
A

Simplification Rules for Intuitionistic Propositional Table aux

MAURO FERRARI, Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria

CAMILLO FIORENTINI, Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

GUIDO FIORINO, Dipartimento di Metodi Quantitativi, Università degli Studi di Milano-Bicocca

The implementation of a logic requires, besides the definition of a calculus and a decision procedure, the

development of techniques to reduce the search space. In this paper we introduce some simplification rules

for Intuitionistic propositional logic that try to replace a formula with an equi-satisfiable “simpler” one

with the aim to reduce the search space. Our results are proved via semantical techniques based on Kripke

models. We also provide an empirical evaluation of their impact on implementations.

Categories and Subject Descriptors: 03B20 [General logic]: Subsystems of classical logic; 03B35 [General

logic]: Mechanization of proofs and logical operations; 68T15 [Artificial intelligence]: Theorem proving

(deduction, resolution, etc.)

General Terms: Theory

Additional Key Words and Phrases: decision procedures, Intuitionistic Logic, simplification rules, tableau

calculi

1. INTRODUCTION

It is well-known that the effective implementation of a logic requires, besides the
definition of a calculus and a decision procedure, the development of simplifica-
tion/optimization techniques to reduce the search space. In the case of Classical Logic
the development of simplification/optimization techniques has a long history that goes
back to the very beginning of Davis–Putnam procedure implementation [M. Davis and
H. Putnam 1960; Davis et al. 1962] and resolution implementation [Robinson 1965]
and continues nowadays. The situation is quite different in the case of tableau calculi
for Intuitionistic Logic, indeed in this framework very little work has been done in
this direction despite the interest for this logic. As far as we know, the only works that
address these issues in the context of tableau calculi are [Massacci 1998; Hustadt and
Schmidt 1998]; however, these papers essentially refer to classical and modal logics,
even if some of their ideas can be adapted to the case of Intuitionistic Logic.

Before entering into the details of our work, we remark that in the setting of au-
tomated deduction the word optimization refers to different aspects. To clarify our
discussion we introduce the following distinction: we call simplification technique a
method that enables to replace a formula with an equi-satisfiable one with the aim to
reduce the search space; we call optimization technique a method to visit the search
space that tries to avoid inessential branches or useless backtracking. Examples of
the former technique are unit propagation [Dowling and Gallier 1984; Zhang and
Stickel 2000], boolean simplification rules (see, e.g., [Massacci 1998]), the Syntactic
Trees Transformations [Aguilera et al. 2001] and the simplification techniques de-
scribed in [Hustadt and Schmidt 1998] for the modal logic K. A well-known example of
the latter are back-jumping rules; see, e.g., the one described in [Hustadt and Schmidt
1998] for the modal logicKE and, in the framework of Intuitionistic Logic, the strategy
to reduce backtracking presented in [Weich 1998].

In this paper we concentrate our attention on simplification rules for tableau calculi
for Intuitionistic propositional Logic. The aim of these rules is to reduce the formulas
to be analyzed as much as possible before applying a branch or a non-invertible rule
(which requires backtracking). Our starting point is the simplification technique pre-
sented in [Massacci 1998], which consists in replacing every occurrence of a formula
assumed to be true with the logical constant ⊤ and every occurrence of a formula as-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Ferrari et al.

sumed to be false with ⊥. As an example, if A can be replaced with ⊤, we can rewrite
the formula A ∨ B as ⊤ ∨ B, which can be simplified to ⊤. In the tableau systems for
classical logic the notions of provable and unprovable are codified by means of the signs
T and F [Smullyan 1968]. It is well-known that the sign (polarity) of a formula deter-
mines also the sign (polarity) of every occurrence of its subformulas in a proof [Kleene
1967, Lemma 14, page 337]. If the sign of a propositional variable occurring in a set of
signed formulas is always T (respectively F), then such a variable is equivalent to ⊤
(respectively ⊥). The above technique can be applied also in the intuitionistic setting,
but, differently from classical logic, here the signs T and F are not dual, in particu-
lar FA does not imply that A is equivalent to ⊥. Thus, replacement can be performed
only if further conditions are satisfied. In this paper we present several criteria under
which such a replacement can be applied. In Sections 4 and 5 we introduce the rules
T-permanence, T¬-permanence and F-permanence that allow us to replace, under
suitable conditions, propositional variables with ⊤ and ⊥. After the replacements, we
can apply the boolean simplification rules defined in Section 3 to reduce the size of the
set of formulas to be decided. The results in sections 6 and 7 extend those presented
in previous sections. In Section 8 we discuss the impact of our simplification rules on
the performances of a theorem prover. Finally, in Section 9 we discuss some possible
extensions of our results.
We remark that our simplification rules are independent from the tableau calculus

at hand. Moreover, these rules are invertible. As discussed in Section 2, this means
that we can apply them at any point of a proof-search strategy without affecting its
completeness. Finally, via the usual translation, see e.g. [Avellone et al. 1999], these
rules can also be applied in implementations based on sequent calculi. We conclude
noticing that all the results are proved by means of the Kripke semantics for Intu-
itionistic Logic, which is the guide to understand our simplification rules.

2. NOTATION AND PRELIMINARIES

We consider the propositional language L based on a denumerable set of propositional
variables PV, the logical connectives ¬, ∧, ∨, → and the logical constants ⊤ and ⊥.
Writing formulas we assume that ¬ binds stronger than ∧ and ∨, which in turn are
stronger than →.
We recall the main definitions about Kripke semantics (see, e.g., [Chagrov and Za-

kharyaschev 1997] for more details). An (intuitionistic) Kripke model for L is a struc-
ture K = 〈P,≤, ρ,〉, where 〈P,≤, ρ〉 is a poset with minimum ρ and the forcing relation
 is a binary relation on P × PV such that α p and α ≤ β imply β p (monotonicity
property). The forcing relation extends to arbitrary formulas of L as follows:

— α ⊤;
— α ⊥ does not hold;
— α A ∧ B iff α A and α B;
— α A ∨ B iff α A or α B;
— α A → B iff, for every β ∈ P such that α ≤ β, β A implies β B;
— α ¬A iff, for every β ∈ P such that α ≤ β, β A does not hold.

With the notation α 1 A we mean that α A does not hold. It is easy to prove that
the monotonicity property holds for arbitrary formulas, i.e., α A and α ≤ β imply
β A. A formula A is valid in a Kripke model K = 〈P,≤,ρ,〉 iff ρ A. It is well-known
that Intuitionistic propositional Logic Int coincides with the set of formulas valid in
all Kripke models [Chagrov and Zakharyaschev 1997].
A tableau calculus T works on signed formulas, namely formulas of L prefixed with

one of the signs T or F. The semantics of formulas extends to signed formulas as

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:3

follows. Given a Kripke model K = 〈P,≤,ρ,〉, α ∈ P and a signed formula H, α realizes
H in K (K,α � H) iff:

—H ≡ TA and α A;
—H ≡ FA and α 1 A.

K realizes H (K � H) iff K,α � H for some α ∈ P . H is realizable iff K � H for some
Kripke model K. The above definitions extend in the obvious way to sets ∆ of signed
formulas: for instance, K,α � ∆ means that K,α � H, for every H ∈ ∆; ∆ is realizable
iff K,α � H for some Kripke model K and α in K. By definition, A ∈ Int iff FA is not
realizable.

We remark that, by the monotonicity property, the T-signed formulas are persistent,
namely: K,α � TA and α ≤ β imply K,β � TA. On the other hand, F-signed formulas
are not persistent.

In general, a tableau calculus T consists of a set of rules of the form:

∆

∆1 | · · · | ∆n

r

where ∆ (the premise of r) and ∆1, . . . ,∆n (the consequences of r) are non-empty sets
of signed formulas of L. A proof-table for ∆ is a tree τ such that:

— the root of τ is ∆;
— for every node ∆′ in τ , if ∆1, . . . ,∆n are the immediate successors of ∆′, then there

exists an instance of a rule r of T having ∆′ as premise and ∆1, . . . ,∆n as conse-
quences.

A set ∆ of signed formulas is contradictory if either T⊥ ∈ ∆ or F⊤ ∈ ∆. When all the
leaves of a proof-table τ are contradictory, we say that τ is closed. A finite set of signed
formulas ∆ is provable in T iff there exists a closed proof-table for ∆.
A tableau calculus T is complete for Int iff, for every finite set of signed formulas ∆,

∆ is provable in T iff ∆ is not realizable (hence, A ∈ Int iff FA is provable in T). Let
T be a complete calculus; to decide the realizability of ∆ we have to search for a closed
proof-table τ for ∆. A proof-search algorithm tries to build τ by applying the rules of T
in all possible ways: whenever a node ∆′ of the proof-table is generated, a rule r of T
is applied to ∆′ and, recursively, the search proceeds on the new nodes. Let r be a rule
with premise ∆ and consequences ∆1, . . . , ∆n:

— r is sound iff ∆ realizable implies that there exists k ∈ {1, . . . , n} such that ∆k is
realizable;

— r is invertible iff r is sound and, for every k ∈ {1, . . . , n}, if ∆k is realizable then ∆ is
realizable.

In proof-search, the application of an invertible rule r of a complete calculus T does
not require backtracking. Indeed, suppose to apply r to ∆ and let ∆1, . . . ,∆n be the
consequences of r. If, for some k ∈ {1, . . . , n}, ∆k is not provable, by the completeness
of T it follows that ∆k is realizable hence, being r invertible, ∆ is realizable. We can
conclude that ∆ is not provable, and there is no need to try the application of another
rule to ∆.

A complete tableau calculus is terminating if proof-search can be accomplished in
finite time. Accordingly, for every finite set ∆, proof-search terminates in finite time
and, if no closed-proof table is found, ∆ is realizable.

The simplification rules introduced in this paper are intended to be added to a
tableau calculus T which is complete for Int and terminating. The aim of these rules

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Ferrari et al.

is to narrow the proof-search space. An essential feature we require for simplification
rules is invertibility, so to avoid backtracking on their application. Note that the proof
of the invertibility of a rule r only depends on its definition (and not on T); in many
cases such a proof is immediate, sometimes it is rather involved (as for the rules in
Section 6).
Simplification rules act on a set ∆ by replacing subformulas occurring in formulas

of ∆ with “simpler” ones. An example of invertible simplification rule is the rule sub-
stituting any occurrence of A ∧ ⊥ in ∆ with ⊥. One expects that such a replacement
narrows the search-space (indeed, complex formulas collapse to ⊥) and has not side-
effects on the termination of proof-search. Clearly, the impact of simplification rules
on proof-search must be checked case-by-case, depending on the calculus T at hand;
we trust that the known calculi for Int should take advantage of adopting the simpli-
fication rules introduced in the paper. For the sake of concreteness, in the rest of the
paper we study the benefits of simplification rules on the tableau calculus TInt, a slight
variant of the calculus Tab [Avellone et al. 2008].

2.1. The calculus TInt

The rules of the calculus TInt are presented in Figure 1. In the formulation of the rules,
we use the notation ∆,H as a shorthand for ∆ ∪ {H}. In the premise of a rule, writing
∆,H we assume that H 6∈ ∆. TInt essentially coincides with the terminating calculus
Tab for Int presented in [Avellone et al. 2008]. More in details, Tab uses the sign
Fc besides the usual signs T and F; in TInt we do not use the sign Fc and the rules
for Fc are translated by substituting FcA with the equivalent signed formula T¬A.
We made this choice to ease the presentation: the sign Fc, which is not standard in
tableau calculi, would require ad-hoc simplification rules. The rules contr1 and contr2

of TInt are introduced to represent the closure rules of Tab in our setting. The rule
MP is a generalization of the rule T → Atom of Tab (T → Atom can be applied only
if A is a propositional variable). Thus, one can define a one-to-one translation between
proof-tables of Tab and proof-tables of TInt. Due to this correspondence, the results
proved in [Avellone et al. 2008] for Tab also apply to TInt. In particular, to prove the
termination of TInt we need the following degree functions [Avellone et al. 2008]:

dg
→

(⊥) = dg
→

(⊤) = dg
→

(p) = 0 with p ∈ PV

dg
→

(A ⊙ B) = dg
→

(A) + dg
→

(B) with ⊙ ∈ {∧,∨}

dg
→

(¬A) = dg
→

(A) + 1

dg
→

(A → B) = dg
→

(A) + dg
→

(B)

dg(⊥) = dg(⊤) = 1

dg(p) = 2 with p ∈ PV

dg(A ∧ B) = dg(A) + dg(B) + 2

dg(A ∨ B) = dg(A) + dg(B) + 9

dg(A → B) = dg(A) + dg(B) + dg
→

(A) + 1

dg(¬A) = dg(A) + 1

dg(SA) = dg(A) with S ∈ {T,F}

dg(∆) =
∑

H∈∆

dg(H)

One can easily check that all the rules r of TInt are decreasing w.r.t. the function dg,
namely: if ∆′ is any of the consequences obtained by applying r to a finite set ∆, then
dg(∆′) < dg(∆). As a consequence, any proof-table for ∆ has height bounded by dg(∆),

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:5

∆,T(A ∧ B)

∆,TA,TB
T∧

∆,F(A ∧ B)

∆,FA | ∆,FB
F∧

∆,T¬(A ∧ B)

∆T,T¬A | ∆T,T¬B
T¬∧

∆,T(A ∨ B)

∆,TA | ∆,TB
T∨

∆,F(A ∨ B)

∆,FA,FB
F∨

∆,T¬(A ∨ B)

∆,T¬A,T¬B
T¬∨

∆,TA,T(A → B)

∆,TA,TB
MP

∆,F(A → B)

∆T,TA,FB
F→

∆,T¬(A → B)

∆T,TA,T¬B
T¬→

∆,F¬A

∆T,TA
F¬

∆,T¬¬A

∆T,TA
T¬¬

∆,T((A ∧ B) → C)

∆,T(A → (B → C))
T→∧

∆,T(¬A → B)

∆T,TA |∆,TB
T→¬

∆,T((A ∨ B) → C)

∆,T(A → p),T(B → p),T(p → C)
T→∨ with p a new atom

∆,T((A → B) → C)

∆T,TA,Fp,T(p → C),T(B → p) |∆,TC
T→→ with p a new atom

∆,TA,FA

∆,T⊥
contr1

∆,TA,T¬A

∆,T⊥
contr2

where ∆T = {TA | TA ∈ ∆}

Fig. 1. The TInt calculus

and this implies that TInt is terminating. In [Avellone et al. 2008], an efficient proof-
search algorithm for Tab is presented and an efficient implementation, called PITP, is
discussed.

All the simplification rules introduced in this paper are decreasing w.r.t. dg (the
proofs are immediate and will be omitted), thus their addition to TInt does not affect
the termination of proof-search. We show by means of significant examples that such
rules actually reduce the proof-search space.

3. REPLACEMENT AND BOOLEAN SIMPLIFICATION RULES

In this section we recall the simplification rules introduced in [Avellone et al. 2008].
Such rules allow us to simplify signed formulas by replacing some of their subformulas
either with ⊥ or ⊤. First of all we introduce the notion of (signed) formula substitution:
given a signed formula H and two formulas A and B, we denote with H[B/A] the signed
formula obtained by replacing every occurrence of A in H with B. If ∆ is a set of signed
formulas, ∆[B/A] is the set of signed formulas H[B/A] such that H ∈ ∆.

It is easy to prove the following facts:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Ferrari et al.

LEMMA 3.1. Let K = 〈P,≤, ρ,〉 be a Kripke model, H a signed formula, A a for-
mula and α ∈ P .

(i) If K,α � TA, then K,α � H iff K,α � H[⊤/A].
(ii) If K,α � T¬A, then K,α � H iff K,α � H[⊥/A]. �

Let us consider the following rules:

∆,TA

∆[⊤/A],TA
Replace-T

∆,T¬A

∆[⊥/A],T¬A
Replace-T¬

By Lemma 3.1 it immediately follows that:

THEOREM 3.2. The rules Replace-T and Replace-T¬ are invertible. �

The above rules are the intuitionistic version of the analogous rules for classical
tableaux discussed in [Massacci 1998]. After having applied a replacement rule, we
can simplify the formulas by means of the invertible boolean simplification rules in
Figure 2.
Now, we present the analogous rule for F-signed formulas introduced in [Avellone

et al. 2008]. We remark that, differently from Classical Logic, where the signs F and
T are dual, in Intuitionistic Logic T-signed formulas are persistent while F-signed
formulas are not. Due to this asymmetry the replacement rule for F-signed formulas
involves a notion of partial substitution which is weaker than the “full” substitution
used so far. Formally, given the formulas Z, A and B, we denote with Z{B/A} the
partial substitution of A with B in Z defined as follows:

— if Z = A, then Z{B/A} = B;
— if Z = (X ⊙ Y), then Z{B/A} = X{B/A} ⊙ Y {B/A}, where ⊙ ∈ {∧,∨};
— if Z = X → Y or Z = ¬X or Z is a propositional variable different from A, then

Z{B/A}=Z.

We remark that partial substitutions do not act on subformulas with main connective
→ or ¬. For instance, while ((X → Y) ∨ Y)[⊥/Y] produces (X → ⊥) ∨ ⊥, the partial
substitution ((X → Y) ∨ Y){⊥/Y } yields (X → Y) ∨ ⊥. Given a signed formula SZ
with S ∈ {T,F}, we denote with SZ{B/A} the signed formula S(Z{B/A}). Given a set
of signed formulas ∆, ∆{B/A} is the set containing K{B/A} for every K ∈ ∆.

Proceeding by induction on the structure of the signed formula H it is easy to prove
the following result:

LEMMA 3.3. Let K = 〈P,≤,ρ,〉 be a Kripke model, let α ∈ P and let H and FA be
two signed formulas. If K,α � FA, then K,α � H iff K,α � H{⊥/A}. �

Now, let us consider the rule:

∆,FA

∆{⊥/A},FA
Replace-F

By the previous lemma it immediately follows that:

THEOREM 3.4. The rule Replace-F is invertible. �

As discussed in [Avellone et al. 2008], the rules Replace-T, Replace-T¬ and Replace-F
together with the boolean simplification rules can considerably reduce the search
space.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:7

∆

∆[⊥/A ∧ ⊥]
S∧⊥

∆

∆[⊥/⊥ ∧ A]
S⊥∧

∆

∆[A/A ∧ ⊤]
S∧⊤

∆

∆[A/⊤ ∧ A]
S⊤∧

∆

∆[A/A ∨ ⊥]
S∨⊥

∆

∆[A/⊥ ∨ A]
S⊥∨

∆

∆[⊤/A ∨ ⊤]
S∨⊤

∆

∆[⊤/⊤ ∨ A]
S⊤∨

∆

∆[⊤/⊥ → A]
S⊥ →

∆

∆[¬A/A → ⊥]
S→ ⊥

∆

∆[A/⊤ → A]
S⊤ →

∆

∆[⊤/A → ⊤]
S→ ⊤

∆

∆[⊥/¬⊤]
S¬⊤

∆

∆[⊤/¬⊥]
S¬⊥

Fig. 2. Boolean simplification rules

4. RULES FOR PROPOSITIONAL VARIABLES WITH CONSTANT SIGN

The rules Replace-T and Replace-T¬ of Section 3 can be applied whenever a signed
formula TA or T¬A occurs in ∆. In this section we exploit some conditions under
which we can replace a propositional variable p applying the rules of Section 3 also
when Tp or T¬p does not explicitly occur in ∆. The condition for the applicability of
these rules is based on the notion of polarity of p: p can be eliminated from ∆ (replaced
with ⊤ or ⊥) if all the occurrences of p in ∆ have the same polarity. Our notion of
positive and negative polarity of a propositional variable p in a signed formula H is
formalized by the relations p�+ H (p positively occurs in H) and p�− H (p negatively
occurs in H). Hereafter we use S to denote either T or F. The definition of p�l H, with
l ∈ {+,−}, is by induction on the structure of H:

— p�−
Fp and p�+

Tp
— p�l S⊤ and p�l S⊥
— p�l Sq, where q is any propositional variable such that q 6= p
— p�l S(A ⊙ B) iff p�l SA and p�l SB, where ⊙ ∈ {∧,∨}
— p�l

F(A → B) iff p�l
TA and p�l

FB
— p�l

T(A → B) iff p�l
FA and p�l

TB
— p�l

F¬A iff p�l
TA

— p�l
T¬A iff p�l

FA.

Given a set of signed formulas ∆, p�l ∆ iff, for every H ∈ ∆, p�l H.
Now, let K = 〈P,≤, ρ,〉 be a Kripke model and p a propositional variable. We define

the Kripke models K+
p and K−

p as follows:

—K+
p = 〈P,≤, ρ,′〉, where

′ = ∪{(α, p) | α ∈ P};

—K−

p = 〈P,≤, ρ,′〉, where
′ = \{(α, p) | α ∈ P}.

Note that, for every α ∈ P , K+
p , α � Tp and K−

p , α � T¬p. We prove that, moving from

the model K to the model Kl
p, with l ∈ {+,−}, the validity of signed formulas H such

that p�l H is preserved.

LEMMA 4.1. Let K = 〈P,≤,ρ,〉 be a Kripke model, let H be a signed formula and
let p be a propositional variable.

(1) If p�+ H then, for every α ∈ P , K,α � H implies K+
p , α � H.

(2) If p�− H then, for every α ∈ P , K,α � H implies K−

p , α � H.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Ferrari et al.

PROOF. The proof easily goes by structural induction on H. As an example, we prove
Point (1) for H = T(A → B). Let us assume that p�+

T(A → B) and K,α � T(A → B).
Let β ∈ P such that α ≤ β and K+

p , β � TA. To prove K+
p , α � T(A → B) we have to

show that K+
p , β � TB. Since p�+

FA we have K,β ⋫ FA, otherwise, by the induction

hypothesis, K+
p , β � FA, in contradiction with the above assumption. Thus K,β � TA

and, since K,α � T(A → B) and α ≤ β, it follows that K,β � TB. Since p�+
TB, by

the induction hypothesis we get K+
p , β � TB.

Now, let us consider the following rules:

∆

∆[⊤/p]
T-permanence provided that p�+ ∆

∆

∆[⊥/p]
T¬-permanence provided that p�− ∆

Intuitively, these rules state that, if p�+ ∆ (resp. p�− ∆), then we can consistently add
Tp (resp. T¬p) to ∆ and replace every occurrence of p in ∆ with ⊤ (resp. ⊥). From the
previous lemma it follows that:

THEOREM 4.2. The rules T-permanence and T¬-permanence are invertible.

PROOF. Let us consider the case of the rule T-permanence. We have to show that,
if p�+ ∆, then ∆ is realizable iff ∆[⊤/p] is realizable. Let us assume that ∆ is realiz-
able. Then, there exists a Kripke model K = 〈P,≤,ρ,〉 and α ∈ P such that K,α � ∆.

Since p�+ ∆, by Point (1) of Lemma 4.1, K+
p , α � ∆ and, by definition of its forcing

relation, K+
p , α � Tp. By Lemma 3.1(i), we get K+

p , α � ∆[⊤/p], hence ∆[⊤/p] is realiz-

able. Conversely, let us suppose that ∆[⊤/p] is realizable and let K = 〈P,≤,ρ,〉 be a
Kripke model and α ∈ P such that K,α � ∆[⊤/p]. Since p does not occur in ∆[⊤/p], it
holds that p�+ ∆[⊤/p]. By Point (1) of Lemma 4.1, K+

p , α � ∆[⊤/p]. Since K+
p , α � Tp,

by Lemma 3.1(i) K+
p , α�∆, hence ∆ is realizable. The case of the rule T¬-permanence

is similar.

Example 4.3. We show how the rule T-permanence can improve proof-search. Let

A = ((p → q) ∧ ((¬¬r → s) → t) ∧ ((¬¬s → t) → p)) → q

The formula A is classically valid but not intuitionistically valid1. To decide A, we have
to search for a proof of FA. Since r�+

FA, we can apply the rule T-permanence to get
the set

∆1 = {F(((p → q) ∧ ((¬¬⊤ → s) → t) ∧ ((¬¬s → t) → p)) → q) }

and, simplifying ¬¬⊤ → s to s with the rules of Figure 2, we get:

∆2 = {F(((p → q) ∧ (s → t) ∧ ((¬¬s → t) → p)) → q) }

Now, we proceed applying the rules F → and T∧ of TInt and we get:

∆3 = {T(p → q), T(s → t), T((¬¬s → t) → p), Fq }

The only rule applicable to ∆3 is the branching rule T →→ and we obtain the nodes

∆4 = {T(p → q), T(s → t), T¬¬s, Fa, T(a → p), T(t → a) }
∆5 = {T(p → q), T(s → t), Tp, Fq }

1A is the formula SYJ211+1.001 of ILTP Library [Raths et al. 2007].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:9

where a is a new propositional variable. Applying rules MP and contr1 to ∆5 we get a
contradictory set. As for ∆4, we have that q�+ ∆4, hence, applying T-permanence we
get:

∆6 = {T(p → ⊤), T(s → t), T¬¬s, Fa, T(a → p), T(t → a) }

Simplifying we obtain

∆7 = {T⊤, T(s → t), T¬¬s, Fa, T(a → p), T(t → a) }

Now, p�+ ∆7 hence, by T-permanence and simplification, T(a → p) reduces to T⊤ and
we get:

∆8 = {T⊤, T(s → t), T¬¬s, Fa, T(t → a) }

Now, we can only apply the T¬¬ rule and we obtain the set

∆9 = {T⊤, T(s → t), Ts, T(t → a) }

Applying MP twice we get the set

∆10 = {T⊤, Tt, Ts, Ta }

which is clearly not contradictory and cannot be treated by any rule of the calculus.
Since in our derivation there is no backtrack point, we conclude that FA is not prov-
able.

If we disregard the rule T-permanence, that is we only apply then rules of TInt, we
have to begin the proof of FA by applying the rules F → and T∧ obtaining

{T(p → q), T((¬¬r → s) → t), T((¬¬s → t) → p), Fq }

At this point we have a backtrack point since the rule T →→ can be applied to
T((¬¬r → s) → t) or to T((¬¬s → t) → p). �

5. THE RULE F-PERMANENCE

In this section we discuss the conditions under which it is correct to apply the partial
substitution of a propositional variable p with ⊥ also in the case the formula Fp is not
explicitly at hand.

Given a propositional variable p and a signed formula H, the relation p�−

w H
(p weakly negatively occurs in H) is defined by induction on the structure of H:

— p�−

w S⊤ and p�−

w S⊥
— p�−

w FA and p�−

w T¬A for every A
— p�−

w Tq if q 6= p
— p�−

w T(A ⊙ B) iff p�−

w TA and p�−

w TB, where ⊙ ∈ {∧,∨}
— p�−

w T(A → B) iff p�−

w TB.

We remark that p�− H implies p�−

w H, but the converse does not hold. Given a set ∆
of signed formulas, we say that p�−

w ∆ iff, for every H ∈ ∆, p�−

w H.
Now, let us consider the following construction over Kripke models. Given K =

〈P,≤,ρ,〉 and a propositional variable p, let ρ′ 6∈ P . By Kw
p we denote the structure

〈P ′,≤′, ρ′,′〉 such that:

P ′ = P ∪ { ρ′ } ≤′ = ≤ ∪ { (ρ′, α) | α ∈ P ′ }

′ = ∪ { (ρ′, q) | ρ q and q 6= p }

It is easy to check that Kw
p is a Kripke model. Note that Kw

p , ρ′ � Fp and, for every

signed formula H and every α ∈ P , K,α � H iff Kw
p , α � H.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Ferrari et al.

LEMMA 5.1. Let K = 〈P,≤,ρ,〉 be a Kripke model, let H be a signed formula, let
p be a propositional variable such that p�−

w H and let Kw
p = 〈P ′,≤′, ρ′,′〉 the model

defined above. Then, K, ρ � H implies Kw
p , ρ′ � H.

PROOF. Let us assume K, ρ � H. We prove Kw
p , ρ′ � H by induction on H. If H =

FA, with A any formula, then Kw
p , ρ � FA, hence Kw

p , ρ′ � FA. The case H = T¬A is

similar. If H = Tq then q 6= p (indeed p�−

w Tp does not hold) and hence, by definition
of

′, Kw
p , ρ′ � H. The cases H = T(A ∧ B) and H = T(A ∨ B) easily follow by the

induction hypothesis. Let H = T(A → B) and let us suppose that K, ρ�T(A → B). We
immediately have Kw

p , ρ � T(A → B); thus, to prove that Kw
p , ρ′ � T(A → B) we have

only to show that Kw
p , ρ′ � TA implies Kw

p , ρ′ � TB. If Kw
p , ρ′ � TA, then Kw

p , ρ � TA,

and this implies K, ρ � TA. Since K, ρ � T(A → B), we get K, ρ � TB. Since p�−

w TB,
by induction hypothesis we conclude Kw

p , ρ′ � TB.

Now, let us consider the rule:

∆

∆{⊥/p}
F-permanence provided that p�−

w ∆

Along the lines of the proof of Theorem 4.2, from Lemma 5.1 we get:

THEOREM 5.2. The rule F-permanence is invertible. �

Example 5.3. As an application of the above rule, let us consider the set

∆1 = {T(p ∨ q), F(q ∧ r), F(p ∧ r), F(r → q) }

First of all, we notice that the propositional variables p, q and r do not occur in ∆1 with
constant sign, that is x6�+ ∆1 and x6�− ∆1 for every x ∈ {p, q, r}, thus the replacement
rules discussed Sections 4 cannot be applied to ∆1. On the other hand r�−

w ∆1, hence
we can apply F-permanence and we get the set

∆2 = {T(p ∨ q), F(q ∧ ⊥), F(p ∧ ⊥), F(r → q) }

Applying the boolean simplification rules to ∆2 we get:

∆3 = {T(p ∨ q), F⊥, F(r → q) }

We remark that the negative occurrence of p has disappeared, and now p�+ ∆3. We
can apply the rule T-permanence and the boolean simplification rules, obtaining the
set

∆4 = {T⊤, F⊥, F(r → q) }

which does not have a closed proof-table. Since the derivation does not contain any
backtrack point we conclude that ∆1 is not provable. �

6. PERMANENCE RULES UNDER CONTEXTS

Permanence rules described in sections 4 and 5 act on propositional variables with con-
stant polarity in a set ∆ of signed formulas. In this section we describe a generalization
of these rules allowing us to apply replacement on propositional variables which occur
with constant polarity in opportune subformulas of formulas in ∆.
A context is a particular formula containing only one occurrence of a dedicated propo-

sitional variable (not used elsewhere in sets of formulas) and denoted by ∗. Formally,
we consider contexts ΘJ∗K defined as follows:

ΘJ∗K ::= ∗ | C ⊙ ΘJ∗K | ΘJ∗K ⊙ C | C → ΘJ∗K

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:11

where ⊙ ∈ {∧,∨} and C is any formula. Given a context ΘJ∗K and a formula A, by
ΘJAK we denote the formula obtained by replacing ∗ with A in ΘJ∗K. In the following
we always consider contexts under the sign F so that ∗ has a negative polarity. The set
of antecedents Ant(ΘJ∗K) of a context ΘJ∗K is inductively defined as follows:

Ant(∗) = ∅
Ant(C ⊙ ΘJ∗K) = Ant(ΘJ∗K ⊙ C) = Ant(ΘJ∗K) ⊙ ∈ {∧,∨}
Ant(C → ΘJ∗K) = {C} ∪ Ant(ΘJ∗K)

Now, let us consider the following rules:

∆,FΘJA → BK

∆,FΘJ A[⊤/p] → B[⊤/p] K
T-cperm where p�+

F(A → B), p�+ ∆T and, for
every Z ∈ Ant(ΘJ∗K), p�+

TZ.

∆,FΘJA → BK

∆,FΘJ A[⊥/p] → B[⊥/p] K
T¬-cperm where p�−

F(A → B), p�− ∆T and, for
every Z ∈ Ant(ΘJ∗K), p�−

TZ.

∆,FΘJ¬AK

∆,FΘJ¬A[⊤/p] K
T-cperm′ where p�+

F(¬A), p�+ ∆T and, for ev-
ery Z ∈ Ant(ΘJ∗K), p�+

TZ.

∆,FΘJ¬AK

∆,FΘJ¬A[⊥/p] K
T¬-cperm′ where p�−

F(¬A), p�− ∆T and, for ev-
ery Z ∈ Ant(ΘJ∗K), p�−

TZ.

∆,FΘJBK

∆,FΘJ B{⊥/p} K
F-cperm where p�−

w ∆T and, for every
Z ∈ Ant(ΘJ∗K), p�−

w TZ.

We remark that the rules T-cperm′ and T¬-cperm′ can be seen as a particular case of
T-cperm and T¬-cperm respectively, via the intuitionistic equivalence ¬A ≡ A → ⊥.
In Section 6.1 we prove that the above rules are invertible. The side condition on
Ant(ΘJ∗K) is essential to guarantee the invertibility. For instance, let us consider the
context ΘJ∗K = ¬p → ∗. If we drop out the condition on Ant(ΘJ∗K), we could apply
T-cperm to FΘJp → qK = F(¬p → (p → q)) to replace p with ⊤ in p → q (indeed,
p�+

F(p → q)), and we would obtain FΘJ⊤ → qK = F(¬p → (⊤ → q)) which is realiz-
able, whereas FΘJp → qK = F(¬p → (p → q)) is not.

We give some examples of application.

Example 6.1. Let us consider the signed formula

H1 = F(¬q ∨ ((q → ¬p) → ((¬q ∧ p) ∨ (p → q))))

First of all we notice that, for x ∈ {p, q}, neither x�+ H1 nor x�− H1 holds; moreover,
the partial substitution of x with⊥ in H1 has no effect, hence the application of the rule
F-permanence is useless. Now, let us consider the context ΘJ∗K = ¬q ∨ ((q → ¬p) → ∗).
We have that H1 = FΘJ(¬q∧p)∨ (p → q)K. Since Ant(ΘJ∗K) = {q → ¬p} and p�−

w T(q →
¬p), we can apply the rule F-cperm to H1 and we get

FΘJ(¬q ∧ ⊥) ∨ (p → q)K

which simplifies to

H2 = FΘJp → qK = F(¬q ∨ ((q → ¬p) → (p → q)))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Ferrari et al.

Now, let us consider the context Θ′J∗K = ¬q ∨ ∗. Then

H2 = FΘ′J(q → ¬p) → (p → q)K

Since Ant(Θ′J∗K) = ∅ and q�−
F((q → ¬p) → (p → q)), we can apply the rule T¬-cperm

obtaining

FΘ′J(⊥ → ¬p) → (p → ⊥)K

which simplifies to

FΘ′J¬pK = F(¬q ∨ ¬p)

which is not provable. Since all the applied rules are invertible, we conclude that H1 is
not provable. �

Example 6.2. As another example, let us consider the signed formula

K1 = F(a → ((p ∨ q) → (q ∧ r) ∨ (p ∧ r) ∨ (r → q)) ∨ p)

and let us consider the context ΘJ∗K = a → ((p ∨ q) → ∗) ∨ p. We have that

K1 = FΘJ(q ∧ r) ∨ (p ∧ r) ∨ (r → q)K

Since Ant(ΘJ∗K) = {a, p ∨ q}, r�−

w Ta and r�−

w T(p ∨ q) we can apply the rule F-cperm
and we get:

FΘJ(q ∧ ⊥) ∨ (p ∧ ⊥) ∨ (r → q)K

This signed formula simplifies to

K2 = FΘJr → qK = F(a → ((p ∨ q) → (r → q)) ∨ p)

Let us consider the context Θ′J∗K = a → ∗ ∨ p. Then

K2 = FΘ′J(p ∨ q) → (r → q)K

Since Ant(Θ′J∗K) = {a}, p�+
Ta and p�+

F((p ∨ q) → (r → q)), we can apply the rule
T-cperm and we get

FΘ′J(⊤ ∨ q) → (r → q)K

which simplifies to

FΘ′Jr → qK = F(a → (r → q) ∨ p)

which is not provable. Since the above proof only consists of invertible rules, we deduce
that K1 is unprovable. We remark that proof-search for K1 in TInt is more expensive
since one has to apply several non-invertible rules. �

To support the usefulness of the simplification rules described in this section, we point
out that the T-cperm and F-cperm rules reduce backtracking required to decide the
family of de Bruijn formulas (the family SYJ207+1 of ILTP library [Raths et al. 2007]).

6.1. Proof of invertibility

The proof of invertibility of the rules T-cperm, T¬-cperm, T-cperm′, T¬-cperm′ and
F-cperm is not trivial and requires some machinery. We start by stating some proper-
ties about contexts which can be easily proved by induction on the structure of ΘJ∗K.

LEMMA 6.3. Let K = 〈P,≤, ρ,〉 be a Kripke model, α ∈ P , and let ΘJ∗K be a context.
If K,α � FΘJA ∧ C → B ∨ DK, then K,α � FΘJA → BK. �

The following lemma extends lemmas 3.1 and 3.3 to contexts.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:13

LEMMA 6.4. Let K = 〈P,≤, ρ,〉 be a Kripke model and α ∈ P . Then:

(i) K,α � FΘJA ∧ C → B K iff K,α � FΘJA[⊤/C] ∧ C → B[⊤/C] K;
(ii) K,α � FΘJA ∧ ¬C → B K iff K,α � FΘJA[⊥/C] ∧ ¬C → B[⊥/C] K;
(iii) K,α � FΘJB ∨ C K iff K,α � FΘJB{⊥/C} ∨ C K. �

Let K1 = 〈P1,≤1, ρ1,1〉 and K2 = 〈P2,≤2, ρ2,2〉 be two Kripke models; K1 and K2

are disjoint if P1 ∩ P2 = ∅. Let K1 and K2 be disjoint and let ρ 6∈ P1 ∪ P2. By K1

⊎
ρ K2

we denote the Kripke model K = 〈P,≤, ρ,〉 such that:

P = P1 ∪ P2 ∪ { ρ } ≤ = ≤1 ∪ ≤2 ∪ { (ρ, α) | α ∈ P }
 = 1 ∪ 2 ∪ { (ρ, p) | ρ1 1 p and ρ2 2 p }

(see for instance the models in Figures 3 and 4). One can easily check that, for every
signed formula H, every i ∈ {1, 2} and every α ∈ Pi, it holds that K,α�H iff Ki, α�H.
We show that in the model K1

⊎
ρ K2 we have a sort of downward preservation of

T-signed formulas realizability: under suitable conditions, the realizability of a signed
formula TD in the root of K1 implies the realizability of TD in ρ.

LEMMA 6.5. Let K1 = 〈P1,≤1, ρ1,1〉 and K2 = 〈P2,≤2, ρ2,2〉 be two disjoint
Kripke models and let K = 〈P,≤, ρ,〉 be the model K1

⊎
ρ K2. Let p be a propositional

variable, let � be one of the relations �+ , �− or �−

w and assume that, for every formula
D such that p � TD, K, ρ1 � TD implies K, ρ2 � TD. Then, for every formula D such
that p � TD, K, ρ1 � TD implies K, ρ � TD.

PROOF. Let us assume p � TD and K, ρ1 � TD. By the hypothesis of the lemma,
we get K, ρ2 � TD. We prove K, ρ � TD by induction on D.
Let D = q be a propositional variable. Since K, ρ1 � Tq and K, ρ2 � Tq, by definition of
 we get K, ρ � Tq.
The cases D = X ∧ Y and D = X ∨ Y follow by the fact that p � TX and p � TY and
by the induction hypothesis.
Let D = X → Y and let α ∈ P such that K,α�TX; we have to show that K,α�TY . If
α ∈ P1∪P2, by the fact that K, ρ1�T(X → Y) and K, ρ2�T(X → Y), we get K,α�TY .
It remains to consider the case α = ρ. Since ρ ≤ ρ1, we have K, ρ1 �TX, which implies
K, ρ1 �TY . Since p � T(X → Y), it holds that p � TY ; by the induction hypothesis we
conclude K, ρ � TY .
Let D = ¬X. Since K, ρ1 � T¬X and K, ρ2 � T¬X, we get K, ρ � T¬X.

To prove the invertibility of the rule T-cperm, the crucial point is to build a model K∗

realizing FΘJA∧ p → BK given a model K for FΘJA → BK. The next lemma shows how
to build K∗.

LEMMA 6.6. Let K = 〈P,≤, ρ,〉 be a Kripke model, p a propositional variable,
ΘJA → BK a formula such that K, ρ � FΘJA → BK, p�+

F(A → B) and, for every
Z ∈ Ant(ΘJ∗K), p�+

TZ. There exists a model K∗ = 〈P ∗,≤∗, ρ∗,∗〉 such that:

(i) K∗, ρ∗ � FΘJA ∧ p → BK;
(ii) For every formula D, if K, ρ � FD then K∗, ρ∗ � FD;
(iii) For every formula D such that p�+

TD, if K, ρ � TD then K∗, ρ∗ � TD.

PROOF. By induction on the structure of ΘJ∗K.
Let ΘJA → BK = A → B. There is α ∈ P such that K,α � TA and K,α � FB. By
Lemma 4.1, there exists a Kripke model K ′ = 〈P ′,≤′, α′,′〉 such that:

(P1) K ′, α′
� Tp;

(P2) For every signed formula H such that p�+ H, if K,α � H then K ′, α′
� H.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Ferrari et al.

ρ∗

Tp, TA, FBα′ρ

K′

K

TA, FBα

Fig. 3. The model K∗
= K

U

ρ∗ K′ in the case ΘJA → BK = A → B

Since p�+
TA and p�+

FB, by (P2) we get K ′, α′
� TA and K ′, α′

� FB. Without loss
of generality we can assume that K and K ′ are disjoint. Let ρ∗ 6∈ P ∪ P ′ and let
K∗ = 〈P ∗,≤∗, ρ∗,∗〉 be the model K

⊎
ρ∗ K ′ (see Figure 3). Since ρ∗ ≤∗ α′, we get

K∗, ρ∗�F(A∧p → B) and Point (i) is proved. Point (ii) follows by the fact that K, ρ�FD
implies K∗, ρ � FD and ρ∗ ≤∗ ρ. To prove Point (iii), we observe that, for every D such
that p�+

TD, K, ρ � TD implies K ′, α′
� TD (this follows by the fact that ρ ≤ α and

(P2)). Now, we can apply Lemma 6.5, and Point (iii) is proved.
Let ΘJA → BK = C ∧ Θ′JA → BK. Since K, ρ � FΘJA → BK, either K, ρ � FC or K, ρ �

FΘ′JA → BK. In the former case, the model K∗ = K meets points (i)–(iii). In the latter
case, by induction hypothesis there exists a model K∗ such that K∗, ρ∗�FΘ′JA∧p → BK
and points (ii), (iii) are satisfied. Hence, K∗, ρ∗�F(C∧Θ′JA∧p → BK), and the assertion
is proved.
Let ΘJA → BK = C ∨ Θ′JA → BK. Since K, ρ � FΘ′JA → BK, by induction hypothesis
there is a model K∗ such that K∗, ρ∗ �FΘ′JA∧p → BK and points (ii), (iii) are satisfied.
Since K, ρ � FC, by (ii), we have K∗, ρ∗ � FC, hence K∗, ρ∗ � F(C ∨ Θ′JA ∧ p → BK).
Finally, let ΘJA → BK = C → Θ′JA → BK and let β ∈ P such that K,β � TC and
K,β � FΘ′JA → BK. By the induction hypothesis, there exists a model K ′ = 〈P ′,≤′

, β′,′〉 such that:

(P3) K ′, β′
� FΘ′JA ∧ p → BK;

(P4) For every D such that p�+
TD, if K,β � TD then K ′, β′

� TD.

Since C ∈ Ant(ΘJ∗K), by the hypothesis of the lemma it holds that p�+
TC; hence, by

(P4), we get K ′, β′
� TC. We can reason as in the base case taking the model K

⊎
ρ∗ K ′

as K∗, where ρ∗ 6∈ P ∪ P ′ (see Figure 4). Indeed, since ρ∗ ≤∗ β′, we get K∗, ρ∗ � F(C →
Θ′JA ∧ p → BK). Point (ii) is immediate. Point (iii) follows by (P4) and Lemma 6.5.

The above lemma can be restated for the relations �− and �−

w :

LEMMA 6.7. Let K = 〈P,≤, ρ,〉 be a Kripke model, p a propositional variable,
ΘJA → BK a formula such that K, ρ � FΘJA → BK, p�−

F(A → B) and, for every
Z ∈ Ant(ΘJ∗K), p�−

TZ. There exists a model K∗ = 〈P ∗,≤∗, ρ∗,∗〉 such that:

(i) K∗, ρ∗ � FΘJA ∧ ¬p → BK;
(ii) For every formula D, if K, ρ � FD then K∗, ρ∗ � FD;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:15

ρ∗

ρ

K′

β

β′

K

TC, FΘ
′JA → BK

TC, FΘ
′JA ∧ p → BK

Fig. 4. The model K∗
= K

U

ρ∗ K′ in the case ΘJA → BK = C → Θ′JA → BK

(iii) For every formula D such that p�−
TD, if K, ρ � TD then K∗, ρ∗ � TD. �

LEMMA 6.8. Let K = 〈P,≤, ρ,〉 be a Kripke model, p a propositional variable, ΘJBK
a formula such that K, ρ � FΘJBK and, for every Z ∈ Ant(ΘJ∗K), p�−

w TZ. There exists
a model K∗ = 〈P ∗,≤∗, ρ∗,∗〉 such that:

(i) K∗, ρ∗ � FΘJB ∨ pK;
(ii) For every formula D, if K, ρ � FD then K∗, ρ∗ � FD;
(iii) For every formula D such that p�−

w TD, if K, ρ � TD then K∗, ρ∗ � TD. �

Finally, we can prove the main theorem of this section:

THEOREM 6.9. The rules T-cperm, ¬T-cperm, T-cperm′, T¬-cperm′ and F-cperm
are invertible.

PROOF. Let us consider the rule T-cperm. Let ∆ be a set of signed formulas such
that p�+ ∆T and FΘJA → BK a formula such that p�+

F(A → B) and, for every Z ∈
Ant(ΘJ∗K), p�+

TZ. We have to prove that ∆ ∪ {FΘJA → BK} is realizable iff ∆ ∪
{FΘJA[⊤/p] → B[⊤/p]K} is. If the set ∆ ∪ {FΘJA → BK} is realizable, by Lemma 6.6
there exists a Kripke model K = 〈P,≤, ρ,〉 such that K, ρ � FΘJA ∧ p → BK and
K, ρ � ∆. By lemmas 6.4(i) and 6.3, it follows that K, ρ � FΘJA[⊤/p] → B[⊤/p]K. This
means that ∆ ∪ {FΘJA[⊤/p] → B[⊤/p]K} is realizable, and this proves the soundness
of the rule T-cperm.
Conversely, let us assume that the set ∆∪ {FΘJA[⊤/p] → B[⊤/p]K} is realizable. Since
p does not occur in F(A[⊤/p] → B[⊤/p]), it holds that p�+

F(A[⊤/p] → B[⊤/p]). By
Lemma 6.6, there exists a Kripke model K = 〈P,≤, ρ,〉 such that K, ρ � FΘJA[⊤/p] ∧
p → B[⊤/p]K and K, ρ � ∆. By lemmas 6.4(i) and 6.3, it follows that K, ρ �FΘJA → BK,
thus ∆ ∪ {FΘJA → BK} is realizable.

Invertibility of T-cperm′ immediately follows from the invertibility of T-cperm.
Indeed, FΘJ¬AK is realizable iff FΘJA → ⊥K is realizable. By the above discussion
FΘJA → ⊥K is realizable iff FΘJA[⊤/p] → ⊥K is realizable, iff FΘJ¬A[⊤/p]K is realiz-
able.

The other cases are similar.

7. PRUNING OVER CONJUNCTIVE CONTEXTS

In this section we define a “strong” simplification technique, we call pruning, which is
based on the conjunctive context cc(H) of a signed formula H. By cc(H) we denote a

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Ferrari et al.

set of signed formulas built from the subformulas of H with the following property: for
every Kripke model K = 〈P,≤,ρ,〉 and every α ∈ P , K,α � H iff K,α � cc(H).
Formally, the conjunctive context of H is defined as follows:

— cc(Sp) = {Sp}, with p a propositional variable
— cc(T¬p) = {T¬p}, with p propositional variable
— cc(T(A ∧ B)) = cc(TA) ∪ cc(TB)
—cc(F(A ∧ B)) = {F(A ∧ B)} ∪ (cc(FA) ∩ cc(FB))
—cc(T(A ∨ B)) = {T(A ∨ B)} ∪ (cc(TA) ∩ cc(TB))
—cc(F(A ∨ B)) = cc(FA) ∪ cc(FB)
—cc(T¬A) = {T¬A}, if A is of the kind (B ∧ C) or ¬B
—cc(T¬(A ∨ B)) = cc(T¬A) ∪ cc(T¬B)
—cc(T¬(A → B)) = {T¬(A → B)} ∪ cc(T¬B)
—cc(F¬A) = {F¬A}
—cc(T(A → B)) = {T(A → B)}
—cc(F(A → B)) = {F(A → B)} ∪ cc(FB)

It is easy to check that, given a formula A, the signed formulas in cc(SA) have sign S.
Moreover, all the signed formulas in cc(T¬A) are of the kind T¬A′. It is easy to prove
by induction on the structure of H that:

LEMMA 7.1. Let K = 〈P,≤,ρ,〉 be a Kripke model and α ∈ P . Then, K,α � H iff
K,α � cc(H). �

Now, let us consider the pruning function described in Figure 5 which calls the follow-
ing functions:

— simpl: it takes as input a set of signed formulas ∆ and returns the set of signed
formulas obtained by applying the boolean simplification rules of Figure 2 and the
replacement rules Replace-T, Replace-T¬ and Replace-F as long as possible. By the
results given in Section 3, K,α � ∆ iff K,α � simpl(∆). We remark that the per-
manence rules cannot be applied in simpl because it works on subformulas of the
premise, while the applicability condition of permanence rules involve the whole
premise.

— extract: it takes a non-empty set of signed formulas ∆ as input and works as follows:

let ∆1 = {A | TA ∈ ∆}, ∆2 = {A | FA ∈ ∆}
if ∆1 = ∅ then return F(

W

∆2)
else if ∆2 = ∅ then return T(

V

∆1)
else return F(

V

∆1 →
W

∆2)

The pruning algorithm satisfies the following properties:

LEMMA 7.2. Given a signed formula H:

(i) pruning(H) has the same sign of H, moreover if H = T¬A′, then pruning(H) has
the form T¬A′′.

(ii) Given a Kripke model K = 〈P,≤,ρ,〉 and α ∈ P , K,α � H iff K,α � pruning(H).

PROOF. The proof goes by induction on the structure of H. We only treat some rele-
vant cases. If H = Sp or H = T¬p, then the assertions immediately follow.
If H = T(X ∧ Y) then, by induction hypothesis, pruning(TX) = TX ′ and
pruning(TY) = TY ′. Since cc(TX ′) ∪ cc(TY ′) only contains T-signed formulas and
the simplification rules do not act on the sign, by definition of extract, the sign
of the returned formula is T. This proves Point (i). Now, K,α � H iff K,α � TX
and K,α � TY . By induction hypothesis this holds iff K,α � TX ′ and K,α � TY ′

iff, by Lemma 7.1, K,α � cc(TX ′) ∪ cc(TY ′). By the properties of simpl and by the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:17

function pruning(H) {
case H = Sp or H = S¬p: return H
case H = T(X ∧ Y) or H = F(X ∨ Y):
let S be the sign of H and SX ′ = pruning(SX) and SY ′ = pruning(SY)
return extract(simpl(cc(SX ′) ∪ cc(SY ′)))

case H = T(X ∨ Y) or H = F(X ∧ Y):
let S be the sign of H and SX ′ = pruning(SX) and SY ′ = pruning(SY)
if H = T(X ∨ Y) then K = T(X ′ ∨ Y ′) else K = F(X ′ ∧ Y ′)
return extract(simpl((cc(SX ′) ∩ cc(SY ′)) ∪ {K}))

case H = F(X → Y):
TX ′ = pruning(TX), FY ′ = pruning(FY),
return extract(simpl(cc(TX ′) ∪ cc(FY ′)))

case H = T(X → Y):
FX ′ = pruning(FX), TY ′ = pruning(TY)
return T(X ′ → Y ′)

case H = F¬X:
TX ′ = pruning(TX)
return F¬X ′

case H = T¬(X ∨ Y):
T¬X ′ = pruning(T¬X), T¬Y ′ = pruning(T¬Y)
∆ = simpl(cc(T¬X ′) ∪ cc(T¬Y ′))
return T¬(

W

T¬Z∈∆
Z)

case H = T¬(X → Y):
TX ′ = pruning(TX), T¬Y ′ = pruning(T¬Y)
∆ = simpl(cc(TX ′) ∪ cc(T¬Y ′))
∆T¬ = {T¬Z|T¬Z ∈ ∆}, ∆T = ∆ \ ∆T¬

return T¬(
V

TZ∈∆T
Z →

W

T¬Z∈∆T¬

Z)
case H = T¬(X ∧ Y):

T¬X ′ = pruning(T¬X), T¬Y ′ = pruning(T¬Y)
∆ = simpl((cc(T¬X ′) ∩ cc(T¬Y ′)) ∪ {T¬(X ′ ∧ Y ′)})
return T¬(

W

T¬Z∈∆
Z)

case H = T¬¬X:
TX ′ = pruning(TX)
return T¬¬X ′

}

Fig. 5. The pruning function

fact that simpl(cc(TX ′) ∪ cc(TY ′)) only consists of T-signed formulas, this holds iff
K,α � extract(simpl(cc(TX ′) ∪ cc(TY ′))).
Let H = T¬(X ∧ Y). Point (i) immediately follows by construction of the returned for-
mula. As for Point (ii), let us suppose that K,α�T¬(X∧Y) and let φ be a final element

of K 2 such that α ≤ φ. Then, K,φ � T¬X or K,φ � T¬Y . Let T¬X ′ = pruning(T¬X)
and T¬Y ′ = pruning(T¬Y). By induction hypothesis K,φ � T¬X ′ or K,φ � T¬Y ′.
By Lemma 7.1, K,φ � cc(T¬X ′) ∩ cc(T¬Y ′). Since this holds for every final element
φ of K such that α ≤ φ and all the signed formulas in cc(T¬X ′) ∩ cc(T¬Y ′) are of
the kind T¬A, we get that K,α � cc(T¬X ′)∩ cc(T¬Y ′). This immediately implies that
K,α � (cc(T¬X ′)∩ cc(T¬Y ′))∪{T¬(X ′ ∧Y ′)}. Let ∆ = simpl((cc(T¬X ′)∩ cc(T¬Y ′))∪
{T¬(X ′∧Y ′)}) (note that all the formulas in ∆ are of the kind T¬Z). We have K,α�∆,
which implies K,α � T¬(

∨
T¬Z∈∆

Z). For the converse, the proof is similar.

2Namely, φ is a maximal element of K w.r.t. ≤.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Ferrari et al.

Given a set of signed formulas ∆, pruning(∆) is the set obtained by applying pruning

to every element in ∆. Now, let us consider the rule

∆

pruning(∆)
pruning

By the above lemma, we immediately get:

THEOREM 7.3. The rule pruning is invertible. �

Example 7.4. As an example let us consider the signed formula

H ≡ F((p ∨ (p ∧ q)) → ((p ∨ q) → (p ∧ q)))

It is easy to check that for every v ∈ {p, q}, v 6�+ H, v 6�− H and v 6�−

w H. Moreover, also
the rules given in Section 6 are not applicable. Let X = p ∨ (p ∧ q) and Y = (p ∨ q) →
(p ∧ q). We have:

pruning(Tp) = Tp

pruning(T(p ∧ q)) = T(p ∧ q)

pruning(T(p ∨ q)) = T(p ∨ q)

pruning(F(p ∧ q)) = F(p ∧ q)

pruning(TX) = extract(simpl((cc(Tp) ∩ cc(T(p ∧ q))) ∪ {TX}))

= extract(simpl(({Tp} ∩ {Tp, Tq)}) ∪ {TX}))

= extract(simpl({Tp, TX}))

= extract({Tp }) = Tp

pruning(FY) = extract(simpl(cc(T(p ∨ q)) ∪ cc(F(p ∧ q))))

= extract(simpl({T(p ∨ q)} ∪ {F(p ∧ q)}))

= extract({T(p ∨ q), F(p ∧ q) })

= F((p ∨ q) → (p ∧ q)) = FY

pruning(H) = extract(simpl(cc(Tp) ∪ cc(F(Y))))

= extract(simpl({Tp, F(p ∧ q), FY }))

= extract(simpl({Tp, F(⊤ ∧ q), F((⊤ ∨ q) → (⊤ ∧ q)) }))

= extract({Tp, F⊥, Fq})

= F(p → (q ∨ ⊥))

By the Lemma 7.2 we conclude that H is equivalent to F(p → q), hence H is not
provable. �

Example 7.5. As another example let us consider the set

∆ = Γ ∪ { T(a ∨ b) ,F(x → ((x ∨ z) → y)) }

and let us suppose that v 6�+ Γ, v 6�− Γ and v 6�−

w Γ for every v ∈ {a, b, x, y}, whereas
z�− Γ. Note that z�+

F(x → ((x ∨ z) → y)), thus z 6�+ ∆ and z 6�− ∆; hence no rule of
previous sections is applicable. Moreover, since

z 6�−
F(x → ((x ∨ z) → y))

z 6�−

w F(x → ((x ∨ z) → y))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:19

Prover 0-1s 1-10s 10-100s 100-600s >600s

BPPI 1025(101.4) 51(158.9) 11(281.8) 4(972.3) 9(n.a.)

EPPI 859(161.9) 226(710.7) 11(392.7) 4(1607.9) 0(0.0)

EPPI+ 1049(65.2) 36(112.2) 11(238.2) 4(809.1) 0(0.0)

EPPI++ 1063(95.1) 32(100.5) 3(55.7) 2(275.0) 0(0.0)

Fig. 6. Timings on random formulas

we cannot apply the rules T-permanence, T¬-permanence and F-permanence. By
applying the rule pruning to ∆ we get the set

∆1 = pruning(Γ) ∪ {T(a ∨ b),F(x → y) }

Since z�− Γ, it follows that z�− pruning(Γ), thus z�− ∆1. Now, we can apply the rule
T¬-permanence replacing z with ⊥ in ∆1 and then the boolean simplification rules.
This sequence of applications of invertible rules erases z and reduces the size of the set
∆. Without the rule pruning, such a result is obtainable by instantiating the premise of
the non-invertible rule F → with ∆, but this application, differently from the sequence
of rules applied above, introduces a backtrack point. �

8. EMPIRICAL EVALUATION

Here we discuss how the rules described in the previous sections influence the per-
formances of a theorem prover. First of all we notice that, implementing formulas by
graphs where all occurrences of a given subformula are represented by pointers to
the same node, and sets of formulas as pointers to formulas, the rules Replace-T and
Replace-T¬ of Section 3 can be implemented in constant time. More than this, note
that, given a set ∆ where no replacement rule is applicable, after an application of
a rule r of TInt the only formulas candidated to be replaced are those in evidence
in the conclusion of r, hence it requires constant time to decide if one of the rules
Replace-T and Replace-T¬ is applicable. As for the rule Replace-F, both to decide its
applicability and to apply it requires time linear w.r.t. the size of the premise. Boolean
simplifications can be applied only if a logical constant occurs in the set ∆ (e.g., after a
replacement application) and every single application of a boolean simplification rule
requires constant time; hence the whole boolean simplification step requires linear
time. To check the polarity of a propositional variable (i.e., to decide p�+ H, p�− H or
p�−

w H) requires linear time in the length of H; as a consequence, the application of
permanence rules of Sections 4 and 5 requires linear time in the size of the premise.
As for the context-permanence rules of Section 6, the number of contexts is linear in
the length of the premise of the rule and, given a context, the application of the rule
requires linear time in the size of the premise. Finally, the complexity of the pruning
rule requires quadratic time in the size of the premise.

To get an empirical evidence of the impact of our simplification techniques, we real-
ized a Prolog theorem prover, called BPPI (Basic Prolog Prover for Intuitionism), based
on the calculus TInt extended with the rules of Section 3 and on the proof-search strat-
egy described in [Avellone et al. 2008]. According to the discussion of Section 2.1 on
the relations between TInt and Tab, BPPI turns out to be a Prolog implementation of
PITP [Avellone et al. 2008]. We point out that BPPI already implements replacement
and boolean simplifications rules of Section 3. We tested how performances of BPPI
are affected by the optimizations introduced in this paper. In particular we compare
BPPI with the following theorem provers:

—EPPI (Extended Prolog Prover for Intuitionism) extends BPPI with the rules
T-permanence, T¬-permanence of Section 4 and F-permanence of Section 5.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Ferrari et al.

SYJ formula BPPI EPPI EPPI+ EPPI++ PITP Imogen
201+1.018 11.83 14.09 16.26 33.86 0.01 11.32
201+1.019 14.97 17.70 21.07 42.74 0.01 16.28
201+1.020 19.14 22.78 26.26 53.54 0.01 17
202+1.005 0.99 0.83 0.98 0.90 0.01 179.063
202+1.006 9.37 6.51 7.41 7.20 0.03 timeout
202+1.007 100.46 53.85 62.55 61.07 0.3 timeout
205+1.011 27.70 0.02 0.02 0.03 0.0 0.028
205+1.012 84.59 0.03 0.03 0.03 0.0 0.032
205+1.013 242.33 0.04 0.03 0.05 0.0 0.020
206+1.018 0.0 0.0 0.0 120.28 0.0 2.26
206+1.019 0.0 0.0 0.0 119.48 0.0 2.12
206+1.020 0.0 0.0 0.0 116.92 0.0 2.14
207+1.003 0.32 0.42 0.50 0.62 0.0 0.024
207+1.004 5.08 6.45 7.98 10.86 0.01 0.056
207+1.005 102.10 118.11 139.45 195.29 2.54 0.116
208+1.014 121.60 105.50 116.80 135.36 0.0 timeout
208+1.015 203.35 179.18 201.18 226.92 0.04 timeout
208+1.016 333.04 291.36 342.54 373.71 0.05 timeout
209+1.006 2.13 2.85 3.51 3.92 0.01 0.012
209+1.007 19.64 26.82 33.81 33.42 0.22 0.008
209+1.008 198.94 269.41 328.47 336.97 1.950 0.016
211+1.009 27.19 0.01 0.01 0.01 0.050 0.020
211+1.010 84.76 0.01 0.01 0.02 0.120 0.020
211+1.011 253.94 0.02 0.02 0.02 0.260 0.020
212+1.018 0.01 0.02 0.04 200 0.0 0.036
212+1.019 0.02 0.04 0.04 203 0.0 0.048
212+1.020 0.02 0.04 0.05 196.14 0.0 0.064

Fig. 7. Timings on ILTP library

—EPPI+ extends EPPI with context rules of Section 6. An implementation of EPPI+ is
presented in [Ferrari et al. 2010], where the proof-search strategy is described in full
details.

—EPPI++ extends EPPI+ with the rule pruning of Section 7.

Experiments have been carried out along the lines of [Raths et al. 2007] and their
results are summarized in Fig. 6 and 73.

In Fig. 6 we report the timings of experiments performed on random generated for-
mulas with 1024 connectives and a number of variables ranging from 1 to 1024. In ev-
ery entry we indicate the number of formulas decided in the specified time range and
between brackets we put the total time required to decide them; “9(n.a.)” in the last
column means that 9 formulas require more than 600secs to be decided. The results
emphasize that for formulas decidable in few steps, the overhead of the simplification
rules slows down the prover, but when the formula requires a lot of computation op-
timizations are effective. As a matter of fact EPPI, EPPI+ and EPPI++ decide all the
formulas within 600secs.
We remark that we tested our provers on random generated formulas because sim-

plification rules have little impact on the formulas of the ILTP-library, which is the
standard benchmark for intuitionistic theorem provers. This is due to the fact that the
ILTP library only includes 12 families of formulas and on many of them simplifica-
tions are not activated. For the sake of completeness in Fig. 7 we show the timings of

3Experiments have been carried out on a 3.00GHz Intel Xeon CPU computer with 2MB cache size and 2GB
RAM.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Simplification Rules for Intuitionistic Propositional Tableaux A:21

experiments performed on the ILTP Library [Raths et al. 2007] for the families with
a significant computation time. First we notice that BPPI outperforms EPPI, EPPI+
and EPPI++ on the families SYJ201, SYJ207, SYJ209 and SYJ212, this because of the
overhead required to check the applicability of simplifications while they are never
applied. Nevertheless, we note that on these formulas the performances of EPPI and
EPPI+ are not far from those of BPPI. As for the families where the sign permanence
rules work, we notice a sharp gain of EPPI and EPPI+ w.r.t. BPPI, in particular this
happens on the families SYJ205 and SYJ211. We remark that the sign permanence
rules are applied also to decide the families SYJ202 and SYJ208. The family SYJ207
(de Bruijn formulas) is the only one where the context rules actually work. Although
the timings show a slow-down due to the overhead needed to decide the application
of the context rules we remark that their application reduce backtracking in proof-
search. The performances could be surely improved by a more accurate implementa-
tion of data structures. Finally EPPI++ is far slower than EPPI and EPPI+ because
the pruning rules are never applied to these families and the check of the applicability
of the pruning rule is time consuming.

The last two columns of Fig. 7 report the timings of PITP [Avellone et al. 2008]
and Imogen [McLaughlin and Pfenning 2008], the fastest provers on the ILTP-library
available so far. We remark that, in general, these provers outperform our implemen-
tation. This is not surprising since our Prolog prototypes lack of the graph formulas
representation mentioned at the beginning of this section. Nevertheless, in the case of
family SYJ211 our provers outperform PITP and Imogen.

9. CONCLUSIONS

In this paper we have presented rules based on replacement of formulas with logical
constants, with the aim to speed-up deductions. To prove correctness and invertibility
we employ semantical techniques based on Kripke models. Invertibility of the rules
is an important point, since enables us to apply them at any step of the deduction
without requiring backtracking. As discussed in the previous section, to establish the
conditions of the applicability of the rules low overhead is required. Moreover, these
techniques improve the performances of theorem provers for Intuitionistic Logic.

We remark that, as far as we know, in the framework of tableau/sequent calculi
for Intuitionistic Logic there is no general investigation on simplification/optimiza-
tion techniques. In the literature on theorem provers for Intuitionistic Logic the
only reported optimization techniques are the structural sharing of STRIP [Larchey-
Wendling et al. 2001] and the focusing employed in Imogen [McLaughlin and Pfenning
2008]. Both these optimizations have a very different flavour w.r.t. our rules; indeed,
the former is essentially an optimization regarding implementation issues, while the
latter is an optimization strategy to control the non-determinism in proof-search.
We point out that our rules can be adapted to sequent systems via the usual transla-

tion between tableau and sequent calculi. We refer the reader to [Avellone et al. 1999],
where such a translation is discussed also for tableau calculi using signs other than
T and F.

The semantical techniques used in this paper can be applied to design similar rules
for intermediate and modal logics with Kripke semantics. In particular the rules
T-permanence, T¬-permanence and pruning can be straightforwardly adapted to first
order Intuitionistic Logic and to intermediate logics. These rules can also be reformu-
lated for modal logics via a suitable definition of positive and negative occurrence of
a propositional variable in a modal formula. As for the rules F-permanence and the
context rules, the definitions of partial substitution and context strictly depend on the
notion of validity in intuitionistic Kripke models. Hence their extension to other logics
requires an appropriate reformulation for the logic at hand.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Ferrari et al.

References

AGUILERA, G., DE GUZMÁN, I. P., OJEDA-ACIEGO, M., AND VALVERDE, A. 2001. Reductions for non-clausal
theorem proving. Theoretical Computer Science 266, 1-2, 81–112.

AVELLONE, A., FERRARI, M., AND MIGLIOLI, P. 1999. Duplication-free tableau calculi and related cut-free
sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL 7, 4,
447–480.

AVELLONE, A., FIORINO, G., AND MOSCATO, U. 2008. Optimization techniques for propositional intuition-
istic logic and their implementation. Theoretical Computer Science 409, 1, 41–58.

CHAGROV, A. AND ZAKHARYASCHEV, M. 1997. Modal Logic. Oxford University Press, USA.

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving. Communi-
cations of the ACM 5, 394–397.

DE SWART, H. C. M., Ed. 1998. Automated Reasoning with Analytic Tableaux and Related Methods, Inter-
national Conference, TABLEAUX ’98, Oisterwijk, The Netherlands, May 5-8, 1998, Proceedings. Lecture
Notes in Computer Science Series, vol. 1397. Springer.

DOWLING, W. AND GALLIER, J. 1984. Linear Time Algorithms for Testing the Satisfiability of Propositional
Horn Formulae. Journal of Logic Programming 1, 267–284.

FERRARI, M., FIORENTINI, C., AND FIORINO, G. 2010. Fcube: An efficient prover for intuitionistic proposi-
tional logic. In Logic for Programming, Artificial Intelligence, and Reasoning, LPAR-17, C. G. Fermüller
and A. Voronkov, Eds. Vol. 6397. Springer, 294–301.

HUSTADT, U. AND SCHMIDT, R. A. 1998. Simplification and backjumping in modal tableau. See de Swart
[1998], 187–201.

KLEENE, S. 1967. Mathematical Logic. John Wiley & Sons, Inc.

LARCHEY-WENDLING, D., MÉRY, D., AND GALMICHE, D. 2001. Strip: Structural sharing for efficient proof-
search. In IJCAR, R. Goré, A. Leitsch, and T. Nipkow, Eds. Lecture Notes in Computer Science Series,
vol. 2083. Springer, 696–700.

DAVIS, M. AND PUTNAM, H.. 1960. A computing procedure for quantification theory. Journal of the ACM 7,
201–215.

MASSACCI, F. 1998. Simplification: A general constraint propagation technique for propositional and modal
tableaux. See de Swart [1998], 217–231.

MCLAUGHLIN, S. AND PFENNING, F. 2008. Imogen: Focusing the polarized inverse method for intuitionistic
propositional logic. In LPAR, I. Cervesato, H. Veith, and A. Voronkov, Eds. Lecture Notes in Computer
Science Series, vol. 5330. Springer, 174–181.

RATHS, T., OTTEN, J., AND KREITZ, C. 2007. The ILTP problem library for intuitionistic logic. Journal of
Automated Reasoning 31, 261–271.

ROBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 1,
23–41.

SMULLYAN, R. 1968. First-Order Logic. Springer, Berlin.

WEICH, K. 1998. Decision procedures for intuitionistic propositional logic by program extraction. In
TABLEAUX, H. C. M. de Swart, Ed. Lecture Notes in Computer Science Series, vol. 1397. Springer,
292–306.

ZHANG, H. AND STICKEL, M. E. 2000. Implementing the Davis-Putnam method. Journal of Automated
Reasoning 24, 1/2, 277–296.

Received February 2010; revised December 2010; accepted March 2011

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

