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Interactive realizers. A new approach to program extraction from non
constructive proofs
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We propose a realizability interpretation of a system for quantier free arithmetic which is equivalent to the

fragment of classical arithmetic without nested quantifiers, called here EM1-arithmetic. We interpret classi-

cal proofs as interactive learning strategies, namely as processes going through several stages of knowledge

and learning by interacting with the “nature”, represented by the standard interpretation of closed atomic

formulas, and with each other. We obtain in this way a program extraction method by proof interpretation,

which is faithful w.r.t. proofs, in the sense that it is compositional and that it does not need any translation.

Categories and Subject Descriptors: D.1.1 [Software]: Applicative (Functional) Programming; D.1.2 [Software]: Automatic
Programming; F.1.2 [Theory of Computation]: Modes of Computation—Interactive and reactive computation; F.4.1 [Math-

ematical Logic]: Lambda calculus and related systems—Proof Theory; I.2.6 [Artificial Intelligence]: Learning—Induc-

tion

General Terms: Theory, Languages
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1. INTRODUCTION

It is well known that even from a non constructive proof of a Π0
2 statement ∀x∃yA(x, y) one can ex-

tract an algorithm to compute a non trivial term t(x) such that ∀xA(x, t(x)). Extraction techniques
fall into two groups: either by cut elimination and proof normalization, or by proof interpretation.
We investigate here a new approach to program extraction by proof interpretation, based on realiz-
ability and learning (see subsection 1.1 for references).

Kleene’s realizers and their subsequent variants are recursive functions that, in case of intuition-
istic proofs, directly compute the term t(x). To cope with classical proofs a translation is needed, like
Gödel’s or Friedman’s. Inspired by Coquand’s game theoretic interpretation of classical arithmetic
and Gold’s learning in the limit, we propose a notion of “interactive realizability” which is a direct
interpretation of (a restricted class of) classical reasonings, not requiring the translation step.

To illustrate the idea, consider the statement:

∃x.f(x) ≤ f(g(x)) ∧ f(x) ≤ f(h(x)) (1)

where x is in N, and f, g and h are arbitrary total recursive functions. This statement is classically
provable, by choosing an n such that f(n) is the minimum in rng(f) = {f(n) | n ∈ N}. Such a
proof is essentially non constructive, since computing the minimum of rng(f) uniformly in f entails
decidability of the halting problem. This is not to say that we cannot find an m such that f(m) ≤
f(g(m)) ∧ f(m) ≤ f(h(m)) because, once we know the truth of (1), such an m can be found by
minimalization. Such a brute force algorithm has nothing to do with the proof we sketch above;
indeed it relies just on the existence of a proof, and could be hardly considered as its computational
content.
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On the other hand consider the functional:

F (f, g, h, x) = if f(x) > f(g(x)) then F (f, g, h, g(x))
else if f(x) > f(h(x)) then F (f, g, h, h(x)) else x

It is a total recursive functional: otherwise there would be an infinite descending sequence f(n0) >
f(n1) > · · · where n0, n1, . . . are the values of x in the recursive calls of F 1. Clearly F (f, g, h, n0)
computes a solution of the problem f(x) ≤ f(g(x)) ∧ f(x) ≤ f(h(x)), for any n0 ∈ N.

The functional F “learns” about the minimum of rng(f) from the counterexamples f(x) > f(g(x))
and f(x) > f(h(x)), by modifying its guess about the proper value of x, so effectively approximating
the uncomputable minimum of rng(f). What is implicit in this construction is the fact that any
computation of F can be resumed, and from any point in N, to get a better approximation of the
minimum of f that could be required in case of using (1) in some larger proof. Further there is
an internal “dialogue” between the search attempting to satisfy f(x) ≤ f(g(x)) and that to satisfy
f(x) ≤ f(h(x)), which is ruled by the particular protocol described in the definition of F : first
attempt to satisfy f(x) ≤ f(g(x)), then try to satisfy f(x) ≤ f(h(x)), and repeat in this order until
both goals are satisfied. However the two searches correspond to two distinct parts of the proof; so
they should be treated independently, and even computed in parallel. Therefore in the paper we
will factor out the internal protocol of interaction between them.

The shift from direct computation to search and learning can be understood as a change in the
denotation of terms and formulas. In the perspective proposed in this paper the interpretation of
a (closed) term t is not a number in N, but a function α in NS, where S is a partially ordered set of
“states of knowledge”. The value α(s) represents the guess about the value of t at state s. For this
to make sense we require that α is eventually constant along any ω-chain of states s0 ⊑ s1 ⊑ · · · :
we call such an α an “individual”. As a consequence also the meaning of a formula A, which in turn
depends on the denotations of the terms occurring in A, is an individual, this time in BS where
B is the set of booleans. As foretold, we interpret proofs into realizers. These are the core part of
strategies such that, given an individual α and an arbitrary initial state s0 we can build a sequence
out of s0 always reaching some larger s′ ⊒ s0 effectively and within a finite number of steps, such
that if A(t) is the conclusion of the proof then A(α(s′)) is true in the standard model of arithmetic.

We work out the construction in the quantifier free theory PRA + EM1, which is essentially
primitive recursive arithmetic plus EM1, that is excluded middle restricted to Σ0

1 formulas. To
avoid technical difficulties due to the treatment of quantifiers, we express EM1 by means of choice
functions, which are not computable in general, though they are recursive in the limit.

Individuals are preserved by functions of a certain kind: we call them “convergent global” because
of the restricted use of the state parameter. Individuals and convergent global functions form a
category G, which turns out to be cartesian, and so it is suitable to interpret the language of the
theory PRA + EM1, which is a (multisorted) algebraic theory.

The interpretation of terms and formulas in G is one of the two pillars of our construction. The
second and most relevant one is the concept of “interactive realizer”. Realizers are individuals in
SS satisfying certain further conditions, implying that the prefixed points of any realizer, which
we abstractly see as the goal of the learning agent, are cofinal in S. Then we define the notion of
“interactive forcing” as a relation between a realizer, a tuple of individuals over N and a formula,
and prove that if a formula A(t) is a theorem of PRA + EM1 then there exists a realizer that, by
interacting with the state, forces any individual in NS interpreting t to satisfy the formula A(x).

Realizers are total recursive functionals. The construction of the realizer forcing a formula follows
the proof of the formula itself. Realizers interpreting subproofs are combined by a binary operation
which we call “merge”. The merge operation is a parameter of our construction, expressing the in-
ternal protocol of interaction between subproofs. It is axiomatically defined, without committing
to particular and somewhat arbitrary definitions, and obtaining at the same time a compositional
interpretation of proofs. Moreover those parts of the proof which do not have computational mean-
ing are automatically interpreted into a trivial realizer, that is the unit of the merge; therefore the
realizer obtained in this way is a representation of the computational content of the given proof.

1This is a semiconstructive argument, but the totality of F can be constructively established by well founded induction.
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1.1. Related Work

The idea of interactive realizability appeared first in [Berardi 2005] and developed in [Berardi
and de’Liguoro 2008], together with the theory PRA + EM1. The original construction was quite
involved, due to the fact that a realizer was deemed to compute directly its least fixed point above
a given state. In [Aschieri and Berardi 2010] and [Aschieri 2011] interactive realizers have been
extended to HA+EM1, by combining them with Kleene’s realizability. As a matter of fact one could
see Kleene realizability as a degenerate case of interactive realizability, where all realizers of atomic
formulas never access the state and are constantly equal to the empty state. In the same works
realizers of atomic formulas are regarded as adding to the state the missing facts, though moving
to the meta-level the recursive definition of the chain reaching a (pre) fixed point of the realizer, a
view that we adopt in the present paper. However the construction in [Aschieri and Berardi 2010]
is syntactical in nature, leaving implicit much of the mathematical properties of the realizers and
of the interpretation of formulas. On the other hand we are confident that the formulation in terms
of individuals can be extended to HA+EM1, where a realizer is not an “individual” in general. This
non trivial task is left for further work.

The origins of the present work are in Coquand’s “semantics of evidence” proposed in [Coquand
1995]. Under the influence of Gold’s ideas in [Gold 1965; 1967] and of Hayashi’s Limit Computable
Mathematics (see e.g. [Hayashi 2006]) we have rephrased the dialogic interpretation of classical
arithmetic by Coquand into a general theory of “learning” and “well founded limits” in [Berardi and
de’ Liguoro 2009], where the logical complexity of the goal is reflected by a ranking of the corre-
sponding limit. We claim that interactive realizability is an instance of limit construction of rank 1,
which is 1-backtracking in terms of [Berardi et al. 2005]. A study relating interactive realizability
to 1-backtracking is [Aschieri 2010].

2. PROGRAM EXTRACTION IN THE THEORY PRA + EM1

The theory of primitive recursive arithmetic, called PRA in [Troelstra and van Dalen 1988] (see
vol. 1, chapter 3, section 2), is essentially the quantifier free fragment of Heyting arithmetic with
equality. The language L0 of PRA is a first order algebraic language with two sorts or ground types
Nat and Bool. It contains variables of type Nat2, the constants 0 of type Nat and succ of type Nat → Nat
for zero and successor respectively; further it includes a function symbol f, g, . . . of suitable types
Natk → Nat for each primitive recursive function, the symbol = of type Nat,Nat → Bool for equality
and the connectives ¬,∧,∨ and → seen as operators of type Bool → Bool and Bool,Bool → Bool

respectively. To this list we add symbols for primitive recursive predicates P,Q, . . . of types Natk →
Bool for the proper k, each with a fixed arity.

For presenting PRA we consider the following deductive system: the logical axioms are those of
IPC, the intuitionistic propositional calculus, plus the axioms for equality; the non logical axioms
include the defining equations of all primitive recursive functions and ¬ succ(0) = 0. As explained
in [Troelstra and van Dalen 1988], the formula succ(x) = succ(y) → x = y is derivable, and needs
not to be assumed as an axiom. Inference rules are:

A→ B A
MP

B

A(x)
SUB

A(t)

A(0) A(x) → A(succ(x))
IND

A(y)

where in rule SUB the premise A(x) has been derived from hypotheses not containing x.
By A(x) we mean that x possibly occurs in A, and A(t) denotes the same as the more explicit

writing A[t/x], namely the substitution of t for x in A. Although there are no bound variables in
the formulas of L0, we speak of the sets FV(t) and FV(A) of the free variables occurring in t and A
respectively.

Let us call EM1 the following schema, with A ∈ L0 such that FV(A) ⊆ ~x, y:

(EM1) ∀~x. ∃y A(~x, y) ∨ ∀y ¬A(~x, y).

2Variables of type Bool are are propositional letters, and they are considered only in the proof of Lemma 5.6.
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EM1 is just an instance of the law of excluded middle where ∃y A(~x, y) is a Σ0
1 formula with param-

eters, and it is called the Σ0
1-LEM principle in the hierarchy studied by Akama et alii in [Akama

et al. 2004]. EM1 uses nested quantifiers, hence it is not expressible by a formula in L0. To find a
quantifier free equivalent of EM1 let us consider its classically equivalent prenex and skolemized
normal form:

∀~x, y. A(~x, ϕ(~x)) ∨ ¬A(~x, y),

which in turn is equivalent to

∀~x, y. A(~x, y) → A(~x, ϕ(~x)). (2)

Definition 2.1 (The theory PRA + EM1). Let L1 be the language obtained by adding to L0 a
functional symbol ϕP and a predicate symbol χP of arity k for each k + 1-ary predicate symbol P
of L0. The theory PRA + EM1 is obtained by adding to the axioms of PRA the following axiom
schemata:

(χ) P(~x, y) → χP(~x)

(ϕ) χP(~x) → P(~x, ϕP(~x))

We do not add to L0 symbols for all Skolem functions for Peano arithmetic: only those relative to
primitive recursive functions are considered. Since any formula of L0 defines a primitive recursive
predicate, axioms (χ) and (ϕ) imply (2) and EM1, and in fact define a conservative extension of both
theories. The actual meaning of χP(~x) is the predicate ∃y. P(~x, y). Concerning the interpretation
of ϕP, a choice function for P, we note that the derivable implication P(~x, y) → P(~x, ϕP(~x)) is an
instance of the critical axiom of Hilbert’s ε-calculus [Hilbert and Bernays 1970], writing ϕP(~x) in
place of εyP(~x, y), with the restriction that P has to be primitive recursive.

The restriction to primitive recursive predicates P in the language and axioms of PRA + EM1

is responsible of the limitation to excluded middle of level 1, or equivalently of the fact that the
implicit quantifications provided by the symbols χP and ϕP are not nested. This would be the case
instead if we could use some ϕQ in the definition of the predicate P in χP or ϕP.

Let T be an arithmetical theory, possibly quantifier free to encompass the case of PRA+EM1. We
say that the program extraction problem in T has a solution if whenever T ⊢ A(~x, t(~x)) there exists
an effective procedure associating to a proof of A(~x, t(~x)) in T a recursive function p computing t,
that is for all ~m ∈ N, p(~m) = t(~m) is the number denoted by t when ~m is assigned to ~x in some
specified interpretation of T . With respect to the language L1 the intepretation of the new symbols
χP and ϕP in T is the central task to construct p.

Now it is an elementary fact of logic that neither (the meaning of) χP nor ϕP are computable in
general. More precisely, let I0 be the standard interpretation of L0 in Set, fixing [[Nat]]I0 = N as the
set of numbers, and [[Bool]]I0 = B = {true, false} as that of booleans, and interpreting functional and
predicate symbols by their recursion theoretic counterparts. Then I0 is a model of PRA, which we
refer to as the standard model. On the other hand, since PRA + EM1 is a subtheory of classical
arithmetic with Skolem maps, there exist infinitely many interpretations I of L1 which extend I0

and are models of PRA + EM1, though for some terms t and formulas A of L1, [[t]]I and [[A]]I are
not recursive in any model I of PRA + EM1. It follows that the program extraction problem in
PRA + EM1 is unsolvable w.r.t. any model. On the contrary we claim that if A(~x, t(~x)) is a theorem
of PRA + EM1, then there exists a recursive function p(~x) such that:

∀~m ∈ N ∃ I ⊇ I0. [[A(~m, t(~m))]]I = true & p(~m) = [[t(~m)]]I , (3)

where I ⊇ I0 is informal for I is an extension of I0 to L1. Note that I is just an interpretation of L1

and that it is not required that I |= PRA + EM1.
In (3) the interpretation I is implicitly computed by p depending on ~m. More precisely the com-

putation of p(~m) consists of the construction of an approximation of a model of the whole theory
PRA+EM1 accurate enough to validate (an instance of) A, a concept that we have to make precise.

Definition 2.2 (Consistency, Facts and States of Knowledge). Let P(~m, n),Q(~m′, n′), . . . be closed
atomic formulas of L0, with P,Q, . . . symbols of primitive recursive predicates:
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(1) P(~m, n) and Q(~m′, n′) are consistent if P ≡ Q and ~m = ~m′ implies n = n′, where ≡ is syntactical
identity;

(2) P(~m, n) is a fact if [[P(~m, n)]]I0 = true;
(3) a state of knowledge (shortly a state) is a finite set of pairwise consistent facts: we call S the set

of states of knowledge.

States of knowledge can be presented as a structure (S,⊑,⊥,⊔), where (S,⊑) is the partial order
defined by s ⊑ s′ if and only if s ⊆ s′; S has a bottom element ⊥ = ∅ and join of compatible states,
s ⊔ s′ = s ∪ s′, where s, s′ are compatible, written s ↑ s′, if s, s′ ⊑ s′′ for some s′′ ∈ S. S is also
downward closed, so that it is closed under (arbitrary non-empty) intersections.

From the fact that P ≡ Q is syntactical identity it follows that membership to S is decidable. By
the finiteness of the states s ∈ S, the order and the compatibility relations are computable, as well
as the join of two compatible states.

A state of knowledge s = {P1(~m1, n1), . . . ,Pk(~mk, nk)} is a finite piece of information about the
standard model I0 of PRA: it says for which tuples of natural numbers the predicates [[Pi]]

I0 are
known to be true. The consistency condition implies that in each state of knowledge s there exists
at most one witness n of the existential statement ∃y.P(~m, y), namely of χP(~m), for each predicate P
and tuple of natural numbers ~m. This n is taken below as the value of ϕP(~m) in the state s.

Definition 2.3. For each predicate symbol P of arity k+1, ~m = m1, . . . ,mk ∈ N and any (possibly
infinite) consistent set of facts S, let:

[[χP]](~m, S) =

{
true if P(~m, n) ∈ S for some n,
false otherwise.

Similarly define:

[[ϕP]](~m, S) =

{
n if P(~m, n) ∈ S for some n,
0 otherwise.

Because of the consistency condition the value of [[ϕP]](~m, S) is unique. However there exist consis-
tent sets of facts S such that [[ϕP]](~m, S) 6= [[ϕQ]](~m, S) even if P and Q are equivalent as predicates,
though they are different symbols. In this case either S includes some fact of P but not of Q, or
[[P]]I0 = [[Q]]I0 is a non functional predicate. This is no contradiction: ϕP and ϕQ are also different
symbols, and they might well denote different choice functions.

In case of a finite s ∈ S, both [[χP]](~m, s) and [[ϕP]](~m, s) are computable, while for a generic consis-
tent set of facts S they are not. Note that the decidability of [[χP]](~m, s) makes the default value 0
of [[ϕP]](~m, s) effectively distinguishable from its possible proper value 0, according to the fact that
P(~m, 0) ∈ s or not. In any case [[ϕP]] is a total function.

Any consistent set of facts S determines an interpretation IS of L1 via Definition 2.3; in fact,
while IS coincides with I0 for the symbols in L0, for the extra symbols χP and ϕP of L1 we set:

[[χP(~m)]]IS = [[χP]](~m, S) and [[ϕP(~m)]]IS = [[ϕP]](~m, S).

We are now in place to explain in which sense a state s is a finite approximation of model I of
PRA + EM1.

PROPOSITION 2.4. Let S be an arbitrary set of facts. Then S determines a model IS of PRA+EM1

if and only it is consistent and maximal w.r.t. inclusion. Vice versa any model I of PRA + EM1

extending the interpretation I0 determines a maximal consistent set of facts SI , and the constructions
IS and SI are inverse each other.

Moreover for any model I and expression E ∈ L1 (either a term or a formula) [[E]]I depends on a
finite s ⊆ SI only.

Proof. It is straightforward to see that IS models both (χ) and (ϕ) axioms. In particular, if
[[P(~m, n)]]IS = [[P(~m, n)]]I0 = true then P(~m, n) is a fact. Because of the maximality of S there ex-
ists n′ such that P(~m, n′) ∈ S, so that [[χP(~m)]]IS = true.
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Vice versa let I be a model of PRA + EM1, then

SI = {P(~m, n) | [[P(~m, n)]]I = true ∧ [[ϕP(~m)]]I = n}

is a maximal consistent set of facts. Clearly ISI
= I and SIS

= S.
That the interpretation [[E]]I depends on a finite s ⊆ SI (a state) is easily established by structural

induction, by observing in the base case that e.g. if E = χP(~m) for some P and ~m, then either
[[χP(~m)]]I = true so that we take s = {P(~m, [[ϕP(~m)]]I)}, or [[χP(~m)]]I = false, hence s = ⊥ = ∅.

By this proposition any model of PRA + EM1 extending I0 can be obtained as the union of an ω-
chain in S and the interpretation maps [[·]]I are Scott continuous (w.r.t. the canonical Scott topology
over the maximal consistent sets SI), and indeed computable. So a way to effectively approximate
a model I of PRA + EM1 is to devise a procedure generating a chain s0 ⊑ s1 ⊑ · · · in S such that
SI =

⋃
i si.

Because of the continuity of the interpretation maps, we know that to compute the value of an
expression of L1 it suffices a finite initial segment of a chain of states. This implies that, given a
theorem A(~x, t(~x)) of PRA + EM1 and values ~m for the variables ~x, we can effectively find a state
s such that A(~m, t(~m)) is true in s. The finite state s is sufficient to evaluate the term t(~m) in IS ,
solving the problem (3).

As a final remark we observe that, as in the case of (1) in the Introduction, once we know that
PRA + EM1 ⊢ A, a brute force search of some s making A true trivially exists: since facts are
recursively enumerable, it suffices to ensure that the relevant facts, if any, are eventually added to
the state.

However the result we obtain in Section 5 is much stronger, because we obtain a constructive
interpretation of proofs in PRA + EM1, which cannot be achieved by means of the trivial search
algorithm.

3. THE CATEGORY OF INDIVIDUALS AND CONVERGENT GLOBAL FUNCTIONS

In this section we treat the mathematical structure in which we interpret both terms and formulas
of L1 as well as the proofs of PRA + EM1. We introduce the concepts of individuals and of functions
preserving them, which we call global and convergent functions. An individual on X is a mapping
from S to X satisfying a convergence property along any ω-chain of states.

In the following we work with subcategories of Set. We use the simply typed λ-calculus as a
metanotation for functions, and types for sets. Because of the well known isomorphism X × Y →
Z ≃ X → (Y → Z), the same function will be written both in the uncurrified form: f(x, y) and in
the currified one: f x y, according to convenience; also the more familiar notation f(x) is preferred
to f x. We write λ : Z .x, or simply λ .x when Z is understood, to denote the function from Z to X
constantly equal to x.

Definition 3.1 (Individuals and Convergent Global Functions). Let X be any set; we say that a
map u : N → X has a limit point x = limi u(i) ∈ X if

∃i ∀j. u(i) = u(i+ j) = x.

A map σ : N → S is an ω-chain over S if σ(i) ⊑ σ(j) for all i ≤ j. A map α ∈ XS is an individual of X
if α ◦ σ : N → X has a limit point for all ω-chain σ. We denote by I(X) the set of individuals of X .

A function g : XS → Y S has a global state, shortly it is global, if

g(α, s) = g(λ : S .α(s), s),

for all α ∈ XS and s ∈ S. A global g is convergent if g(λ : S .x) is an individual for all x ∈ X .

Global functions can evaluate their functional argument α in the second argument s only: that is
they have essentially a unique global state, whence the name. In fact a non global f : XS → Y S

is easily constructed by violating this constrain: let α ∈ XS and h : S → S be such that h(s) = s′

and α(s) 6= α(s′) for certain s, s′ ∈ S; then the function f := λβ .β ◦ h is not global since f(α, s) =
α(h(s)) = α(s′), while f(λ .α(s), s) = (λ .α(s))(h(s)) = α(s).
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A global function is determined by its values over constant individuals λ .x. In fact there exists
an extension mapping ∗ associating uniquely a convergent global function f∗ : XS → Y S to any
function f : X → Y S such that f(X) ⊆ I(Y ).

PROPOSITION 3.2. Let f : X → Y S be such that f(x) ∈ I(Y ) for all x ∈ X . Then there exists a
unique convergent global f∗ : XS → Y S such that the following diagram commutes:

X

XS

ηX

?
f∗

- Y S

f

-

where ηX(x) = λ .x for all x ∈ X . Moreover all the convergent global functions arise in this way.

PROOF. Define f∗(α, s) = f(α(s), s) for α ∈ XS and s ∈ S. Then

f∗(α, s) = f(α(s), s) = f((λ .α(s))(s), s) = f∗(λ .α(s), s)

so that f∗ is global. Now

(f∗◦ ηX)(x, s) = f∗(λ .x, s) = f(x, s)

which implies that the diagram commutes and, at the same time, that f∗ is convergent global by
the hypothesis on f . On the other hand if g ◦ ηX = f for some (convergent) global g then, since
λ .α(s) = ηX(α(s)), we have

g(α, s) = g(λ .α(s), s) = (g◦ ηX)(α(s), s) = f(α(s), s),

so that g(α, s) = f∗(α, s).
Finally given any convergent global g : XS → Y S take ĝ : X → Y S defined by g◦ ηX , that is by

x 7→ g(λ .x): then for all x ∈ X it is the case that ĝ(x) ∈ I(Y ) by the hypothesis, and g = ĝ∗.

From the proof above we get a characterization of the convergent global functions in terms of the
∗ operation, together with its inverse ĝ(x) = g(λ .x).

The actual content of the last proposition is that (S, η, ∗) where:

S(X) = XS

ηX(x) = λ .x
f∗(α, s) = f(α(s), s)

is a Kleisli triple over Set, hence a monad. It is in fact a strong monad in the sense of [Moggi 1991],
with (unique) tensorial strength tX,Y : X × SY → S(X × Y ) given by:

tX,Y (x, α) = λs : S. (x, α(s))

It is a submonad of Moggi’s side-effect monad (X × S)S, also called “state monad” in the functional

programming community. Indeed we might think of S as the space of stores Val
Loc where Val = N∪B

and Loc = {ϕP(~m), χP(~m) | P ∈ L0, ~m ∈ N}, so that [[ϕP]](~m, s) and [[χP]](~m, s) are the values of the
basic lookup primitives applied to the “store” s. No state update operation is provided by the monad
S: this shall be regarded in the next sections as an external action over individuals instead.

The next theorem establishes that a convergent global function sends individuals to individuals.
Note that in the example before Proposition 3.2, if h is an individual (which makes sense as h ∈
SS) then the non global f still sends individuals to individuals, so that the latter property is not
sufficient for a function to be global.

THEOREM 3.3 (CONVERGENCE THEOREM). If g : XS → Y S is global and convergent then g(α) ∈
I(Y ) for all individuals α ∈ I(X).
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PROOF. Let α ∈ XS be an individual; then for any ω-chain of states σ there exists i0 ∈ N such
that for all j ≥ i0, α(σ(i0)) = α(σ(j)). Since g is global, we know that g(α, s) = g(λ .α(s), s) for all
s ∈ S; therefore

g(α, σ(j)) = g(λ .α(σ(j)), σ(j)) = g(λ .α(σ(i0)), σ(j)),

for all j ≥ i0. By the hypothesis that g(α) is an individual for all constant α it follows that
g(λ .α(σ(i0))) ∈ I(Y ), so that there exists i1 such that for all k ≥ i1,

g(λ .α(σ(i0)), σ(k)) = g(λ .α(σ(i0)), σ(i1)).

Then for all h ≥ max(i0, i1):

g(α, σ(h)) = g(λ .α(σ(i0)), σ(h)) = g(λ .α(σ(i0)), σ(i1)).

We conclude that g(α) ∈ I(Y ).

COROLLARY 3.4. If f : XS → Y S and g : Y S → ZS are (convergent) global then g ◦ f is such.

PROOF. For all α ∈ XS and s ∈ S:

(g ◦ f)(α, s) = g(f(α), s) = g(λ .f(α, s), s) = g(λ .f(λ .α(s), s), s).

On the other hand:

(g ◦ f)(λ .α(s), s) = g(f(λ .α(s)), s) = g(λ .f(λ .α(s), s), s),

hence (g ◦ f)(α, s) = (g ◦ f)((λ α(s), s) and g ◦ f is a global function. Moreover, if both f and g are
convergent, we have that β = f(λ .x) is an individual, so that (g ◦ f)(λ .x) = g(β) is an individual
by Theorem 3.3. We conclude that g ◦ f is convergent.

Since IdXS : XS → XS with IdXS(α, s) = α(s) = (λ .α(s))(s) is global and trivially convergent, we
have that the following is a category.

Definition 3.5 (The Category of Individuals and Convergent Global Functions). The category of
individuals and convergent global functions G is defined by the following data:

(1) the objects of G are sets of individuals U ⊆ I(X), for any set X ;
(2) if U ⊆ I(X) and V ⊆ I(V ), g ∈ G(U, V ) if and only if g : U → V in Set and there exists a

convergent global g′ : XS → Y S such that g = g′ ↾ U .

For U ∈ |G|, U ⊆ I(X) and α ∈ U define rng(α) = {α(s) | s ∈ S} ⊆ X and rng(U) =
⋃
{rng(α) |

α ∈ U}. Then U ⊆ I(rng(U)), and this is strict inclusion in general: take a non empty set X and
U = {λ .x | x ∈ X}, so that rng(U) = X and U ⊂ I(X). The identity IdU is the identity of U in Set,
which can be considered as the restriction of the convergent global IdXS to U , where X = rng(U).
Composition in G is ordinary composition in Set. So G is a subcategory of Set.

As a matter of fact the set valued function I extends to a functor, which is a submonad of (−)S, in
virtue of Proposition 3.2. However G is not the Kleisli category of I. This is due to the freedom in
choosing subsets of any I(X) as objects of G and to the fact that the topology over XS considered in
the definition of convergence is coarse. Indeed take X = {0, 1}, and U = {λ .0, λ .1} ⊆ I(X); consider
the map f : X → U defined by x 7→ λ .x, and take α : S → X be such that α(⊥) = 0 and α(s) = 1
whenever s 6= ⊥. Then α ∈ I(X), and for all s ∈ S, f(α(s)) ∈ U ; but f∗(α, s) = f(α(s), s) = α(s) for
all s, so that f∗(α) = α 6∈ U .

Given g ∈ G(U, V ) we shall write g′ : rng(U)S → rng(V )S to indicate some convergent global
function s.t. g = g′ ↾ U , which exists by definition, though it is not uniquely determined by g; indeed
g′ is unique if U includes all the constant individuals.

PROPOSITION 3.6. G is cartesian. More precisely ifX = rng(U) and Y = rng(V ) then the product

U ×G V in G is given by {〈α, β〉 | α ∈ U, β ∈ V } ⊆ I(X × Y ), with projections πU,V
i = πX,Y

i ◦ , where

πX,Y
i are the projections of X × Y in Set. For all W ⊆ I(Z) and pair of morphisms f ∈ G(W,U) and
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g ∈ G(W,V ) it turns out that 〈f ′, g′〉 = 〈f̂ ′, ĝ′〉∗ where f = f ′ ↾ W and g = g′ ↾ W . It follows that the
product morphism in G(W,U ×G V ) is

〈f, g〉G = 〈f ′, g′〉 ↾ W.

PROOF. First observe that the functor S = ( )S, with arrow part Sh = h◦ , preserves all
limits, so in particular it is a cartesian functor. Hence we have that (X × Y )S ≃ XS × Y S,

SπX,Y
i = πXS,Y S

i = πX,Y
i ◦ and if h : Z → X and k : Z → Y then S〈h, k〉 = 〈Sh,Sk〉, where the

last equalities are understood up to isomorphism of their domain and codomain respectively. Since

S is also a monad with Kleisli extension ∗, we have that e.g. SπX,Y
1 = (ηX◦ πX,Y

1 )∗, which by Propo-

sition 3.2 implies that the SπX,Y
i for i = 1, 2 are global functions. They are also convergent, because

e.g. (πX,Y
1 ◦ )(λ .(x, y)) = λ .x.

Finally let us identify f ′ : ZS → XS and g′ : ZS → Y S with f : W → U and g : W → V respectively,
and consider the diagram:

Z

(X × Y )S ≃ XS × Y S

〈f̂ , ĝ〉

?

ZS
f̂∗ = f

-

�

ηZ

〈f̂ ,
ĝ〉
∗

-

XS

f̂

-

π X S
,Y S1

-

Then f̂ = πXS,Y S

1 ◦ 〈f̂ , ĝ〉 being 〈f̂ , ĝ〉 the product arrow in Set, 〈f̂ , ĝ〉 = 〈f̂ , ĝ〉∗◦ ηZ and f̂ = f̂∗◦ ηZ by
Proposition 3.2. So that:

f̂ = πXS,Y S

1 ◦ 〈f̂ , ĝ〉 = πXS,Y S

1 ◦ 〈f̂ , ĝ〉∗◦ ηZ

which, by 3.2 again, implies f = f̂∗ = πXS,Y S

1 ◦ 〈f̂ , ĝ〉∗. Similarly we have that g = ĝ∗ = πXS,Y S

2 ◦ 〈f̂ , ĝ〉∗.

We then conclude that 〈f̂ , ĝ〉∗ = 〈f, g〉 since 〈f, g〉 is the unique arrow in Set such that f =

πXS,Y S

1 ◦ 〈f, g〉 and g = πXS,Y S

2 ◦ 〈f, g〉. By this and Proposition 3.2 we also know that 〈f, g〉 (i.e. 〈f̂ , ĝ〉∗)
is global. To see that 〈f, g〉 is convergent note that 〈λ .x, λ .y〉 = λ .(x, y).

We end this section by extending the notion of convergent global function to k-ary functions.

Definition 3.7 (Convergent k-Global Functions). Let f : XS
1 × · · · × XS

k → Y S, with k ≥ 1, be a
function; then f is k-global if and only if for all α1 ∈ XS

1 , . . . , αk ∈ XS

k and s ∈ S

f(α1, . . . , αk, s) = f(λ .α1(s)), . . . , λ .αk(s), s).

It is convergent if also f(λ .x1, . . . , λ .xk) ∈ I(Y ) for all x1 ∈ X1, . . . , xk ∈ Xk.

Define

ψX1,...,Xk
: XS

1 × · · · ×XS

k −→ (X1 × · · · ×Xk)S

(α1, . . . , αk) 7→ 〈α1, . . . , αk〉

LEMMA 3.8. For all X1, . . . , Xk, ψX1,...,Xk
is an iso with inverse γ 7→ (π1 ◦ γ, . . . , πk ◦ γ), and it is

such that for any f : XS
1 × · · · ×XS

k → Y S there exists a unique f̄ : (X1 × · · · ×Xk)S → Y S such that
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f = f̄ ◦ ψX1,...,Xk
that is the following diagram commutes:

XS

1 × · · · ×XS

k

f
- Y S

(X1 × · · · ×Xk)S

f̄

-

ψ
X
1 ,...,X

k
-

Moreover f is (convergent) k-global if and only if f̄ is (convergent) global.

PROOF. That ψX1,...,Xk
is an iso follows by induction over k and the fact that XS × Y S ≃ (X ×

Y )S are isomorphic via the map (α, β) 7→ 〈α, β〉. Being an iso in Set, it sends k-tuples of constant
functions into constant functions, which can be seen directly by observing that:

ψX1,...,Xk
(λ .x1, . . . , λ .xk) = 〈λ .x1, . . . , λ .xk〉 = λ .(x1, . . . , xk).

The rest is obvious since f̄ must be f◦ψ−1
X1,...,Xk

.

Notably the isomorphisms ψ are definable in terms of the tensorial strength t of S, along the lines
of Remark 3.6 in [Moggi 1991], from which we borrow the notation.

4. INTERACTIVE REALIZERS

This section introduces the central concept of interactive realizer which, together with the related
notion of interactive forcing in the next section, are the main contribution of our work. Realizers
have been introduced by Kleene as an interpretation of Brouwer’s and Heyting’s concept of con-
struction. In the case of constructive theories a realizer is a direct computation, possibly depending
on some parameters. With a non constructive theory like PRA + EM1 the saving of such an idea
involves the shift from recursiveness to recursiveness in the limit and learning in the sense of Gold.
In this perspective a realizer is not an algorithm (a recursive function), rather it is the recursive
generator of a search procedure that, along a series of attempts and failures, eventually attains its
goal.

Formally, interactive realizers are certain maps over S. They tell which facts have to be added to
a state to reach their goals. The goals of a realizer are abstractly defined as the states to which the
realizer does not add any fact, because the goal is attained.

Definition 4.1 (Interactive Realizers). An interactive realizer (shortly a realizer) is a map r ∈ SS,
such that:

(1) r ∈ I(S);
(2) r(s) ↑ s for all s ∈ S;
(3) r(s) ∩ s = ⊥ for all s ∈ S.

We call R the set of realizers. A state s ∈ S is a prefix point of r ∈ R if r(s) ⊑ s; we set Prefix (r) =
{s ∈ S | r(s) ⊑ s}.

By clause (1) the realizers are particular individuals over S. Note that identity over S is not
convergent, and so it is not a realizer. Compatibility condition (2) is essential, together with conver-
gence, for the existence of pre-fixed points (see below). The function λ .⊥ is a (trivial) realizer and,
because of clause (3), the only one among constant individuals.

By clause (3), if r is a realizer then s ∈ Prefix (r) if and only if r(s) = ⊥, because r(s) ⊑ s implies
r(s) = r(s) ∩ s = ⊥. This clause is just intended to simplify the treatment of realizers by making
them irredundant in the sense that r(s) just adds only “new” facts to s; hence r(s) ⊑ s means that
there is actually nothing to add.

PROPOSITION 4.2 (COFINALITY OF REALIZERS PREFIX POINTS). If r ∈ R then for all s ∈ S

there is s′ ∈ Prefix (r) such that s ⊑ s′, namely Prefix (r) is cofinal in S (in particular it is non empty).
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PROOF. Given s ∈ S define the mapping σ : N → S by σ(0) := s and σ(i + 1) := σ(i) ⊔ r(σ(i)),
which exists because of the compatibility of r with its argument. By construction σ is an ω-chain,
hence by the convergence of r, r ◦ σ has a limit σ(i0) for some i0, that is r(σ(i0)) = r(σ(i0 + 1)). Then

σ(i0 + 1) = σ(i0) ⊔ r(σ(i0)) = σ(i0) ⊔ r(σ(i0 + 1)),

which implies r(σ(i0 + 1)) ⊑ σ(i0 + 1); clearly s = σ(0) ⊑ σ(i0 + 1) ∈ Prefix (r).

Realizers can be combined by lifting to SS a binary operation over S which we call merge.

Definition 4.3 (Merge). A merge is a mapping • : S × S → S such that, for all s1, s2 ∈ S:

(1) (S, •,⊥) is a monoid;
(2) if s1 • s2 = ⊥ then s1 = ⊥ = s2;
(3) s1 • s2 ⊆ s1 ∪ s2.

The merge of two states aims to remedy the partiality of the join in S. To this end s1 • s2 is some
consistent choice of facts in s1 ∪ s2, a set which in general is not consistent. Any merge has ⊥ as
unit, because when ⊥ is merged with any s a consistent choice is s itself. Associativity is a natural
requirement, though commutativity would be too restrictive. Clause (2) says that s1 • s2 always
saves same facts from s1 ∪ s2 a soon as s1 ∪ s2 is non empty; it will be essential in the proof of
Proposition 4.7.

LEMMA 4.4. If • is a merge then for all s, s1, s2 ∈ S:

(1) if s ↑ s1 and s ↑ s2 then s ↑ (s1 • s2);
(2) if s ∩ s1 = s ∩ s2 = ⊥ then s ∩ (s1 • s2) = ⊥.

PROOF. (1): s 6↑ (s1 • s2) implies that there exists a ∈ s1 • s2 such that s 6↑ {a}. Since s1 • s2 ⊆
s1 ∪ s2, it is the case that a ∈ si for either i = 1 or i = 2, contradicting s ↑ s1 and s ↑ s2.

(2): we observe that s∩ (s1 • s2) ⊆ s∩ (s1∪s2) = (s∩s1)∪ (s∩s2), hence if (s∩s1)∪ (s∩s2) = ⊥ = ∅
then s ∩ (s1 • s2) = ⊥.

Merge operations do exist. A very simple example consists in dropping one of the merged states.

PROPOSITION 4.5. The following mapping is a merge:

s1 •0 s2 =

{
s1 if s1 6= ⊥,
s2 otherwise.

PROOF. It is immediate that s1 •0 s2 ∈ S for all s1, s2 ∈ S.
For all s ∈ S, ⊥ •0 s = s. If s = ⊥ then s •0 ⊥ = ⊥ = s. On the other hand if s 6= ⊥ then s •0 ⊥ = s:

hence ⊥ is the unit of •0.
Let s1 = ⊥, then

(s1 •0 s2) •0 s3 = s2 •0 s3 = s1 •0 (s2 •0 s3).

Else, if s1 6= ⊥ then

(s1 •0 s2) •0 s3 = s1 •0 s3 = s1 = s1 •0 (s2 •0 s3).

Therefore (1) of Definition 4.3 holds.
If s1 6= ⊥ then s1 •0 s2 = s1 6= ⊥; similarly if s1 = ⊥ and s2 6= ⊥ then s1 •0 s2 = s2 6= ⊥, so that

condition (2) of Definition 4.3 follows by contraposition.
Finally s1 •0 s2 = si for either i = 1, 2, hence (3) of Definition 4.3 is satisfied.

Remark 4.6. The map •0 is essentially a selector of non ⊥-states, with a bias toward its first
argument: it considers the second argument just in case the first one is not informative at all. In
particular it is not commutative, while it is clearly idempotent: s •0 s = s. It is a very simple, though
crude example of merge. Beside it and its symmetric s1 •′0 s2 := s2 •0 s1, there exist other examples
of merge that one could consider. We mention two of them omitting proofs.

— A “parallel” non-commutative merge. Define s̃ = {P(~m, n) | ∃n′.P(~m, n′) ∈ s}, and set

s1 •1 s2 := s1 ∪ (s2 \ s̃1).
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This merge saves all of the information in s2 which is consistent with s1, while in case of incon-
sistency, the elements of s1 prevail: hence it is not commutative, and its symmetric is a different
merge. This is the merge operation used in [Aschieri and Berardi 2010].

— A “parallel” commutative merge. For any X ⊆
⋃

S define X̂ := {P(~m, n) ∈ X | ∀P(~m, n′) ∈ X.n ≤
n′}. Then we set:

s1 •2 s2 := ŝ1 ∪ s2.

The effect of X̂ is, for all predicate P and vector of numbers ~m, to select, among all possibly in-
consistent facts P(~m, n1),P(~m, n2), . . . in X , the fact P(~m, ni), where ni is the minimum among

n1, n2, . . .. It follows that X̂ is always consistent and, if X is finite, it is an element of S. Moreover

X̂ ⊆ X and
̂̂
X = X̂, hence it is an interior operator. The remarkable property of •2 is commuta-

tivity. This merge appears in [Berardi 2005].

We observe that •0, •1 and •2 are all computable functions.

Fix a merge operation •, and define •S := S( •)◦ψS,S, so that for any r, r′ ∈ R and s ∈ S we have:

(r •S r′)(s) = r(s) • r′(s)

where ψS,S(r, r
′) = 〈r, r′〉.

PROPOSITION 4.7. For any pair of realizers r, r′ ∈ R, r •S r′ is a realizer such that:

Prefix (r •S r′) = Prefix (r) ∩ Prefix (r′).

PROOF. By Proposition 3.2 and Lemma 3.7, •S is a binary convergent global function, so that
r •S r′ ∈ I(S). For any s ∈ S we know that s ↑ r(s) and s ↑ r′(s); now (r •S r′)(s) = r(s) • r′(s) for all
s ∈ S and we conclude that s ↑ (r(s) • r′(s)) by (1) of Lemma 4.4.

By (3) of Definition 4.1, r(s) ∩ s = ⊥ = r′(s) ∩ s; by (2) of Lemma 4.4 this implies:

(r •S r′)(s) ∩ s = (r(s) • r′(s)) ∩ s = ⊥.

This concludes the proof that r •S r′ is a realizer. This fact implies that Prefix (r •S r′) = {s ∈ S |
r(s) • r′(s) = ⊥}: by (2) of Definition 4.3 we know that r(s) • r′(s) = ⊥ implies both r(s) = ⊥ and
r′(s) = ⊥, namely that Prefix (r •S r′) ⊆ Prefix (r) ∩Prefix (r′). Viceversa, if s ∈ Prefix (r)∩Prefix (r′)
then r(s) = ⊥ = r′(s), so that, by ⊥•⊥ = ⊥, we have that r(s) •r′(s) = ⊥, that is s ∈ Prefix (r •Sr′).

COROLLARY 4.8. The structure (R, •S , λ .⊥) is a monoid in G.

PROOF. By Proposition 4.7, (R, •S , λ .⊥) is a sub monoid of (SS, •S , λ .⊥). It is a monoid in G
since R ⊆ I(S) and •S is global and convergent.

5. INTERACTIVE FORCING AND THE INTERACTIVE REALIZABILITY THEOREM

We define the interpretation of L1 in the category G following the standard pattern of multisorted
algebras or of algebraic type theory in the terms of [Crole 1993] chapter 3, which suffices because
of the lack of quantifiers. First set [[Nat]]G = I(N) ⊆ NS and [[Bool]]G = I(B) ⊆ BS. Next we proceed by
constructing an interpretation [[·]]S into the larger category Set

∗

S , which is isomorphic to the Kleisli
category SetS having sets of the shape S(X) = XS as objects, and maps f∗ : XS → Y S for f : X → Y S

as arrows. Since G can be faithfully embedded into Set
∗

S , we define the interpretation [[·]]G of terms
and formulas in L1 by restricting the respective interpretations in Set

∗

S to the individuals in I(N)
and I(B).

Let ψNk : (NS)k → (Nk)S denote ψN,...,N with k occurrences of N in the subscript of ψ. We begin with
the symbols in L0 ⊆ L1. For a k-ary functional symbol f ∈ L0, where [[f]]I0 : Nk → N, we define:

[[f]]S : (NS)k → N
S by [[f]]S = S([[f]]I0)◦ψNk .

In particular if [[n]]I0 = n, then thinking of n as a point n : 1 → N in Set, we have [[n]]S = S(n) =
(ηN◦n)∗ = λ .n : 1S → NS, where 1S ≃ 1 is terminal in G.
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Similarly if Q ∈ L0 is a k-ary predicate symbol we set:

[[Q]]S : (NS)k → B
S where [[Q]]S = S([[Q]]I0)◦ψNk .

Let ϕP ∈ L1 be the k-ary functional symbol associated to the k + 1-ary predicate symbol P ∈ L0; we
define:

[[ϕP]]S : (NS)k → N
S by [[ϕP]]S = [[ϕP]]∗◦ψNk .

Analogously, in the case of the k-ary predicate symbol χP ∈ L1, we set:

[[χP]]S : (NS)k → B
S where [[χP]]S = [[χP]]∗◦ψNk .

Finally if
·
¬: B → B is the boolean negation, and

·

∧,
·

∨,
·
→ B × B → B the binary boolean functions for

conjunction, disjunction and implication respectively, then define

[[¬]]S = S(
·
¬) and [[∧]]S = S(

·

∧)◦ψB,B

and similarly for the other connectives.

Definition 5.1. An environment is a finite map ξ : dom(ξ) → NS, where dom(ξ) ⊆ Var , which is
the set of variables of type Nat (term variables); if t ∈ L1 is a term and FV(t) ⊆ dom(ξ), define [[t]]Sξ
inductively:

[[x]]Sξ = ξ(x) [[f(t1, . . . , tk)]]Sξ = [[f]]S([[t1]]
S

ξ, . . . , [[tk]]Sξ)

[[n]]Sξ = [[n]]S [[ϕP(t1, . . . , tk)]]Sξ = [[ϕP]]S([[t1]]
S

ξ, . . . , [[tk]]Sξ)

If A ∈ L1 is a formula and FV(A) ⊆ dom(ξ), define [[A]]Sξ inductively:

[[Q(t1, . . . , tk)]]Sξ = [[Q]]S([[t1]]
S

ξ, . . . , [[tk]]Sξ) [[¬A]]Sξ = [[¬]]S([[A]]Sξ)

[[χP(t1, . . . , tk)]]Sξ = [[χP]]S([[t1]]
S

ξ, . . . , [[tk]]Sξ) [[A ⋆ B]]Sξ = [[
·
⋆]]S([[A]]Sξ, [[B]]Sξ)

for ⋆ = ∧,∨,→.

Unraveling the definition we have that for all s ∈ S:

[[f(t1, . . . , tk)]]Sξ(s) = [[f]]I0([[t1]]
S

ξ(s), . . . , [[t1]]
S

ξ(s))

and

[[ϕP(t1, . . . , tk)]]Sξ(s) = [[ϕP]]([[t1]]
S

ξ(s), . . . , [[t1]]
S

ξ(s), s).

Similar equations hold in the case of formulas. Note that the equality is not treated as a logical
symbol, rather as the corresponding (primitive recursive) predicate of L0.

If ~α is a k-tuple in (NS)k, ~x a k-tuple of variables and ξ an environment, we denote by ξ[~α/~x] the
environment ξ′ such that dom(ξ′) = dom(ξ) ∪ ~x, ξ′(xi) = αi for all 1 ≤ i ≤ k and ξ′(y) = ξ(y) for all
y 6∈ ~x.

PROPOSITION 5.2. If t, A ∈ L1 are a term and a formula respectively and ~x a k-tuple of variables
including FV(t) and FV(A), then the following are convergent global functions:

λ~α : (NS)k.[[t]]S[~α/~x], λ~α : (NS)k.[[A]]S[~α/~x].

PROOF. By a straightforward induction. The only non trivial cases concern [[ϕP]]S and [[χP]]S. By
Proposition 3.2 these are global and convergent if [[ϕP]] and [[χP]] send tuples ~m of natural numbers
into individuals. Let σ : N → S be any ω-chain in S. For all i ∈ N we have:

([[ϕP]](~m)◦ σ)(i) = [[ϕP]](~m, σ(i)).

If for all n and i it is the case that P(~m, n) 6∈ σ(i) then [[ϕP]](~m, σ(i)) is constantly 0 which is the limit
trivially; otherwise there exists n′ and i0 such that P(~m, n′) ∈ σ(i) for all i ≥ i0, so that the limit of
[[ϕP]](~m)◦ σ exists and it is n′, which is uniquely determined by the consistency of the σ(i).

The case of [[χP]] is similar.
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The relevant consequence of Proposition 5.2 is that the interpretation [[·]]S is actually in the cate-
gory G. If ~x ⊇ FV(t) we write [[t]]S to denote ambiguously its k-ary instance λ~α : (NS)k.[[t]]S[~α/~x] for all

k ≥ |~x|. Then [[t]]G = [[t]]S ↾ I(N)k is well defined, and similarly for [[A]]G = [[A]]S ↾ I(N)k.

The next step is to relate interactive realizers and their prefix points to formulas in L1.

Definition 5.3 (Interactive Forcing). Let r ∈ R be a realizer, α ∈ I(X) and Y = {Ys | s ∈ S} a
family of subsets of X indexed over S. Then r interactively forces α into Y , written r  α : Y , if for
all s ∈ Prefix (r) it is the case that α(s) ∈ Ys.

In the standard interpretations of arithmetic the semantics of a formula A with (free) variables
included into ~x = x1, . . . , xk is a k-ary relation over N, which is the extension of the formula. In our
interpretation the extension of A is the S-indexed family of sets ext(A) := {ext(A)s | s ∈ S} where:

ext(A)s := {~m | |~m| ≥ |FV(A)| & [[A]]G(
−−→
λ .m, s) = true}.

Here ~m = m1, . . . ,mk is a k-ple of natural numbers and
−−→
λ .m = λ .m1, . . . , λ .mk. We are now in

place to define the interactive forcing of the formula A in terms of the extension of A.

Definition 5.4 (Interactive Forcing of a Formula). Let r ∈ R be a realizer, A ∈ L1 a formula with
FV(A) ⊆ ~x = x1, . . . , xk, and ~α = α1, . . . , αk ∈ I(N). Then we say that r interactively forces ~α into A,
written r  ~α : A(~x), if and only if r  〈α1, . . . , αk〉 : ext(A).

The intuitive idea of the forcing relation r  ~α : A(~x) is that, whenever the variables ~x including
all the free variables of A are interpreted by the individuals ~α, the sequence generated by r out of
an arbitrary s0 will eventually reach (in a finite number of steps) some state s ∈ Prefix (r) such that
~α(s) ∈ ext(A)s. In this sense A is the actual goal of r. This is however a subtly complex task: the
action of r is to direct ~α into ext(A) by extending the given state; but we must keep in mind that
such a search aiming at the target ext(A)s for some s, moves the target itself (which depends on s)
as a side effect. Note also that:

〈α1, . . . , αk〉(s) = (α1(s), . . . , αk(s)) ∈ ext(A)s ⇔ [[A]]G(
−−−−→
λ .α(s), s) = [[A]]G(~α, s) = true.

By the fact that we do not ask that the free variables of A are exactly ~x, but only included among
them, the sets ext(A)s contain tuples of different length (thought there is a minimum length which

is the cardinality of FV(A)), which implies that if r  ~α : A(~x) then r  ~α, ~β : A(~x, ~y) for all vectors ~y

and ~β such that |~y| = |~β|.

5.1. The Interactive Realizability Theorem

We are now in place to establish the main result of the paper, namely the correctness of our inter-
pretation, going through a series of lemmas.

LEMMA 5.5 (SUBSTITUTION LEMMA). For all t, t′, A ∈ L1, environment ξ such that FV(t) ∪
FV(t′) ∪ FV(A) ⊆ dom(ξ) and variable x:

[[t′[t/x]]]Sξ = [[t′]]Sξ[[[t]]S
ξ
/x] and [[A[t/x]]]Sξ = [[A]]Sξ[[[t]]S

ξ
/x].

PROOF. By a straightforward induction over t′ and A.

LEMMA 5.6. Let A ∈ L1. If A is either a non logical axiom of PRA, or (an instance of) a logical
axiom of IPC, or an instance of the (ϕ)-axiom, then [[A]]Sξ(s) = true for any environment ξ and state s.

PROOF. If t, A ∈ L0 let us write [[t]]I0
ρ and [[A]]I0

ρ for the respective interpretations of t and A in the
standard model w.r.t. some standard environment ρ : dom(ρ) → N such that FV(t)∪FV(A) ⊆ dom(ρ).
Then an immediate consequence of the interpretation of symbols in L0 by pointwise lifting of their
standard interpretations is that for all environment ξ such that FV(t) ∪ FV(A) ⊆ dom(ξ) and s ∈ S:

[[t]]Sξ(s) = [[t]]I0

ρξ,s
and [[A]]Sξ(s) = [[A]]I0

ρξ,s
, where dom(ρξ,s) = dom(ξ) and ρξ,s(x) = ξ(x, s),
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which can be established by an easy induction over t and A. Now if A is a non logical axiom of PRA
then A ∈ L0 and [[A]]I0

ρ = true for any ρ, thus [[A]]Sξ(s) = [[A]]I0
ρξ,s

= true for any ξ and s.

Let A ∈ L1 be a logical axiom of IPC. Then there exists an axiom A′ of IPC, the proposi-
tional variables p1, . . . , pk and the formulas A1, . . . , Ak ∈ L1 such that A = A′[A1/p1, . . . , Ak/pk].
If η : PropVar → BS is an environment of the propositional letters, then by an obvious extension of
Lemma 5.5 to the propositional variables we have:

[[A′[A1/p1, . . . , Ak/pk]]]Sξ = [[A′]]Sξ,η where η(pi, s) = [[Ai]]
S

ξ(s).

The thesis follows by the fact that A′ is a tautology.
Eventually let A ≡ χP(~x) → P(~x, ϕP(~x)) be an instance of the (ϕ)-axiom, where P is a primitive

recursive predicate, and let ξ and s be arbitrary environment and state respectively. Then

[[A]]Sξ(s) = [[
·
→]]S([[χP(~x)]]Sξ, [[P(~x, ϕP(~x))]]Sξ)(s) = [[χP(~x)]]Sξ(s)

·
→ [[P(~x, ϕP(~x))]]Sξ(s).

Now if [[χP(~x)]]Sξ(s) = [[χP]](~m, s) = false, where ~m = m1, . . . ,mk for some k and mi = ξ(xi, s) for all

i = 1, . . . , k, then [[A]]Sξ(s) = true vacuously. Otherwise P(~m, n) ∈ s for some n ∈ N: this implies that

P(~m, n) is a fact and that [[ϕP(~x)]]Sξ(s) = [[ϕP]](~m, s) = n, so that [[P(~x, ϕP(~x))]]Sξ(s) = [[P(~m, n)]]I0 =
true.

COROLLARY 5.7 (ARITHMETICAL, LOGICAL AND (ϕ) AXIOMS). If A is either a non logical ax-
iom of PRA, or an axiom of IPC, or an instance of the (ϕ)-axiom, then λ .⊥  ~α : A.

PROOF. By Lemma 5.6, since λ .⊥ is a realizer and Prefix (λ .⊥) = S.

For any k + 1-ary primitive recursive predicate P (we abuse notation below, writing ambiguously
P for the symbol and for its standard interpretation) let us define rP : Nk+1 × S → S as follows:

rP(~m, n, s) =

{
{P(~m, n)} if P(~m, n) is a fact and P(~m, n′) 6∈ s for all n′

⊥ else.

LEMMA 5.8. For all ~m, n ∈ N, λs : S. rP(~m, n, s) is a realizer.

PROOF. That rP(~m, n, s)∩s = ⊥ for any s ∈ S is immediate by definition. It remains to prove that
λs : S. rP(~m, n, s) ∈ I(N) and that rP is consistent with its argument.

Let σ be any ω-chain in S. If [[P(~m, n)]]I0 = false then rP(~m, n, σ(i)) = ⊥ for all i. Suppose
instead that P(~m, n) is true in I0, namely that it is a fact. If P(~m, n′) 6∈ σ(i) for all n′ and i,
then rP(~m, n, σ(i)) = {P(~m, n)} for all i; otherwise there exist i and n′ such that for all j ≥ i,
P(~m, n′) ∈ σ(j), as σ is weakly increasing. Then rP(~m, n, σ(j)) = ⊥ for all j ≥ i.

If rP(~m, n, s) = {P(~m, n)} then P(~m, n) is a fact so that {P(~m, n)} ∈ S. Moreover P(~m, n′) 6∈ s for all
n′ ∈ N, hence {P(~m, n)} ↑ s. If instead rP(~m, n, s) = ⊥ then the thesis holds trivially since ⊥ ↑ s.

We define rS

P := r∗P ◦ ψNk+1 , so that for any ~α, β ∈ NS we have:

rS

P(~α, β) = λs : S. rP(~α(s), β(s), s).

LEMMA 5.9 (χ-AXIOM). If P is a k + 1-ary primitive recursive predicate, and ~α, β ∈ I(N) then
rS

P(~α, β) is a realizer, and it is such that:

rS

P(~α, β)  ~α, β : P(~x, y) → χP(~x).

PROOF. By definition, rS

P(~α, β, s) = rP(~α(s), β(s), s), so that it is consistent with s and rS

P(~α, β, s)∩
s = ⊥ because rP(~m, n, s) ∩ s = ⊥ for all ~m, n. Since r∗P is global and convergent by Lemma 5.8 and
Proposition 3.2, we know that rS

P is k + 1-global and convergent. Now

rS

P(
−−−→
λ .m, λ .n, s) = rP(~m, n, s),

and the latter is an individual. It follows that rS

P(~α, β) is an individual if ~α and β are such. We
conclude that rS

P(~α, β) is a realizer.
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If s ∈ Prefix (rS

P(~α, β)) then rP(~α(s), β(s), s) = ⊥. It follows that either P(~α(s), β(s)) is not a fact or
P(~α(s), n) ∈ s for some n ∈ N (not necessarily equal to β(s)): this implies that [[χP(~x)]]S[~α,β/~x,y](s) =

[[χP]](~α(s), s) = true. In both cases we have:

[[P(~x, y) → χP(~x)]]S[~α,β/~x,y](s) = [[P(~x, y) → χP(~x)]]G(~α, β, s) = true,

that is ~α(s), β(s) ∈ ext(P(~x, y) → χP(~x))s.

LEMMA 5.10 (MODUS PONENS RULE). If r  ~α : A and r′  ~α : A→ B then r •S r′  ~α : B.

PROOF. Let ~α = α1, . . . , αk: then ext(A → B)s, ext(A)s and ext(B)s are subsets of the universe⋃
k Nk, so that in particular we can take the complement ext(A)s =

⋃
k Nk \ ext(A)s. Then let us

observe that for all s ∈ S:

ext(A→ B)s = ext(A)s ∪ ext(B)s.

By Proposition 4.7 we know that r •S r′ is a realizer such that Prefix (r •S r′) = Prefix (r)∩Prefix (r′).
Therefore, by the hypotheses, if s ∈ Prefix (r •S r′) then

~α(s) ∈ ext(A)s ∩ ext(A→ B)s = ext(A)s ∩ (ext(A)s ∪ ext(B)s) = ext(A)s ∩ ext(B)s ⊆ ext(B)s,

hence ~α(s) ∈ ext(B)s as desired.

In the next lemma by writing A(x) we mean that x might occur free in A, and A(t) is informal for
the substitution A[t/x] of t for x in A.

LEMMA 5.11 (SUBSTITUTION RULE). If r  ~α, β : A(~x, y) for all ~α, β ∈ I(N), then for any t ∈ L1

such that FV(t) ⊆ ~x, r  ~α, β : A(~x, t).

PROOF. By the hypothesis and the fact that [[t]]S[~α/~x] = [[t]]G(~α) is an individual by Proposition 5.2,

we have that r  ~α, [[t]]S[~α/~x] : A(~x, y), where we note that the environment [~α/~x] is not defined over

y, which however does not occur in t. By Lemma 5.5

[[A(~x, y)]]S[~α,[[t]]S
ξ
/~x,y] = [[A(~x, t)]]S[~α/~x],

so that r  ~α : A(~x, t) and, since y 6∈ FV(A(~x, t)), also r  ~α, β : A(~x, t).

LEMMA 5.12 (INDUCTION RULE). Suppose that for all ~α, β ∈ I(N):

r(~α)  ~α : A(x, 0) and r′(~α, β)  ~α, β : A(x, y) → A(~x, succ(y)).

For all ~α let f(~α) : N → SS be defined by (primitive) recursion: f(~α, 0) = λ .⊥ and f(~α, n + 1) =
f(~α, n) •S r′(~α, λ .n). Then for all individuals ~α and β, f(~α)∗(β) ∈ R and:

r •S (f(~α)∗(β))  ~α, β : A(x, y).

PROOF. To simplify the notation, we fix the vector ~α and write just r for r(~α), r′(β) for r′(~α, β),
f(n) for f(~α, n) and hence f∗(β) for f(~α)∗(β).

First we have to check that f∗(β) is a realizer. Note that for any n ∈ N we have f∗(λ .n) =
r′(λ .0) •S · · · •S r′(λ .n − 1) (or just λ .⊥ when n = 0), which is a realizer by Proposition 4.7. The
function f∗(β) is global (or k-global to take the ~α into account) by Proposition 3.2 and, as we have
just seen, it sends constant individuals into realizers which are individuals of S: hence f∗(β) is an
individual for any individual β by Theorem 3.3. The remaining conditions (2) and (3) of Definition
4.1 are immediately seen to hold by observing that for all s ∈ S, f∗(β, s) = r′(λ .0, s) •· · · •r′(λ .β(s)−
1, s).

In order to prove the thesis, we establish by induction over n that:

∀n ∈ N. r •S f∗(λ .n)  ~α, λ .n : A(x, y). (4)

For the base case we have r •S f∗(λ .0) = r •S λ .⊥ = r, and we know that r  ~α : A(x, 0), which
implies r  ~α, λ .0 : A(x, 0) vacuously as y 6∈ FV(A).
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For the step case we have r •S f∗(λ .n+ 1) = r •S f∗(λ .n) •S r′(λ .n), but:

r′(λ .n)  ~α, λ .n : A(x, y) → A(~x, succ(y)) by the hypothesis of the lemma, and

r •S f∗(λ .n)  ~α, λ .n : A(x, y) by induction hypothesis.

We then obtain that r •S f∗(λ .n+ 1)  ~α, λ .n : A(x, succ(y)), by Lemma 5.10. By the Substitution
Lemma 5.5, [[A(x, succ(y))]]S[~α,λ .n/~x,y] = [[A(x, y)]]S[~α,λ .n+1/~x,y], and therefore we conclude that r •S

f∗(λ .n+ 1)  ~α, λ .n+ 1 : A(x, y).
Now for any β ∈ SN and s ∈ S:

(r •S f∗(β))(s) = r(s) • f∗(β, s) = r(s) • f∗(λ .β(s), s),

because f∗ is global, and r •S f∗(λ .β(s))  ~α, λ .β(s) : A(x, y) by (4) above since β(s) ∈ N. It follows
that if s ∈ Prefix (r •S f∗(β)) then

(r •S f∗(β))(s) = ⊥ = (r •S f∗(λ .β(s)))(s),

so that s ∈ Prefix (r •S f∗(λ .β(s))). This implies that

[[A(x, y)]]G(~α, β, s) = [[A(x, y)]]S[~α,β/~x,y](s) = [[A(x, y)]]S[~α,λ .β(s)/~x,y](s) = true

as desired.

THEOREM 5.13 (INTERACTIVE REALIZABILITY THEOREM). Suppose that Π is a proof in PRA+
EM1 of a formula A ∈ L1 with FV(A) ⊆ ~x = x1, . . . , xk. Then for all ~α = α1, . . . , αk of individuals
in I(N) there exists a realizer r(~α) which is recursive in ~α, such that r(~α)  ~α : A. Moreover the
definition of r(~α) depends on the proof Π.

PROOF. The existence of r(~α) follows by Corollary 5.7, lemmas 5.9, 5.10, 5.11 and 5.12, and by
the remark that (possibly after renaming) the length k of ~x and ~α can be taken to be large enough to
include all variables occurring in the proof. That r is a recursive functional of ~α follows by the fact
that all realizers constructed in the lemmas above are λ-definable if •S is recursive. Finally that
r(~α) (and hence r itself) actually reflects the structure of the proof of A is clear by construction.

We eventually turn back to the problem of program extraction in PRA + EM1.

COROLLARY 5.14 (PROGRAM EXTRACTION FROM PROOFS IN PRA + EM1).
Let Π be a proof of A(~x, t(~x)) in PRA + EM1. Then there exists a recursive function p such that

∀~m ∈ N ∃ I ⊇ I0. [[A(~m, t(~m))]]I = true & p(~m) = [[t(~m)]]I .

PROOF. Let r be obtained from Π as in Theorem 5.13. Then it is recursive if •S , that is •, is
recursive; r(~α) ∈ R and r is such that for all ~α ∈ I(N), r(~α)  ~α : A(~x, t(~x)). Consider the recursive
functional:

R(~α, s) = if r(~α, s) = ⊥ then s else R(~α, s ⊔ r(~α, s)).

ThenR is a total functional by Proposition 4.2 and, for any s0 ∈ S, it computes the sup of the ω-chain
s0 ⊑ s1 = s0 ⊔ r(~α, s0) ⊑ s2 = s1 ⊔ r(~α, s1) ⊑ · · · which is the least prefix point of the realizer r(~α)
greater than s0. Then given ~m ∈ N we set:

s′ = R(
−−→
λ .m,⊥) and p(~m) = [[t(~x)]]G(

−−→
λ .m, s′).

Now take I = Is′ .

6. CONCLUSIONS AND FURTHER RESEARCH

We have defined a new method to solve the program extraction problem in a non constructive ex-
tension of the primitive recursive arithmetic. We have interpreted non-constructive proofs of arith-
metical statements which can be obtained by using excluded middle over Σ0

1 formulas as procedures
that learn about their truth by redefining the value of choice functions. The structure of proofs is
reflected by their realizers, which are compositional, and parametric in the composition operation.
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Hence the proof itself is responsible for the efficiency of the extracted program, which is not a brute
force search in general.

The construction we have used is proof theoretic in nature, but it consists of a process to effec-
tively approximate a classical model of the theory PRA + EM1: we consider the present work as
a step toward a constructive view of classical logic and arithmetic, which have been traditionally
understood in model theory rather than in proof theory.

To our knowledge the category G of individuals and convergent global functions is new. Its con-
struction can be framed into the theory of strong monads as we suggest, and this is true also of
interactive realizers and forcing. We have presented a concrete definition of the category, leaving to
future investigation the abstract categorical analysis of the involved concepts. From this work we
expect a better understanding of interactive forcing w.r.t. both realizability and forcing as known
from the semantics of intuitionistic arithmetic.

In [Caff 2010] there is a detailed reconstruction of the example in the Introduction, using to the
equivalent but more concise inference rule of well-founded induction instead of ordinary induction.
Interactive realizers can be pratically executed using the interpreter described in [Rispoli 2009].
Further work is needed to compare our program extraction method w.r.t. other methods known
from the literature, as well as to provide relevant examples of interesting mathematical proofs.

As further steps we envisage the recasting of the (existing) extension of interactive realizers to
HA + EM1 in the category G and, more importantly, a generalisation encompassing EMn axiom
schemata, namely excluded middle of arithmetical formulas of any degree n.
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