

k
,b′

k
]} be the definable set of all minimal segments that stick to

the line (x = m+ 1). (k is not definable in V0, we use it only for readability.)

Notation Let aℓ = (a′ℓ + 1), bℓ = (b′ℓ − 1) and A = {y(paℓ
)}, B = {y(pbℓ)}.

Then, since

y(paℓ
) = y(pa′

ℓ
) and y(pbℓ) = y(pb′

ℓ
),

it follows from the induction hypothesis that A and B alternate. (Note that each P[aℓ,bℓ]

sticks to (x = m), but might not be minimal.)
Now suppose that there are horizontal P -edges e1 and e2 on columnm−1 that violate

the lemma, with y(e1) < y(e2). Thus both e1 and e2 point in the same direction, and
there is no horizontal P -edge e on column (m − 1) with y(e1) < y(e) < y(p2). We may
assume that both e1 and e2 point to the left. The case in which they both point to the
right can be argued by symmetry (or we could strengthen the induction hypothesis to
apply to both of the curves P and the reverse of P).

Let the right endpoints of e1 and e2 be pc and pd, respectively. Thus x(pc) = x(pd) = m
and y(pc) < y(pd).

Let P[ai,bi] be the segment of P containing pc, and let P[aj ,bj] be the segment of P
containing pd. Note that the segments P[ai,bi] and P[aj ,bj] stick to (x = m), but they are
not necessarily minimal. It follows from Lemma 4.8 that i 6= j.

We may assume that paj
lies above pc. This is because if paj

lies below pc, then
we claim that pai

lies below pd (since otherwise the segments P[ai,c] and P[aj ,d] would

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Nguyen and S. Cook

violate the Main Lemma). Thus the case paj
lies below pc would follow by the case we

consider, by interchanging the roles of ai, c with aj , d, and inverting the graph.

pbj

pbi

pai

x1

x2

pc

pd

paj

pbj

pw

x = m

Fig. 11. Case I: y(pai) < y(pd)

Case I: y(pai
) < y(pd) (See Figure 11)

We apply the Alternation Lemma 4.4 for the alternating sets A and B with the
bijection f(y(paℓ

)) = y(pbℓ) and x1 = y(pai
) and x2 = y(paj

). Note that f satisfies the
non-arc-crossing condition (5) by the Main Lemma.
We claim that both f(x1) and f(x2) are outside the interval [x1, x2]. We show this for

f(x1); the argument for f(x2) is similar. Thus we are to show that the point pbi does
not lie on the vertical line (x = m) between the points pai

and paj
.

First we show pbi does not lie between pai
and pc. This is obvious if the segment

P[ai,c] lies entirely on (x = m). Otherwise let w < c be such that the segment P[w,c] lies
entirely on x = m. (Note that y(pai

) < y(pw) < y(pc), because there is no horizontal
edge in column m − 1 between pc and pd.) Then pbi does not lie between pai

and pw by
the Main Lemma applied to the segments P[ai,w] and P[c,bi].
Next, note that pbi does not lie between pc and pd, because there is no horizontal

edge in column m − 1 between these two points. Finally we claim that pbi does not
lie between pd and paj

. This is obvious if aj = d, and otherwise use the Main Lemma
applied to the segments P[aj ,d] and P[ai,bi].
This establishes the hypotheses for the Alternation Lemma. By that Lemma it fol-

lows that there must be some paℓ
outside the vertical interval between pai

and paj
such

that pbℓ lies in that interval. But this is impossible, by applying the Main Lemma as
above. This contradiction shows that Case I is impossible.

Case II: y(pai
) > y(pd) (See Figure 12)

In this case we must have y(pai
) > y(paj

), by the Main Lemma applied to the seg-
ments P[ai,c] and P[aj ,d]. In fact, by repeated use of the Main Lemma we can show

y(paj
) < y(pbj) < y(pbi) < y(pai

)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:17

pc

pd

paj

pbj

pbi

pai

x1

x2

x = m

Fig. 12. Case II: y(pai) > y(pd)

We get a contradiction by applying the Alternation Lemma, this time using the inverse
bijection f−1 : B → A, with x1 = y(pbj) and x2 = y(pbi).

4.2. There Are at Most Two Regions

Here we formalize and prove the idea that if P is a sequence of edges that form a closed
curve, and p1 and p2 are points on opposite sides of P , then any point in the plane off
P can be connected to either p1 or p2 by a path that does not intersect P . However this
path must use points in a refined grid, in order not to get trapped in a region such as
that depicted in Figure 13. Thus we triple the density of the points by tripling n to
3n, and replace each edge in P by a triple of edges. We also assume that originally the
curve P has no point on the border of the grid. (This assumption is different from our
convention stated in Section 4.1.3.)

Fig. 13. An “unwanted” region with two points.

Let P ′ denote the resulting set of edges. Note that the new grid has size (3n)× (3n).

THEOREM 4.9. The theory V0 proves the following: Let P be a sequence of edges
that form a closed curve, and suppose that P has no point on the border of the grid. Let
P ′ be the corresponding sequence of edges in the (3n) × (3n) grid, as above. Let p1, p2

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Nguyen and S. Cook

be any two points on different sides of P ′ (Definition 3.2). Then any point p (on the new
grid) can be connected to either p1 or p2 by a sequence of edges that does not intersect
P ′.

PROOF. Since edges in P ′ are directed it makes sense to speak of edges a distance
1 to the left of P ′ and a distance 1 to the right of P ′. Thus, taking care when P ′ turns
corners, it is straightforward to define (using ΣB

0 -COMP) two sequences Q1, Q2 of
edges on either side of P ′, i.e., both Q1 and Q2 have distance 1 (on the new grid) to P ′.
Then p1 and p2 must lie on Q1 or Q2. By the Main Theorem for V0, p1 and p2 cannot be
on the same Qi. So assume w.l.o.g. that p1 is on Q1 and p2 is on Q2.

We describe informally a procedure that gives a sequence of edges connecting any
point p to p1 or p2. First we compute (using the number minimization principle) the
Manhattan distances (d(p,Q1) and d(p,Q2) respectively) from p to Q1 and Q2. Suppose
w.o.l.g. that

d(p,Q1) ≤ d(p,Q2)

Let q be a point on Q1 so that d(p, q) = d(p,Q1). Then any shortest sequence of edges
that connect p and q does not intersect P ′. Concatenate one such sequence and the se-
quence of edges on Q1 that connect q and p1, we have a sequence of edges that connects
p and p1 without intersecting P ′.

5. EQUIVALENCE TO THE ST-CONNECTIVITY PRINCIPLE

The st-connectivity principle states that it is not possible to have a red path and a
blue path which connect diagonally opposite corners of the grid graph unless the paths
intersect. Here we show that overV0 this principle is equivalent to the discrete Jordan
Curve Theorem. As a result, the set-of-edges version of this principle is provable in
V0(2), and the sequence-of-edges version is provable in V0. First we consider the set-
of-edges setting.

THEOREM 5.1. The theory V0 proves that the following are equivalent:

(a) Suppose thatB is a set of edges forming a curve, p1 and p2 are two points on different
sides of B, and that R is a set of edges that connects p1 and p2. Then B and R
intersect.

(b) Suppose that B is a set of edges that connects 〈0, n〉 and 〈n, 0〉, and R is a set of edges
that connects 〈0, 0〉 and 〈n, n〉. Then B and R intersect.

PROOF. First we show that (a) implies (b). Let B and R be sets as in (b).
We extend the grid to size (n+2)×(n+2) as in Figure 14. Although the y-coordinates

now range from −1 to n+ 1, this can be easily fixed and we omit the details.
Then we turn B into a closed curve B′ by adding the following blue edges that con-

nect 〈0, n〉 and 〈n, 0〉:
(〈0, n〉, 〈0, n+ 1〉),

(〈i, n+ 1〉, 〈i+ 1, n+ 1〉) for 0 ≤ i ≤ n+ 1,

(〈n+ 2, j + 1〉, 〈n+ 2, j〉) for 0 ≤ j ≤ n,

(〈n+ 1, 0〉, 〈n, 0〉), (〈n+ 2, 0〉, 〈n+ 1, 0〉)
Similarly we turnR into a red pathR′ that connects p1 = 〈n+ 1,−1〉 to p2 = 〈n+ 1, 1〉

by adding the following red edges:

(〈0,−1〉, 〈0, 0〉), and (〈i+ 1,−1〉, 〈i,−1〉) for 0 ≤ i ≤ n

and

(〈n, n〉, 〈n+ 1, n〉), and (〈n+ 1, i+ 1〉, 〈n+ 1, i〉) for 1 ≤ i ≤ n− 1

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:19

red

red

blue

0

0

-1
n+1 n+2

n+1

n

p1

p2

Fig. 14. Reduction from st-connectivity to discrete Jordan Curve Theorem

By (a) B′ and R′ intersect. The newly added paths are outside the original grid and
clearly do not intersect each other, so it follows that B and R intersect.

Now we prove (a) from (b). Basically we have to turn a red path connecting two points
p1, p2 into a red path that connects two opposite corners of the grid, and a blue curve
into a blue path that connects the other two corners. This turns out to be nontrivial;
the following construction is by Neil Thapen.

Suppose that we remove p from the blue curve. Then we have a blue path that con-
nects the two neighbors p3 and p4 of p. Using the st-connectivity principle we need to
show that this blue path intersects the red path. Intuitively, what we want is a “con-
tinuous” mapping that sends p1, p2 to two opposite corners of the grid, and p3, p4 to the
other two. On the real plane R

2 this suggests a mapping like (x, y) 7→ (x
x2+y2 ,

y
x2+y2).

The mapping given below is based on reflection and is simpler than this suggestion,
but the underlying idea is the same.1

Let B and R be sets as in (a). Suppose for a contradiction that B and R do not
intersect. By extending the grid if necessary, we can assume that the midpoint p of p1
and p2 (as in Figure 2) is the center of the n× n grid (see Figure 15).
Using B and R our goal is to construct sets B′ and R′ that form nonintersecting

paths which connect opposite corners of a 2n × 2n grid. This violates (b) and we are
done.

We will informally describe the sets B′ and R′; formal definitions are straightfor-
ward and are left to the reader. Consider the four triangular quarters of the original
grid which are determined by the two diagonals. Take the image of each triangle by
reflection through its grid edge base. The results, together with the original grid, form
a
√
2n×

√
2n square whose four vertices q0, q1, q2, q3 are reflection images of the center

p through the edges of the original grid (see Figure 16). The 2n × 2n grid is deter-
mined by the appropriate vertical and horizontal lines that go through q0, q1, q2, q3. (So
q0, q1, q2, q3 will be the midpoints of the edges of the 2n× 2n grid.)
The image of the red path R are disconnected segments that lie inside the square

q0q1q2q3 but outside the original n×n grid. It is easy to add vertical and horizontal lines
to connect these segments. For example, consider a point r where R cuts a diagonal as

1The referee points out another way of viewing this reduction as follows. View the grid as lying on a sphere.
Now puncture the sphere at p, and consider the embedding of this punctured sphere into the plane. This
embedding has the same spirit as the mapping described above.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Nguyen and S. Cook

p1

p2

p

u

v
r

red

blue

Fig. 15. Sets B and R as in discrete Jordan Curve Theorem

p1

p2

p
u

v

p′1

p′2

q0

q1

q2

q3

u′

v′

r

r′

r′′

red

red

blue

blue

Fig. 16. Reduction from discrete Jordan Curve Theorem to st-connectivity

in Figure 15. Its two images r′, r′′ can be connected by two dashed red lines as drawn
in in Figure 16. As a result, we obtain a red path that connects the images p′1, p

′
2 of p1,

p2. This red path is in turn easily extended to a path that connects the lower-left and
upper-right corners of the 2n× 2n grid as shown in Figure 16.
Similarly, the image of B can be turned into a blue path B′ connecting the upper-left

and lower-right corners of the 2n× 2n grid. Given that B and R do not intersect, it can
be verified that B′ and R′ do not intersect, and this completes our proof.

The next theorem is for the sequence-of-edges setting.

THEOREM 5.2. The theory V0 proves that the following are equivalent:

(a) Suppose that B is a sequence of edges forming a curve, p1 and p2 are two points on
different sides of B, and that R is a sequence of edges that connects p1 and p2. Then
B and R intersect.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:21

(b) Suppose that B is a sequence of edges that connects 〈0, n〉 and 〈n, 0〉, and R is a
sequence of edges that connects 〈0, 0〉 and 〈n, n〉. Then B and R intersect.

PROOF. This theorem is proved similarly to the previous theorem. However, here
the reductions have to output sequences of edges, as opposed to just sets of edges. In
other words, given j, we need to specify the j-th edge on the paths/curves produced by
the reductions.

For the direction (a) =⇒ (b) we can essentially use the same reduction given in the
proof of Theorem 5.1 (see Figure 14). Given sequences B and R for the blue path from
〈0, n〉 to 〈n, 0〉 and the red path from 〈0, 0〉 to 〈n, n〉, it is straightforward to define the
new sequences of edges for the curve B′ and path R′ described in the first part of the
previous proof.

The proof of (b) =⇒ (a) is a bit more involved than before. Consider the reduction
depicted in Figure 16 and let R′ be the red path from p′1 to p′2. To specify the sequence
of red edges on R′ an immediate problem is to compute its length, and this requires
computing the total length of all dashed red lines. In general, such computation is not
in AC0 and hence not formalizable in V0.

To get around this problem, the idea is to refine the grid so as to make R′ exactly
16n2 times longer than R, the original red path from p1 to p2. (Similarly for the new
blue path B′ that connects q1 and q3.) Thus, let path R be the sequence e0, e1, . . . , ek.
We will refine the grid so that each edge ei gives rise to precisely 16n2 red edges

e′16n2i, e
′
16n2i+1, . . . , e

′
16n2(i+1)−1

on R′. As a result, for any j the j-th edge e′j will be easily specified by looking at
e⌊j/16n2⌋.

We will distinguish between two kinds of undashed edges onR′. The first kind, called
“outward edges”, consists of those that are followed by (two) dashed lines, for example
(v′, r′) in Figure 16. All other undashed edges on R′ are called “inward edges”. We will
turn every inward edge into a path of length 16n2, and every outward edge, together
with the dashed lines immediately following it, into a path of length 16n2.

p′1u′

Fig. 17. Inward edge (p′1, u
′) is turned into a path of length 16n2 (here n = 1)

To this end we will refine the grid 8n times (thus each unit square becomes an 8n×8n
square). As a result, each grid edge becomes a path of length 8n. For each inward edge
we further lengthen this path by making its first half travel inside one quarter of the
8n× 8n square (say to its right). For example, in Figure 17 we travel north then south
2n times, traversing (4n − 2) edges each time, so in effect we add to the red path 4n

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Nguyen and S. Cook

vertical segments of length (4n − 2) each. Consequently we obtain a path of length
16n2.
Now consider an outward edge and the two dashed lines that immediately follow

it. Without loss of generality consider the edge (v′, r′) and the path (r′, r′′) in Figure
16. From the coordinates of r′ we can compute their total length, which is of the form
(2ℓ+ 1) for some 1 ≤ ℓ < n. After refinement these become a path of length (2ℓ+ 1)8n.
To increase the length of this path to 16n2 we increase the length of the 8n-edge path
(v′, r′) by 4n(4n−4ℓ−2) by making its first half travel inside one quarter of the 8n×8n
square to the right of (v′, r′) as above. Here we also go north then south 2n times, but
now each north-south path is of length 4n− 4ℓ− 2.

Similarly we turn B′ into a path of length exactly 16n2 times the length of B. It
can be seen that the new segments that we add for each original undashed edge take
up only one quarter of the 8n × 8n square to its right, therefore they do not create
intersection. By (b) B′ and R′ intersect, it follows that B and R intersect.

6. PROPOSITIONAL PROOFS

Buss [Bus06] defines the STCONN(n) tautologies to formalize the st-connectivity
principle (see the previous section), where the blue path and red path are given as
sets of edges. Thus there are propositional variables eb and er for each horizontal and
vertical edge slot e in the n × n grid, where eb asserts that edge e is a blue edge and
er asserts that e is a red edge. STCONN(n) is the negation of a CNF formula whose
clauses assert that the four corners each have degree one, the upper left and lower
right corners each touch blue edges, the other two corners each touch red edges, every
other node has degree zero or two and cannot touch both a blue and red edge.
Propositional proofs in AC0-Frege-systems (also called constant-depth Frege sys-

tems [Kra95]) allow formulas with unbounded AND and OR gates, as long as the total
depth of the formula does not exceed a constant d, which is a parameter of the sys-
tem. Every true ΣB

0 formula ϕ translates into a polynomial size family of constant
depth propositional tautologies which have polynomial size AC0-Frege-proofs if ϕ is
provable in V0 (see [CN10]).
The propositional proof system AC0(2)-Frege (resp. TC0-Frege) is an exten-

sion of AC0-Frege which allows parity gates ⊕(x1, · · · , xn) (resp. threshold gates
Tk(x1, · · · , xn)) and has suitable axioms defining these gates. (The formula Tk is true
when at least k of the inputs are true.) There are propositional translation results as
above, where ΣB

0 -theorems of the theory V0(2) (resp. VTC0) translate into polynomial
size AC0(2)-Frege-proofs (resp. TC0-Frege-proofs) (see [CN10]).
It is shown in [Bus06] that the tautologies STCONN(n) have polynomial size

TC0-Frege proofs. The following stronger statement follows immediately from The-
orem 5.1 and the translation theorem for V Z(2).

THEOREM 6.1. STCONN(n) has polynomial size AC0(2)-Frege proofs.

The Main Theorem forV0, which states the st-connectivity principle when paths are
given as sequences of edges, translates into a family STSEQ(n) of tautologies. Here
the propositional variables have the form be,i and re,i, which assert that edge e is the
i-th edge in the blue (resp. red) path, 1 ≤ i ≤ n2. From the Main Theorem and the
translation theorem for V0 we obtain

THEOREM 6.2. STSEQ(n) has polynomial size AC0-Frege proofs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Proving the Discrete Jordan Curve Theorem A:23

7. SOME OPEN PROBLEMS

As many problems in propositional proof complexity remain open, here we are not able
to prove the “Reverse” part of Bounded Reverse Mathematics for our results. For ex-
ample, it is open whether ΣB

0 (V
0(2)), the theory axiomatized by the ΣB

0 consequences
of V0(2), can be axiomatized by V0 together with the Jordan Curve Theorem. In fact
even the question of whether ΣB

0 (V
0(2)) is finitely axiomatizable is open.

In [Bus06] Buss shows that

Mod2 �cdF STCONN

where Mod2 denotes the counting modulo 2 principle, and Q �cdF R means that the
principle Q has polynomial–size constant–depth proofs in a Frege proof system aug-
mented with all instances of principle R. Buss’s proof shows that

V0 ⊢ STCONN ⊃ Mod2

for an appropriate first-order formalization of Mod2. At the time of writing this paper,
it is still open whether the reverse direction can also be proved in V0. If so, it would
follow that V0(2) could be replaced by V0 +Mod2 in the statement of Theorem 3.3.

It is also open for primes p > 2 whether any of the implications

STCONN ⊃ Modp, Modp ⊃ STCONN

is provable in V0.
In this paper we have not considered the case in which the inputs are given as a set

of directed edges. Possibly in this case the Jordan Curve Theorem can be proved in a
subtheory of V0(2). It is also interesting to consider cases where the input setting is
mixed, e.g., the curve is a set of edges while the path is a sequence of edges.

ACKNOWLEDGMENT

We would like to thank Neil Thapen for the discussions related to Section 5, and the anonymous referees for
constructive comments,

REFERENCES

Miklós Ajtai. The Complexity of the Pigeonhole Principle. In Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, pages 346–355, 1988.

Samuel Buss. Polynomial-size Frege and Resolution Proofs of st-Connectivity and Hex Tautologies. Theoret-
ical Computer Science, 357:35–52, 2006.

Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. ASL Perspectives in Logic
Series. Cambridge University Press, 2010.

Stephen Cook. Theories for Complexity Classes and Their Propositional Translations. In Jan Krajı́ček, edi-
tor, Complexity of computations and proofs, pages 175–227. Quaderni di Matematica, 2005.

Stephen Cook and Charles Rackoff. Unpublished research notes, 3 June, 1997.

Thomas Hales. A Verified Proof of the Jordan Curve Theorem. Seminar Talk, Department of Mathematics,
University of Toronto, 8 Dec, 2005.

Thomas Hales. The Jordan Curve Theorem, formally and informally. American Mathematical Monthly,
114(10):882–894, 2007.

Neil Immerman. Descriptive Complexity. Springer, 1999.

Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University
Press, 1995.

Phuong Nguyen and Stephen Cook. Theory for TC0 and Other Small Complexity Classes. Logical Methods
in Computer Science, 2(1), 2005.

Phuong Nguyen and Stephen Cook. The Complexity of Proving Discrete Jordan Curve Theorem. In Proc.
22nd IEEE Symposium on Logic in Computer Science, pages 245–254, 2007.

Phuong Nguyen. Bounded Reverse Mathematics. PhD thesis, University of Toronto, 2008.
http://www.cs.toronto.edu/~pnguyen/.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Nguyen and S. Cook

Alexander A. Razborov. Bounded Arithmetic and Lower Bounds in Boolean Complexity. In P. Clote and J. B.
Remmel, editors, Feasible Mathematics II, pages 344–386. Birkhäuser, 1995.

Stephen Simpson. Subsystems of Second Order Arithmetic. Springer, 1999.

Carsten Thomassen. The Jordan-Schonflies Theorem and the Classification of Surfaces. Amer. Math.
Monthly, 99(2):116–131, 1992.

Alasdair Urquhart. Hex example. Email correspondence, Toronto theory group, April, 2001.

Domenico Zambella. Notes on Polynomially Bounded Arithmetic. Journal of Symbolic Logic, 61(3):942–966,
1996.

Received February 2010; revised December 2010; accepted January 2011

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

