
?

A Generalized QSQR Evaluation Method for Horn Knowledge Bases

EWA MADALIŃSKA-BUGAJ, University of Warsaw
LINH ANH NGUYEN, University of Warsaw

We generalize the QSQR evaluation method to give the first set-oriented depth-first evaluation method for
Horn knowledge bases. The resulting procedure closely simulates SLD-resolution (to take advantages of the
goal-directed approach) and highly exploits set-at-a-time tabling. Our generalized QSQR evaluation proce-
dure is sound and complete. It does not use adornments and annotations. To deal with function symbols,
our procedure uses iterative deepening search which iteratively increases term-depth bound for atoms and
substitutions occurring in the computation. When the term-depth bound is fixed, our evaluation procedure
runs in polynomial time in the size of extensional relations.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing; Rule-
based databases

General Terms: Algorithms

Additional Key Words and Phrases: QSQR evaluation method, Horn knowledge bases

ACM Reference Format:
Madalińska-Bugaj, E. and Nguyen, L.A. 2011. A Generalized QSQR Evaluation Method for Horn Knowledge
Bases. ACM Trans. Comput. Logic ?, ?, Article ? (January 2012), 27 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The Horn fragment of first-order logic plays an important role in knowledge represen-
tation and reasoning. It is used as the language of definite logic programs and goals in
logic programming. Its range-restricted function-free version is also used as the Data-
log language for deductive databases.1 The Horn fragment itself is not very expressive
because of its monotonicity w.r.t. the set of positive consequences, but it has received
considerable attention due to the following reasons. Firstly, there are efficient compu-
tational methods like tabled SLD-resolution for the Horn fragment. Secondly, for some
restricted Horn fragments, the complexity of the problem of checking logical conse-
quences may be reduced to polynomial time. For example, the data complexity of Dat-
alog is in PTIME. Thirdly, the Horn fragment is a starting point for developing more
expressive languages with appropriate semantics and computational procedures (e.g.
normal logic programs and goals with SLDNF-resolution calculus, Datalog¬ with well-

1A definite program clause is range-restricted if every variable occurring in a rule’s head also occurs in the
rule’s body.

This work was supported by the National Centre for Research and Development (NCBiR) under Grant
No. SP/I/1/77065/10 by the strategic scientific research and experimental development program: “Interdis-
ciplinary System for Interactive Scientific and Scientific-Technical Information”.
Authors’ address: E. Madalińska-Bugaj and L.A. Nguyen, Institute of Informatics, University of Warsaw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1529-3785/2012/01-ART? $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:2 E. Madalińska-Bugaj and L.A. Nguyen

founded semantics, and stratified Datalog± with the canonical model semantics [Calı̀
et al. 2009]).

Horn knowledge bases are definite logic programs, which are usually so big that
either they cannot be totally loaded into memory or evaluations for them cannot be
done totally in memory. Thus, in contrast to logic programming, for Horn knowledge
bases efficient access to secondary storage is an important aspect. Horn knowledge
bases can be treated as extensions of Datalog deductive databases without the range-
restrictedness and function-free conditions. Developing efficient evaluation methods
for Horn knowledge bases is worth not only for practical applications but also for the
theory of knowledge bases. This problem, especially in our setting, did not receive
much attention from researchers during the last decade, but this does not mean that
the problem has been well-studied and does not need further investigations.

To develop evaluation procedures for Horn knowledge bases one can either adapt
tabled SLD-resolution systems of logic programming to reduce the number of accesses
to secondary storage or generalize evaluation methods of Datalog queries to deal with
non-range-restricted definite logic programs and goals that may contain function sym-
bols.

Tabled SLD-resolution systems like OLDT [Tamaki and Sato 1986], SLD-AL [Vieille
1987; 1989], linear tabulated resolution [Shen et al. 2001; Zhou and Sato 2003] are ef-
ficient computational procedures for logic programming without redundant recompu-
tations, but they are not directly applicable to Horn knowledge bases to obtain efficient
evaluation engines because they are not set-oriented (set-at-a-time). In particular, the
suspension-resumption mechanism and the stack-wise representation as well as the
“global optimizations of SLD-AL” are all tuple-oriented (tuple-at-a-time). Data struc-
tures for them are too complex so that they must be dropped if one wants to convert the
methods to efficient set-oriented ones. Of course, one can use, e.g., XSB [Sagonas and
Swift 1998; Sagonas et al. 1994] (a state-of-the-art implementation of OLDT) as a Horn
knowledge base engine, but as pointed out in [Freire et al. 1997], it is tuple-oriented
and not suitable for efficient access to secondary storage. The try of converting XSB to
a set-oriented engine [Freire et al. 1997] removes essential features of XSB and is not
natural.2

In [Vieille 1989], Vieille adapted SLD-AL resolution for Datalog deductive databases
to obtain the top-down QoSaQ evaluation method by representing (sets of) goals by
means of (sets of) tuples and translating the operations of SLD-AL on goals into oper-
ations on tuples. This evaluation method can be implemented as a set-oriented proce-
dure, but Vieille stated that “We would like, however, to go even further and to claim
that the practical interest of our approach lies in its one-inference-at-a-time basis, as
opposed to having a set-theoretic basis. First, this tuple-based computational model
permits a fine analysis of the duplicate elimination issue. . . . ” [Vieille 1989, page 5].
Moreover, the specific techniques of QoSaQ like “instantiation pattern”, “rule compi-
lation”, “projection” are heavily based on the range-restrictedness and function-free
conditions.

In [Vieille 1986], Vieille gave the query-subquery recursive (QSQR) evaluation
method for Datalog deductive databases, which is a top-down method based on SLD-
resolution and the set-at-a-time technique. The first version of Vieille’s QSQR algo-
rithm presented in [Vieille 1986] is incomplete [Vieille 1989; Nejdl 1987]. As pointed
out by Mohamed Yahya in a personal communication, the presentation of QSQR
method in the book [Abiteboul et al. 1995] and our generalization for Horn knowl-
edge bases given in the conference paper [Madalińska-Bugaj and Nguyen 2008] are
also incomplete. This is corrected in this paper by using an outer loop which clears

2The original XSB uses depth-first search, while Breadth-First XSB [Freire et al. 1997] does not.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:3

global input relations for each iteration.3 The QSQR method [Vieille 1986; Abiteboul
et al. 1995] uses adornments to simulate SLD-resolution in pushing constant symbols
from goals to subgoals. The annotated version of QSQR also uses annotations to sim-
ulate SLD-resolution in pushing repeats of variables from goals to subgoals (see, e.g.,
[Abiteboul et al. 1995]).

The magic-set technique [Bancilhon et al. 1986; Rohmer et al. 1986] is another for-
mulation of tabling for Datalog deductive databases. It simulates the top-down QSQR
evaluation by rewriting a given query to another equivalent one that when evaluated
using a bottom-up technique (e.g. the seminaive evaluation) produces only facts pro-
duced by the QSQR evaluation. Adornments are used as in the QSQR evaluation. To
simulate annotations, the magic-set transformation is augmented with subgoal recti-
fication (see, e.g., [Abiteboul et al. 1995]). For the connection between top-down and
bottom-up approaches to Datalog deductive databases we refer the reader to Bry’s
elegant unifying framework [Bry 1990]. Some authors have extended the magic-set
technique for Horn knowledge bases [Ramakrishnan et al. 1992; Freire et al. 1997]. To
deal with non-range-restrictedness and function symbols, “magic predicates” are used
without adornments.

As seen from the above discussion, there are tuple-oriented depth-first evaluation
methods (e.g. [Sagonas et al. 1994]) and (set-oriented) breadth-first evaluation meth-
ods [Ramakrishnan et al. 1992; Freire et al. 1997] (based on the magic-set transforma-
tion and the bottom-up seminaive evaluation) for Horn knowledge bases. However, as
far as we know, no set-oriented depth-first evaluation method was developed for Horn
knowledge bases.

In this paper, we generalize the QSQR evaluation method to give a set-oriented
depth-first evaluation method for Horn knowledge bases. The resulting procedure
closely simulates SLD-resolution (to take advantages of the goal-directed approach)
and highly exploits set-at-a-time tabling. Our generalized QSQR evaluation procedure
is sound and complete. It does not use adornments and annotations (but has the effects
of the annotated QSQR method). To deal with function symbols, our procedure uses it-
erative deepening search which iteratively increases term-depth bound for atoms and
substitutions occurring in the computation. When the term-depth bound is fixed, our
evaluation procedure runs in polynomial time in the size of extensional relations.

The rest of this paper is structured as follows. In Section 2 we recall some notions
of first-order logic, logic programming, and Horn knowledge bases. In Section 3 we
present our generalized QSQR evaluation method for Horn knowledge bases. We start
the section with an informal description and an illustrative example. Next, we present
a formal tuple-at-a-time version of the method and then prove its soundness and com-
pleteness. In Section 4 we convert the tuple-at-a-time version to a set-at-a-time one,
estimate the data complexity of the new version, and discuss optimizations and the
problem of relaxing term-depth bound. In Section 5 we provide some preliminary ex-
perimental results. Section 6 concludes this work.

2. PRELIMINARIES
First-order logic is considered in this work and we assume that the reader is familiar
with it. We recall only the most important definitions for our work and refer the reader
to [Lloyd 1987; Apt 1997] for further reading.

A signature for first-order logic consists of constant symbols, function symbols, and
predicate symbols. Terms and formulae over a fixed signature are defined using the
symbols of the signature and variables in the usual way. An atom is a formula of the

3See Remark 3.2 (on page 9) for a discussion on this problem.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:4 E. Madalińska-Bugaj and L.A. Nguyen

form p(t1, . . . , tn), where p is an n-ary predicate and t1, . . . , tn are terms. An expression
is either a term, a tuple of terms or a formula without quantifiers, and a simple ex-
pression is either a term or an atom. The term-depth of an expression is the maximal
nesting depth of function symbols occurring in that expression.

2.1. Substitution and Unification
A substitution is a finite set θ = {x1/t1, . . . , xk/tk}, where x1, . . . , xk are pairwise
distinct variables, t1, . . . , tk are terms, and ti 6= xi for all 1 ≤ i ≤ k. The set
dom(θ) = {x1, . . . , xk} is called the domain of θ, while the set range(θ) = {t1, . . . , tk}
is called the range of θ. By ε we denote the empty substitution. The restriction of a
substitution θ to a set X of variables is the substitution θ|X = {(x/t) ∈ θ | x ∈ X}.
The term-depth of a substitution is the maximal nesting depth of function symbols
occurring in that substitution.

Let θ = {x1/t1, . . . , xk/tk} be a substitution and E be an expression. Then Eθ, the
instance of E by θ, is the expression obtained from E by simultaneously replacing all
occurrences of the variable xi in E by the term ti, for 1 ≤ i ≤ k.

Let θ = {x1/t1, . . . , xk/tk} and δ = {y1/s1, . . . , yh/sh} be substitutions (where
x1, . . . , xk are pairwise distinct variables, and y1, . . . , yh are also pairwise distinct
variables). Then the composition θδ of θ and δ is the substitution obtained from the
sequence {x1/(t1δ), . . . , xk/(tkδ), y1/s1, . . . , yh/sh} by deleting any binding xi/(tiδ) for
which xi = (tiδ) and deleting any binding yj/sj for which yj ∈ {x1, . . . , xk}.

If θ and δ are substitutions such that θδ = δθ = ε, then we call them renaming
substitutions. We say that an expression E is a variant of an expression E′ if there
exist substitutions θ and γ such that E = E′θ and E′ = Eγ.

A substitution θ is more general than a substitution δ if there exists a substitution γ
such that δ = θγ. Note that according to this definition, θ is more general than itself.

Let Γ be a set of simple expressions. A substitution θ is called a unifier for Γ if Γθ is
a singleton. If Γθ = {ϕ} then we say that θ unifies Γ (into ϕ). A unifier θ for Γ is called
a most general unifier (mgu) for Γ if θ is more general than every unifier of Γ.

There is an effective algorithm, called the unification algorithm, for checking
whether a set Γ of simple expressions is unifiable (i.e. has a unifier) and computing
an mgu for Γ if Γ is unifiable (see, e.g., [Lloyd 1987]).

If E is an expression or a substitution then by Var(E) we denote the set of vari-
ables occurring in E. If ϕ is a formula then by ∀(ϕ) we denote the universal closure of
ϕ, which is the formula obtained by adding a universal quantifier for every variable
having a free occurrence in ϕ.

2.2. Positive Logic Programs and SLD-Resolution
A (positive or definite) program clause is a formula of the form ∀(A ∨ ¬B1 ∨ . . . ∨ ¬Bk)
with k ≥ 0, written as A← B1, . . . , Bk, where A, B1, . . . , Bk are atoms. A is called the
head, and (B1, . . . , Bk) the body of the program clause. If p is the predicate of A then
the program clause is called a program clause defining p.

A positive (or definite) logic program is a finite set of program clauses.
A goal (also called a negative clause) is a formula of the form ∀(¬B1 ∨ . . . ∨ ¬Bk),

written as← B1, . . . , Bk, where B1, . . . , Bk are atoms. If k = 1 then the goal is called a
unary goal. If k = 0 then the goal stands for falsity and is called the empty goal (or the
empty clause) and denoted by 2.

If P is a positive logic program and G = ← B1, . . . , Bk is a goal, then θ is called a
correct answer for P ∪ {G} if P |= ∀((B1 ∧ . . . ∧Bk)θ).

We now give definitions for SLD-resolution.
A goal G′ is derived from a goal G = ← A1, . . . , Ai, . . . , Ak and a program clause

ϕ = (A ← B1, . . . , Bh) using Ai as the selected atom and θ as the most general unifier

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:5

(mgu) if θ is an mgu for Ai and A, and G′ =← (A1, . . . , Ai−1, B1, . . . , Bh, Ai+1, . . . , Ak)θ.
We call G′ a resolvent of G and ϕ. If i = 1 then we say that G′ is derived from G and ϕ
using the leftmost selection function.

Let P be a positive logic program and G be a goal.
An SLD-derivation from P ∪ {G} consists of a (finite or infinite) sequence G0 = G,

G1, G2, . . . of goals, a sequence ϕ1, ϕ2, . . . of variants of program clauses of P and a
sequence θ1, θ2, . . . of mgu’s such that each Gi+1 is derived from Gi and ϕi+1 using θi+1.
Each ϕi is a suitable variant of the corresponding program clause. That is, ϕi does not
have any variables which already appear in the derivation up to Gi−1. Each program
clause variant ϕi is called an input program clause.

An SLD-refutation of P ∪ {G} is a finite SLD-derivation from P ∪ {G} which has the
empty clause as the last goal in the derivation.

A computed answer θ for P ∪ {G} is the substitution obtained by restricting the
composition θ1 . . . θn to the variables of G, where θ1, . . . , θn is the sequence of mgu’s
occurring in an SLD-refutation of P ∪ {G}.

THEOREM 2.1 (SOUNDNESS AND COMPLETENESS OF SLD-RESOLUTION). Let P
be a positive logic program and G be a goal. Then every computed answer for P ∪{G} is
a correct answer for P ∪ {G}. Conversely, for every correct answer θ for P ∪ {G}, using
any selection function there exists a computed answer δ for P ∪{G} such that Gθ = Gδγ
for some substitution γ. [Clark 1979; Stärk 1990]

We will use also the following well-known lemmas:

LEMMA 2.2 (LIFTING LEMMA). Let P be a positive logic program, G be a goal, θ be
a substitution, and l be a natural number. Suppose there exists an SLD-refutation of
P ∪{Gθ} using mgu’s θ1, . . . , θn such that the variables of the input program clauses are
distinct from the variables in G and θ and the term-depths of the goals and the composi-
tion θ1 . . . θn are bounded by l. Then there exist a substitution γ and an SLD-refutation
of P ∪ {G} using the same sequence of input program clauses, the same selected atoms
and mgu’s θ′1, . . . , θ′n such that the term-depths of the goals and the composition θ′1 . . . θ′n
are bounded by l and θθ1 . . . θn = θ′1 . . . θ

′
nγ.

The Lifting Lemma given in [Lloyd 1987] does not contain the condition “the vari-
ables of the input program clauses are distinct from the variables in G and θ” and is
therefore inaccurate (see, e.g., [Apt 1997]). The correct version given above follows from
the one presented, amongst others, in [Staab 2008]. For applications of this lemma in
this paper, we assume that fresh variables from a special infinite list of variables are
used for renaming variables of input program clauses in SLD-derivations, and that
mgu’s are computed using a standard method. The mentioned condition will thus be
satisfied.

In a computational process, a fresh variant of a formula ϕ, where ϕ can be an atom,
a goal← A or a program clause A ← B1, . . . , Bk (written without quantifiers), is a for-
mula ϕθ, where θ is a renaming substitution such that dom(θ) = Var(ϕ) and range(θ)
consists of fresh variables that were not used in the computation (and the input).

LEMMA 2.3 (LEMMA 8.5 IN [LLOYD 1987]). Let P be a positive logic program and
A be an atom. Suppose that P |= ∀(A). Then there exists an SLD-refutation of P ∪{← A}
with the empty substitution as the computed answer.

2.3. Definitions for Horn Knowledge Bases
Similarly as for deductive databases, we classify each predicate either as intensional
or as extensional. A generalized tuple is a tuple of terms, which may contain function
symbols and variables. A generalized relation is a set of generalized tuples of the same

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:6 E. Madalińska-Bugaj and L.A. Nguyen

arity. A Horn knowledge base is defined to be a pair consisting of a positive logic pro-
gram for defining intensional predicates and a generalized extensional instance, which
is a function mapping each extensional n-ary predicate to an n-ary generalized rela-
tion. Note that intensional predicates are defined by a positive logic program which
may contain function symbols and not be range-restricted. From now on, we use the
term “relation” to mean a generalized relation, and the term “extensional instance” to
mean a generalized extensional instance.

Note: We will treat a tuple t from a relation associated with a predicate p as the
atom p(t). Thus, a relation (of tuples) of a predicate p is a set of atoms of p, and an
extensional instance is a set of atoms of extensional predicates. Conversely, a set of
atoms of p can be treated as a relation (of tuples) of the predicate p.

Given a Horn knowledge base specified by a positive logic program P and an exten-
sional instance I, a query to the knowledge base is a positive formula ϕ(x) without
quantifiers, where x is a tuple of all the variables of ϕ.4 A (correct) answer for the
query is a tuple t of terms of the same length as x such that P ∪ I |= ∀(ϕ(t)). When
measuring data complexity, we assume that P and ϕ are fixed, while I varies. Thus,
the pair (P,ϕ(x)) is treated as a query to the extensional instance I. We will use the
term “query” in this meaning.

It can easily be shown that, every query (P,ϕ(x)) can be transformed in polynomial
time to an equivalent query of the form (P ′, q(x)) over a signature extended with new
intensional predicates, including q. The equivalence means that, for every extensional
instance I and every tuple t of terms of the same length as x, P ∪ I |= ∀(ϕ(t)) iff
P ′∪I |= ∀(q(t)). The transformation is based on introducing new predicates for defining
complex subformulae occurring in the query. For example, if ϕ = p(x) ∧ r(x, y), then
P ′ = P ∪ {q(x, y)← p(x), r(x, y)}, where q is a new intensional predicate.

Without loss of generality, we will consider only queries of the form (P, q(x)), where
q is an intensional predicate. Answering such a query on an extensional instance I is
to find (correct) answers for P ∪ I ∪ {← q(x)}.

3. GENERALIZING THE QSQR EVALUATION ALGORITHM
3.1. Informal Description
We first extend SLD-resolution with tabulation. We set up the problem as follows:
given a positive logic program P , an extensional instance I and an atom A of an in-
tensional predicate p, construct an answer relation ans p such that for every SLD-
refutation of P ∪ I ∪ {← A} with computed answer θ, Aθ is an instance of a vari-
ant of some atom from ans p (i.e., ans p contains a more general answer than θ). The
mentioned property is called completeness (of the evaluation method). We expect also
soundness, which means that, for every atom A′ of ans p, P ∪ I |= ∀(A′). The relation
ans p contains tuples (as for the predicate p) that are treated as atoms of p.

For each intensional predicate q, we use a global variable ans q to keep an answer
relation for q. Tuples of ans q are treated as atoms of the predicate q. At the beginning,
we set all of such variables to empty relations. Consider an SLD-refutation of P∪I∪{←
A}. Let the first input program clause applied to ← A be ϕ = (A′ ← B1, . . . , Bn) and
the used mgu (for A and A′) be θ. The next goal is thus← (B1, . . . , Bn)θ.

Let δ0 = θ. For each 1 ≤ i ≤ n, we process ← Biδi−1 as follows, where δi−1 is the
substitution containing the bindings of variables after processing ← Bi−1δi−2. Let pi
be the predicate of Bi.

4A positive formula without quantifiers is a formula built up from atoms using only connectives ∧ and ∨.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:7

(1) Case pi is an extensional predicate: If γi is an mgu for Biδi−1 and a fresh variant
of some atom from I(pi) then let δi := δi−1γi and continue to process the next goal
atom Bi+1δi.

(2) Case pi is an intensional predicate:
(a) Recursively process ← Biδi−1 in the same way as for ← A. This task does not

pass bindings of variables directly outside but it updates the answer relations
that are global variables of the algorithm.

(b) If γi is an mgu for Biδi−1 and a fresh variant of some atom from ans pi then let
δi := δi−1γi and continue to process the next goal atom Bi+1δi.

Then δn holds a correct answer for P ∪ I ∪ {← A}. Thus, if Aδn is not an instance of
a fresh variant of any atom from the answer relation ans p, where p is the predicate of
A, then we can add Aδn to ans p.

To obtain all answers for the goal← A, all the choices are systematically tried, and
the process is repeated until no changes were made to the global ans variables during
the last iteration of the main loop. To guarantee termination, in each iteration of the
main loop, each goal like← A is processed only once. Furthermore, to avoid redundant
recomputation we check that ← A is not an instance of a fresh variant of any goal
that has been processed during the current iteration of the main loop. To do this we
record A in a relation held by a global variable input p, where p is the predicate of A.
Such a relation is called an input relation (or a goal relation). It can be represented as
a generalized relation and we treat tuples of input p as atoms of the predicate p. The
global input variables are reset to empty relations for each iteration of the main loop.

Notice that we concentrate on unary goals← Biδi−1 instead of← (Bi, . . . , Bn)δi−1.
The described method follows the tuple-at-a-time approach. It will be formally pre-

sented and studied in the next two subsections. The set-at-a-time version of the method
will be presented in Section 4.

Example 3.1. Consider the following query, in which x, y, z denote variables, and
a, b, c, d, e, f , g denote constant symbols:

— program P :

p(x, y)← q(x, y)
p(x, y)← p(x, z), q(z, y)
r(x)← p(a, x)

— extensional instance I :
q(a, b) q(b, d) q(d, f)
q(a, c) q(c, e) q(e, g)

— query: r(x).

The intensional predicate p is defined to be the transitive closure of the extensional
relation q. Notice the order of atoms in the body of the second clause defining p.

Consider evaluation of this query by using the described tuple-at-a-time method. At
the beginning, the global variables ans r and ans p are set to empty relations. The first
iteration of the main loop of the evaluation process executes the steps illustrated by
the SLD-like tree given in Figure 1(a), and the second iteration of that loop executes
the steps illustrated by the SLD-like tree given in Figure 2(a). The third iteration of
that main loop does not change value of any ans variable and the process terminates
with ans r = {b, c, d, e, f, g}.

In the case the set-at-a-time technique is used, “similar” goals are processed together
and the first and second iterations of the main loop would execute the steps illustrated
by Figure 3(a) and Figure 3(c), respectively.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:8 E. Madalińska-Bugaj and L.A. Nguyen

Figure 1(a)
clear input r and inputp

← r(x)
add x to input r

��
← p(a, x)

proceed as in Figure 1(b)
resolve p(a, x) using ansp

wwooooooooooo

�� ''OOOOOOOOOOO

++VVVVVVVVVVVVVVVVVVVVVV

2

add b to ansr
2

add c to ansr
2

add d to ansr
2

add e to ansr

Figure 1(b)

← p(a, x)
add (a, x) to inputp

xxqqqqqqqqqqqqqqq

&&NNNNNNNNNNN

← q(a, x)

�� &&MMMMMMMMMMMMMMMM

← p(a, z1), q(z1, x)
as (a, x) ∈ inputp,

resolve p(a, z1)
using ansp

�� &&MMMMMMMMMMMM

2

add (a, b) to ansp
2

add (a, c) to ansp ← q(b, x)

��

← q(c, x)

��
2

add (a, d) to ansp
2

add (a, e) to ansp

Fig. 1. An illustration for Example 3.1.

Consider the case when the global input relations are not cleared (i.e., emptied) for
subsequent iterations of the main loop of the evaluation process. Then, at the second
iteration, as x belongs to input r, the processing of the goal ← r(x) (tuple-at-a-time)
or the goal relation {r(x)} (set-at-a-time) exits immediately without changing the ans
relations. Consequently, the evaluation process terminates with an incomplete set of
answers ans r = {b, c, d, e}. Even in the case we treat r(x) in a special way by ignoring
the fact x ∈ input r, the presence of (a, x) in input p will cause similar effects.

3.2. A Formal Tuple-at-a-Time Version of the Evaluation Method
Let l be a fixed natural number, which we will use as the bound imposed on term-
depth of atoms and substitutions occurring in evaluation of queries. Algorithm 1 given
on page 11 is a formal presentation of the evaluation method described in the previous
subsection.

Example A.1 in the electronic appendix of this paper demonstrates the run of Algo-
rithm 1 on a Datalog query taken from [Nejdl 1987] (which is similar to the “reverse-
same-generation” query used in [Abiteboul et al. 1995]). It is convenient for a better

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:9

Figure 2(a)
clear input r and inputp

← r(x)
add x to input r

��
← p(a, x)

proceed as in Figure 2(b)
resolve p(a, x) using ansp

yyssssssssssss

����������������������

�� ��99999999999999999999

$$IIIIIIIIIIIIIIIIIIIIIIIII

))SSSSSSSSSSSSSSS

2
2

add g to ansr

2 2 2
2

add f to ansr

Figure 2(b)

← p(a, x)
add (a, x) to inputp

xxrrrrrrrrrrrrr

((QQQQQQQQQQQQ

← q(a, x)

yyttttttttttttt

��

← p(a, z2), q(z2, x)
as (a, x) ∈ inputp,

resolve p(a, z2) using ansp

ttiii

uulllllllllllllllllllllllllllllll

zzuuuuuuuuuuuuuuuuuuuu

��

2 2

← q(b, x)

��

← q(c, x)

��

← q(d, x)

��

← q(e, x)

��
2 2

2

add (a, f) to ansp
2

add (a, g) to ansp

Fig. 2. An illustration for Example 3.1.

understanding of the algorithm, but too long for putting here. Note that our algorithm
works not only for Datalog queries but also for queries to Horn knowledge bases.

Remark 3.2. If we change Algorithm 1 by moving the call clear-input-vars from
the inside of the “repeat” loop to the place before the loop then it becomes incomplete.
This was illustrated in Example 3.1 and can be checked by using the implementa-
tion [Nguyen 2011]. Without clearing the global input relations for subsequent iter-
ations of the main loop there are situations when ans atoms derived in some earlier
steps cannot be exploited for the currently considered subquery to derive further re-
sults because the subquery is subsumed by a previously considered subquery and is
then omitted. In other words, since the QSQR evaluation procedure is specified as a

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:10 E. Madalińska-Bugaj and L.A. Nguyen

Figure 3(a)
clear input r and inputp

← r(x)
add x to input r

��
← p(a, x)

proceed as in Figure 3(b)
resolve p(a, x) using ansp

��
2

add b to ansr
2

add c to ansr
2

add d to ansr
2

add e to ansr

Figure 3(b)

← p(a, x)
add (a, x) to inputp

vvnnnnnnnnnnnnnnnn

��

← q(a, x)

��

← p(a, z1), q(z1, x)
as (a, x) ∈ inputp,

resolve p(a, z1) using ansp

��2

add (a, b) to ansp
2

add (a, c) to ansp

← q(b, x)
← q(c, x)

��
2

add (a, d) to ansp
2

add (a, e) to ansp

Figure 3(c)
clear input r and inputp

← r(x)
add x to input r

��
← p(a, x)

proceed as in Figure 3(d)
resolve p(a, x) using ansp

��
2

2

2

2

2

add f to ansr
2

add g to ansr

Figure 3(d)

← p(a, x)
add (a, x) to inputp

wwpppppppppppppp

��

← q(a, x)

��

← p(a, z2), q(z2, x)
as (a, x) ∈ inputp,

resolve p(a, z2) using ansp

��

2

2

← q(b, x)
← q(c, x)
← q(d, x)
← q(e, x)

��
2

2

2

add (a, f) to ansp
2

add (a, g) to ansp

Fig. 3. An illustration for Example 3.1.

recursive function, newly derived ans atoms are not directly propagated to all recur-
sive calls. That is, the intermediary ans relations are somehow local to each recursive
call although the ans variables are global. This leads to the need to clear the input
relations occasionally (e.g., at the beginning of each iteration of the main loop as in
Algorithm 1, or after/before each recursive call) in order to allow recomputations us-
ing updated ans relations. Sometimes such recomputations are redundant, e.g., as in
the case of the leftmost evaluation branches of Figures 2(a) and 2(b). As observed by

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:11

ALGORITHM 1: for evaluating a query (P, q(x)) on an extensional instance I.
init-ans-vars;
repeat

clear-input-vars;
process-goal (q(x));

until ans variables were not changed during the last iteration;
return ans q;

Procedure init-ans-vars
foreach intensional predicate p of P do

set the global variable ans p to the empty relation;

Procedure clear-input-vars
foreach intensional predicate p of P do

set the global variable input p to the empty relation;

Procedure process-goal(A)
/* for processing the goal ← A */

let p be the predicate of A;
if A is an instance of a fresh variant of some atom from input p then exit
else add A to input p;
foreach program clause ϕ defining p in P do

process-goal-using-clause (A, a fresh variant of ϕ) ; // defined on page 12

Vieille [Vieille 1989], the QSQR evaluation method is like iterative deepening search.
It has both advantages and disadvantages.

3.3. Soundness and Completeness
In this subsection, we prove that the top-down evaluation method presented by Algo-
rithm 1 is sound and complete. Roughly speaking, Algorithm 1 is a reformulation of
SLD-resolution with a different way of passing bindings of variables. Our proofs are
therefore related to soundness and completeness of the SLD-resolution calculus.

THEOREM 3.3 (SOUNDNESS). After a run of Algorithm 1 on a query (P, q(x)) and
an extensional instance I, for all intensional predicates p of P , every computed answer
A′′ ∈ ans p is a correct answer in the sense that P ∪ I |= ∀(A′′).

PROOF. We prove P ∪ I |= ∀(A′′) by induction on the number of the step
at which A′′ = Aδn is added to ans p in Step 23 of an execution of procedure
process-goal-using-clause for A and ϕ = (A′ ← B1, . . . , Bn). Let δ0, . . . , δn−1 and
γ1, . . . , γn be the substitutions that were used to compute δn. We have that δi =
(δi−1γi)|X for 1 ≤ i ≤ n. Hence, δn = (δi−1γi . . . γn)|X for 1 ≤ i ≤ n.

We will construct an SLD-refutation for the goal ← B1δn, . . . , Bnδn by tracing the
mentioned execution of process-goal-using-clause.

Consider Step 12 of procedure process-goal-using-clause. Since γi is an mgu for
Biδi−1 and a variant of B′i ∈ I(pi), Biδn = Biδi−1γi . . . γn is an instance of a variant of

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:12 E. Madalińska-Bugaj and L.A. Nguyen

Procedure process-goal-using-clause(A, ϕ)
/* for processing ← A using the program clause ϕ and the term-depth bound l */

1 let X = Var(A) ∪Var(ϕ) and ϕ = (A′ ← B1, . . . , Bn);

2 if A and A′ are unifiable using an mgu δ0 then
3 if term-depth(δ0) ≤ l then
4 sup0 := {δ0} ; // supi denotes the so called ith ‘‘supplementary’’ relation
5 foreach i from 1 to n do
6 let pi be the predicate of Bi;
7 supi := ∅;
8 foreach δi−1 ∈ supi−1 do
9 if term-depth(Biδi−1) ≤ l then

10 if pi is an extensional predicate then
11 foreach B′i ∈ I(pi) do
12 if Biδi−1 is unifiable with a fresh variant of B′i using an mgu γi then
13 if term-depth((δi−1γi)|X) ≤ l then add (δi−1γi)|X to supi;

14 else // pi is an intensional predicate
15 process-goal (Biδi−1) ; // defined on page 11

16 foreach B′i ∈ ans pi do
17 if Biδi−1 is unifiable with a fresh variant of B′i using an mgu γi then
18 if term-depth((δi−1γi)|X) ≤ l then add (δi−1γi)|X to supi;

19 let p be the predicate of A;
20 foreach δn ∈ supn do
21 if Aδn is not an instance of a fresh variant of any atom from ans p then
22 delete from ans p every atom whose fresh variant is an instance of Aδn;
23 add Aδn to ans p ;

B′i. Hence P ∪ I ∪ {← Biδn} has an SLD-refutation with the empty substitution as the
computed answer.

Consider Step 17 of procedure process-goal-using-clause. Since γi is an mgu for
Biδi−1 and a variant of B′i ∈ ans pi, Biδn = Biδi−1γi . . . γn is an instance of a variant of
B′i ∈ ans pi. By the inductive assumption, P ∪ I |= ∀(B′i), and hence P ∪ I |= ∀(Biδn).
By Lemma 2.3, it follows that P ∪ I ∪ {← Biδn} has an SLD-refutation with the empty
substitution as the computed answer.

The refutations with empty computed answers of P∪I∪{← Biδn} for 1 ≤ i ≤ n can be
combined into an SLD-refutation of P∪I∪{← B1δn, . . . , Bnδn}with an empty computed
answer. By Theorem 2.1 on soundness of SLD-resolution, we have that P ∪ I |= ∀((B1∧
. . . ∧ Bn)δn). It follows that P ∪ I |= ∀(A′δn). Since Aδ0 = A′δ0 and δn = (δ0γ1 . . . γn)|X ,
we also have that Aδn = A′δn. Therefore P ∪ I |= ∀(Aδn), which completes the proof.

We need the following lemma for the completeness theorem. We assume that the
sets of fresh variables used for renaming variables of input program clauses in SLD-
refutations and in Algorithm 1 are disjoint.

LEMMA 3.4. After a run of Algorithm 1 (using parameter l) on a query (P, q(x))
and an extensional instance I, for every intensional predicate p of P , for every tuple
t ∈ input p and for every SLD-refutation of P∪I∪{← p(t)} that uses the leftmost selection
function and does not contain any goal with term-depth greater than l, if θ1, . . . , θh are

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:13

the mgu’s used in the refutation and the term-depth of θ1 . . . θh is not greater than l then
there exists a tuple t′ ∈ ans p such that p(t)θ1 . . . θh is an instance of a variant of p(t′).

PROOF. We prove this lemma by induction on the length of the mentioned SLD-
refutation. Let A = p(t) and suppose that the first step of the refutation of P ∪ I ∪
{← A} uses an input program clause ϕ′ = (A′′ ← B′′1 , . . . , B

′′
n), giving the resolvent

← (B′′1 , . . . , B
′′
n)θ1. Let j1 = 2, jn+1 = h+ 1 and suppose that, for 1 ≤ i ≤ n,

the fragment for processing ← B′′i θ1 . . . θji−1 of the refutation
of P ∪ I ∪ {← A} uses mgu’s θji , . . . , θji+1−1. (1)

Thus, after processing the atom B′′i−1, for 2 ≤ i ≤ n+ 1, the next goal of the refutation
of← A is← (B′′i , . . . , B

′′
n)θ1 . . . θji−1. (If i = n+ 1 then the goal is empty.)

Consider the last iteration of the main loop of Algorithm 1, the execution of
process-goal(A) in that iteration that adds t to input p, and the execution of
process-goal-using-clause(A,ϕ) in that execution of process-goal(A), where ϕ =
(A′ ← B1, . . . , Bn) is a variant of ϕ′. Let ϕ′ = ϕ%, where % is a renaming substitution
that uses only variables of ϕ and ϕ′. Thus,

(A′′ ← B′′1 , . . . , B
′′
n) = (A′ ← B1, . . . , Bn)%. (2)

Since θ1 is an mgu for A and A′′ = A′%, we have that Aθ1 = A′%θ1. Since % does not
use variables of A, we have that A% = A. Hence A%θ1 = Aθ1 = A′%θ1. That is, %θ1 is a
unifier for A and A′. Since δ0 is an mgu for A and A′, it follows that %θ1 = δ0γ

′
0 for some

substitution γ′0.
As an inner induction, let the induction hypothesis be that after processing the

first i − 1 iterations of the “foreach” loop in Step 5 of the considered execution of
process-goal-using-clause(A,ϕ), where 1 ≤ i ≤ n+ 1, it holds that

(%θ1 . . . θji−1)|X = (δi−1γ
′
i−1)|X (3)

for some δi−1 ∈ supi−1 and some substitution γ′i−1. This induction hypothesis holds
for i = 1 because j1 = 2, %θ1 = δ0γ

′
0 and the term-depth of %θ1 is not greater than l.

Suppose that the induction hypothesis holds for some 1 ≤ i ≤ n. We show that it also
holds for i+ 1.

By (2) and the inductive assumption (3), we have that:

(← B′′i θ1 . . . θji−1) = (← Bi%θ1 . . . θji−1) = (← Biδi−1γ
′
i−1). (4)

Since the term-depth ofBiδi−1γ′i−1 = B′′i θ1 . . . θji−1 is not greater than l, the term-depth
of Biδi−1 is also not greater than l. By (1), (4) and Lifting Lemma 2.2, we have that

there exists a refutation of P ∪ I ∪ {← Biδi−1} using the leftmost se-
lection function and mgu’s θ′ji , . . . , θ

′
ji+1−1 such that the term-depths of

the goals and the composition θ′ji . . . θ
′
ji+1−1 are not greater than l and

γ′i−1θji . . . θji+1−1 = θ′ji . . . θ
′
ji+1−1µi for some substitution µi.

(5)

Consider the case when the predicate pi of Bi is an extensional predicate.
Thus,

ji+1 = ji + 1 (6)

and

Biδi−1θ
′
ji = B′iσθ

′
ji (7)

where B′iσ is the input program clause used for resolving← Biδi−1, with B′i ∈ I(pi) and
σ being a renaming substitution. Let σ′ be the renaming substitution used in Step 12

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:14 E. Madalińska-Bugaj and L.A. Nguyen

of procedure process-goal-using-clause for making a variant B′iσ′ of B′i for unifying
with Biδi−1. We have that σ = σ′σ′′ for some renaming substitution σ′′ which does not
use variables of Bi, δi−1 and X. Thus Biδi−1σ′′θ′ji = Biδi−1θ

′
ji

, and by using (7) and the
fact that σ = σ′σ′′, we have that

(Biδi−1)σ′′θ′ji = Biδi−1θ
′
ji = B′iσθ

′
ji = (B′iσ

′)σ′′θ′ji .

Hence, Biδi−1 and B′iσ′ are unifiable using σ′′θ′ji , and γi is an mgu for them (Step 12 of
process-goal-using-clause). Hence

σ′′θ′ji = γiµ
′
i (8)

for some substitution µ′i. Let

γ′i = µ′iµi. (9)

We have that:
(%θ1 . . . θji+1−1)|X

= ((%θ1 . . . θji−1)|Xθji . . . θji+1−1)|X
= ((δi−1γ

′
i−1)|Xθji . . . θji+1−1)|X (by the inner inductive assumption (3))

= (δi−1γ
′
i−1θji . . . θji+1−1)|X

= (δi−1θ
′
ji
. . . θ′ji+1−1µi)|X (by (5))

= (δi−1σ
′′θ′ji . . . θ

′
ji+1−1µi)|X (since σ′′ does not use variables of δi−1, X)

= (δi−1γiµ
′
iµi)|X (by (6) and (8))

= (δi−1γiγ
′
i)|X (by (9)).

Since the term-depth of θ1 . . . θh is not greater than l and % is a renaming substitution,
the term-depth of (%θ1 . . . θji+1−1)|X is not greater than l. It follows that the term-depth
of (δi−1γi)|X is also not greater than l. Hence, for δi = (δi−1γi)|X ∈ supi, we have that
(%θ1 . . . θji+1−1)|X = (δiγ

′
i)|X . That is, the induction hypothesis of the inner induction

holds for i+ 1.
Now consider the case when the predicate pi of Bi is an intensional predicate.
We first show that ans pi contains an atom B′i such that Biδi−1θ′ji . . . θ

′
ji+1−1 is an

instance of a variant of B′i. As process-goal(Biδi−1) was called in Step 15 of the con-
sidered execution of process-goal-using-clause(A,ϕ), input pi must contain an atom
B�i such that Biδi−1 is an instance of a variant of B�i . Let α be a substitution such that

Biδi−1 = B�i α (10)

and α uses only variables from Biδi−1 and B�i . By (5) and Lifting Lemma 2.2, it follows
that there exists a refutation of P ∪ I ∪ {← B�i } using the leftmost selection function
and mgu’s θ′′ji , . . . , θ

′′
ji+1−1 such that the term-depths of the goals and the composition

θ′′ji . . . θ
′′
ji+1−1 are not greater than l and

αθ′ji . . . θ
′
ji+1−1 = θ′′ji . . . θ

′′
ji+1−1β (11)

for some substitution β. By the outer inductive assumption, ans pi contains an atom B′i
such that B�i θ′′ji . . . θ

′′
ji+1−1 is an instance of a variant of B′i. Since

Biδi−1θ
′
ji
. . . θ′ji+1−1 = B�i αθ

′
ji
. . . θ′ji+1−1 (by (10))

= B�i θ
′′
ji
. . . θ′′ji+1−1β (by (11)),

it follows that

Biδi−1θ
′
ji . . . θ

′
ji+1−1 is also an instance of a variant of B′i. (12)

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:15

Let σ be the renaming substitution used in Step 17 of procedure
process-goal-using-clause for making a variant B′iσ of B′i for unifying with
Biδi−1. The atom B′iσ does not contain variables of X, δi−1 and θ′ji . . . θ

′
ji+1−1. Hence, by

(12), Biδi−1θ′ji . . . θ
′
ji+1−1 is an instance of B′iσ. Let ρ be a substitution with domain con-

tained in Var(B′iσ) such that Biδi−1θ′ji . . . θ
′
ji+1−1 = B′iσρ. We have that θ′ji . . . θ

′
ji+1−1∪ρ

is a unifier for Biδi−1 and B′iσ. As γi is an mgu for Biδi−1 and B′iσ, we have that
γiµ
′
i = (θ′ji . . . θ

′
ji+1−1 ∪ ρ) for some substitution µ′i. Hence

(γiµ
′
i)|X∪Var(δi−1) = (θ′ji . . . θ

′
ji+1−1)|X∪Var(δi−1). (13)

Let

γ′i = µ′iµi. (14)

We have that:
(%θ1 . . . θji+1−1)|X

= (δi−1θ
′
ji
. . . θ′ji+1−1µi)|X (as for the case when pi is an extensional predicate)

= (δi−1(θ′ji . . . θ
′
ji+1−1)|X∪Var(δi−1)µi)|X

= (δi−1(γiµ
′
i)|X∪Var(δi−1)µi)|X (by (13))

= (δi−1γiµ
′
iµi)|X

= (δi−1γiγ
′
i)|X (by (14)).

Analogously as for the case when pi is an extensional predicate, the term-depth of
(δi−1γi)|X is not greater than l, and for δi = (δi−1γi)|X ∈ supi, the induction hypothesis
of the inner induction holds for i+ 1.

We have proved the induction hypothesis of the inner induction, which implies
that (%θ1 . . . θjn+1−1)|X = (δnγ

′
n)|X . That is, (%θ1 . . . θh)|X = (δnγ

′
n)|X . Hence Aδnγ′n =

A%θ1 . . . θh = Aθ1 . . . θh (since A% = A). Hence p(t)θ1 . . . θh = Aθ1 . . . θh is an instance of
Aδn. By Step 21 of procedure process-goal-using-clause, it follows that p(t)θ1 . . . θh
is an instance of a variant of some atom from ans p.

THEOREM 3.5 (COMPLETENESS). After a run of Algorithm 1 (using parameter l) on
a query (P, q(x)) and an extensional instance I, for every SLD-refutation of P ∪ I ∪ {←
q(x)} that uses the leftmost selection function and does not contain any goal with term-
depth greater than l, if θ1, . . . , θh are the mgu’s used in the refutation and the term-depth
of the composition θ1 . . . θh is not greater than l then there exists a tuple t ∈ ans q such
that xθ1 . . . θh is an instance of a variant of t.

This theorem immediately follows from Lemma 3.4. Together with Theorem 2.1 (on
completeness of SLD-resolution) it makes a relationship between correct answers of
P ∪ I ∪ {← q(x)} and the answers computed by Algorithm 1 for the query (P, q(x)) on
the extensional instance I.

Note that in the above theorem xθ1 . . . θh is an instance of a variant of t but is nei-
ther t nor a variant of t because of the optimization made in Step 21 of procedure
process-goal-using-clause. For knowledge bases, it is inessential to require xθ1 . . . θh
to be t or a variant of t.

For queries and extensional instances without function symbols, we take term-depth
bound l = 0 and obtain the following completeness result, which immediately follows
from the above theorem.

COROLLARY 3.6. After a run of Algorithm 1 using l = 0 on a query (P, q(x)) and an
extensional instance I that do not contain function symbols, for every computed answer
θ of an SLD-refutation of P ∪I∪{← q(x)} that uses the leftmost selection function, there
exists a tuple t ∈ ans q such that xθ is an instance of a variant of t.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:16 E. Madalińska-Bugaj and L.A. Nguyen

4. DOING IT SET-AT-A-TIME
Operations for databases and knowledge bases are often done set-at-a-time instead of
tuple-at-a-time in order to reduce the number of accesses to secondary storage. This
approach allows various optimizations like sorting, indexing, and clustering.

ALGORITHM 2: for evaluating a query (P, q(x)) on an extensional instance I.
1 init-ans-vars;
2 repeat
3 clear-input-vars;
4 s-process-goal ({q(x)});
5 until ans variables were not changed during the last iteration;
6 return ans q;

Procedure s-process-goal(J)
/* for processing the goal relation J */

1 let p be the predicate of J ;
2 J := eliminate-subsumed-tuples(J, input p) ; // defined on page 17
3 if J is empty then exit;
4 input p := input p ∪ J ;
5 foreach program clause ϕ defining p in P do
6 s-process-goal-using-clause (J , a fresh variant of ϕ);

Procedure s-process-goal-using-clause(J , ϕ)
/* for processing the goal relation J using the program clause ϕ and the term-depth

bound l */

1 let Y = Var(ϕ);
2 let p be the predicate of J ;
3 let ϕ = (A′ ← B1, . . . , Bn); // A′ is an atom of p

4 K := resolve-using-head-atom(J,A′); // defined on page 17
5 i := 0;
6 while i < n and K is not empty do
7 i := i+ 1;
8 if the predicate pi of Bi is an extensional predicate then
9 K := resolve-using-body-atom(K,Bi, I(pi), Y); // defined on page 17

10 else
11 s-process-goal ({Biδi−1 | (A, δi−1) ∈ K and term-depth(Biδi−1) ≤ l});
12 K := resolve-using-body-atom(K,Bi, ans pi, Y);

13 ans p := merge(ans p, {Aδn | (A, δn) ∈ K}); // defined on page 17

Algorithm 2 is our reformulation of Algorithm 1 using the set-at-a-time technique.
The reformulation is based on processing a set of goal atoms of the same predicate in-
stead of processing a single goal atom. Example A.2 in the electronic appendix of this
paper demonstrates a run of Algorithm 2. It is also convenient for a better understand-
ing of the algorithm (but too long for putting here).

Algorithm 1 is a tuple-at-a-time method and can be looked at as a combination
of depth-first search and tabulation. Algorithm 2 is a set-at-a-time method and can
be looked at as a mixture of depth-first search, breadth-first search and tabulation.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:17

Function eliminate-subsumed-tuples(J , J ′)
Input: generalized relations J and J ′ of the same arity
Output: the set of maximally general tuples of J not subsumed by J ′

1 J2 := ∅;
2 foreach A ∈ J do
3 include := true;
4 foreach A′ ∈ J ′ ∪ J2 do
5 let A′′ be a fresh variant of A′;
6 if A is an instance of A′′ then {include := false, break };
7 if include = true then
8 delete from J2 all tuples that are an instance of a fresh variant of A;
9 J2 := J2 ∪ {A};

10 return J2;

Function merge(J , J ′)
1 J2 := eliminate-subsumed-tuples(J, J ′);
2 J ′2 := eliminate-subsumed-tuples(J ′, J2);
3 return J2 ∪ J ′2;

Function resolve-using-head-atom(J , A′)
Input: a goal relation (i.e. an input relation) J associated with the predicate of A′
Output: the set consisting of a tuple (A, δ0) for each atom A ∈ J such that A is unifiable with

A′ using mgu δ0 with term-depth not greater than l
1 K := ∅;
2 foreach A ∈ J do
3 if A and A′ are unifiable using an mgu δ0 then
4 if term-depth(δ0) ≤ l then K := K ∪ {(A, δ0)};

5 return K;

Function resolve-using-body-atom(K, Bi, R, Y)
Input: K is a set of tuples of the form (A, δi−1), Bi is an atom, R is a generalized relation

associated with the predicate of Bi, and Y is a set of variables
Output: the set consisting of a tuple (A, δi) for each (A, δi−1) ∈ K and each B′i ∈ R such that

Biδi−1 is unifiable with a fresh variant of B′i using an mgu γi and the term-depth of
δi = (δi−1γi)|Var(A)∪Y is not greater than l

1 K′ := ∅;
2 foreach (A, δi−1) ∈ K do
3 let X = Var(A) ∪ Y ;
4 foreach B′i ∈ R do
5 if Biδi−1 is unifiable with a fresh variant of B′i using an mgu γi then
6 if term-depth((δi−1γi)|X) ≤ l then K′ := K′ ∪ {(A, (δi−1γi)|X)}

7 return K′;

Algorithm 2 simulates Algorithm 1 but the order of calls of simulations of proce-
dure process-goal (by using procedure s-process-goal) may be different. To avoid
keeping unnecessary information it also uses the same variable K (in procedure
s-process-goal-using-clause) for the whole sequence of supi. Analyzing the proofs

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:18 E. Madalińska-Bugaj and L.A. Nguyen

of Theorems 3.3 and 3.5, it can be seen that they can be adapted in a straightforward
way for Algorithm 2 because the difference of steering control between the algorithms
does not affect the proofs. Thus, we arrive at the following theorem, whose detailed
proofs are given in Appendix via Theorems A.1, A.3 and Corollary A.4.

THEOREM 4.1. Algorithm 2 is sound and complete (i.e., Theorems 3.3, 3.5 and
Corollary 3.6 still hold when “Algorithm 1” is replaced by “Algorithm 2”).

4.1. Data Complexity
In this subsection we estimate the data complexity of Algorithm 2, which is measured
w.r.t. the size of the extensional instance I when the query (P, q(x)) and the term-depth
bound l are fixed.

If terms are represented as sequences of symbols or as trees then there
will be a problem with complexity. Namely, unifying the terms f(x1, . . . , xn) and
f(g(x0, x0), . . . , g(xn−1, xn−1)), we get a term of exponential length.5 If the term-depth
bound l is used in all steps, including the ones of unification, then the problem will not
arise. But we do not want to be so restrictive.

To represent a term we use instead a rooted acyclic directed graph which is permit-
ted to have multiple ordered arcs and caches nodes representing the same subterm.
Such a graph will simply be called a DAG. As an example, the DAG of f(x, a, x) has the
root nf labeled by f , a node nx labeled by x, a node na labeled by a, and three ordered
edges outgoing from nf : the first and third ones are connected to nx, while the second
one is connected to na.

The size of a term t, denoted by size(t), is defined to be the size of the DAG of t (i.e. the
number of nodes and edges of the DAG of t). The sizes of other term-based expressions
or data structures are defined as usual. For example, we define:

— the size of an atom p(t1, . . . , tk) to be 1 + size(t1) + . . .+ size(tk)
— the size of a set J of atoms to be the sum of the sizes of its elements
— the size of a substitution {x1/t1, . . . , xk/tk} to be k + size(t1) + . . .+ size(tk).

Using DAGs to represent terms, unification of two atoms A and A′ can be done in
polynomial time in the sizes of A and A′. In the case A and A′ are unifiable, the result-
ing atom and the resulting mgu have sizes that are polynomial in the sizes of A and
A′. Similarly, checking whether A is an instance of A′ can also be done in polynomial
time in the sizes of A and A′.

The following theorem estimates the data complexity of Algorithm 2, under the as-
sumption that terms are represented by DAGs and unification and checking instances
of atoms are done in polynomial time.

THEOREM 4.2. For a fixed query and a fixed bound l on term-depth, Algorithm 2
runs in polynomial time in the size of the extensional instance.

PROOF. Consider a run of Algorithm 2 using parameter l on a query (P, q(x)) and
on an extensional instance I with size n. Here, (P, q(x)) and l are fixed. Thus, if
(A← B1, . . . , Bk) is a program clause of P then k is bounded by a constant. Similarly,
if p is an intensional predicate from P then the arity of p is also bounded by a constant.

Observe that all the functions eliminate-subsumed-tuples, merge,
resolve-using-head-atom, resolve-using-body-atom run in polynomial time in
the sizes of their parameters. Also observe that the sizes of ans and input relations
are bounded by a polynomial of n. The reasons are:

5Another example is the pair f(x1, . . . , xn, x1, . . . , xn) and f(y1, . . . , yn, g(y0, y0), . . . , g(yn−1, yn−1)).

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:19

— intensional predicates come from P
— constant symbols and function symbols come from P and I
— input relations consist of tuples with term-depth bounded by l
— ans relations consist of tuples with term-depth bounded by 2l (because input rela-

tions consist of tuples with term-depth bounded by l and the used substitutions have
term-depth bounded by l)

— each of these relations cannot contain two tuples which are a variant of each other
(this means that names of variables occurring in tuples of ans and input relations
can be “standardized”).

For a similar reason, during the execution of Algorithm 2, relation J in Step 6
of procedure s-process-goal also has a polynomial size (in n). For this, note that
s-process-goal(J) is called only for goal relations J consisting of atoms with term-
depth not greater than l. Consequently, s-process-goal-using-clause(J, ϕ) is called
only for goal relations J with a polynomial size (in n). Such a call, not counting the
execution of s-process-goal in Step 11, runs in polynomial time in the sizes of J and
ϕ, and hence in polynomial time in n.

Observe that s-process-goal(J) is called only for goal relations J of polynomial size
in n. A call of s-process-goal, not counting recursive calls of itself, runs in polynomial
time in the size of its parameter, and hence in polynomial time in n.

Observe that:

— tuples are never deleted from ans relations
— at the beginning of each iteration of the main loop of Algorithm 2, input variables

are reset to empty relations, but in the rest of the iteration:
— tuples are never deleted from input relations
— a recursive call of s-process-goal(J) is executed only when some tuples have

been put into an input relation during the considered iteration.

Since the sizes of ans and input relations are bounded by a polynomial of n, and a
call of s-process-goal, not counting recursive calls of itself, runs in polynomial time
in n, we conclude that Algorithm 2 runs in polynomial time in n.

COROLLARY 4.3. Algorithm 2 with term-depth bound l = 0 is a complete evaluation
algorithm with PTIME data complexity for the class of queries over a signature without
function symbols.

This corollary follows from Theorem A.1 (on soundness), Corollary A.4 (on complete-
ness) and the above theorem (on complexity).

4.2. Some Optimizations
Some optimizations can be adopted for both Algorithms 1 and 2. For example, one can
orders atoms in bodies of input program clauses using certain criteria (it can be proved
that such an optimization does not affect the completeness, because it is a kind of
choosing a selection function). As another example, our algorithms can be improved by
using tail recursion elimination. For this purpose, we simulate Ross’ magic templates
with right-recursion [Ross 1996] as follows:

— We use input p(t) to simulate magic(p(t)) and use input p(t, C) to simulate
query(p(t), C), where query is the special intensional predicate used by Ross [Ross
1996].6

6We use letter C instead of A [Ross 1996, Definition 4.1] to distinguish it from our A = p(t).

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:20 E. Madalińska-Bugaj and L.A. Nguyen

Disk reading (times) Disk writing (times)
Test1(T) 58 (23+9+26) 18 (12+6)
Test1(S) 43 (17+6+20) 15 (9+6)
Test2(T) 1201 (410+252+539) 279 (156+123)
Test2(S) 187 (71+24+92) 69 (36+33)
Test3(T) 4181 (1410+902+1869) 949 (506+443)
Test3(S) 347 (131+44+172) 129 (66+63)
Test4(T) 207 (36+74+97) 21 (14+7)
Test4(S) 43 (18+6+19) 13 (8+5)

Fig. 4. The number of disk accesses for Test1 - Test4 of [Nguyen 2011]. The letter T (resp. S) in brackets
means the test is done by using the tuple-at-a-time (resp. set-at-a-time) technique. A field with values “N
(N1+N2+N3)” in the “Disk reading” column means the total number of read operations on disk, the numbers
of read accesses to extensional/ inp / ans relations. Here, inp and ans relations are also stored on disk as
extensional relations. Similarly, a field with values “N (N1+N2)” in the “Disk writing” column means the
total number of write operations on disk, the numbers of write accesses to inp / ans relations.

— Subqueries are generated and called accordingly to item (1) of [Ross 1996, Defini-
tion 4.1].

— Storing tuples of ans relations is done accordingly to item (2) of [Ross 1996, Defi-
nition 4.1]. For example, if the considered rule is [p(t) ← q1(t1), . . . , qn(tn)] and p is
“right-recursive” but qn is not, then after processing q1(t1), . . . , qn(tn) for input p(t, C)
results of the form Cδn (which may differ from Aδn = p(t)δn) will be stored in the
ans relation associated with the predicate of C (which may differ from ans p). If qn
is also “right-recursive” then the results of that processing are not “materialized”
(i.e. not stored).

4.3. Relaxing Term-Depth Bound
Suppose that we want to compute as many as possible but no more than k correct
answers for a query (P, q(x)) on an extensional instance I within time limit T . Then
we can use iterative deepening search which iteratively increases term-depth bound
for atoms and substitutions occurring in the computation as follows:

(1) Initialize term-depth bound l to 0 (or another small natural number).
(2) Run Algorithm 2 for evaluating (P, q(x)) on I within the time limit.
(3) While ans q contains less than k tuples and the time limit was not reached yet, do:

(a) Increase term-depth bound l by 1.
(b) Run Algorithm 2 without resetting the ans global variables (i.e. without

Step 1).
(4) Return ans q.

Alternatively, instead of iterative deepening search one can use D&B-search discov-
ered recently in [Brodt et al. 2009], which also runs in polynomial space (w.r.t. the
maximal depth of visited nodes in the search space) but avoids repetitions. Which
method is better depends on locations of solutions in the search space.

5. PRELIMINARY EXPERIMENTAL RESULTS
We have implemented a prototype [Nguyen 2011] in Prolog for our evaluation methods.
In this section we compare the set-at-a-time version with the tuple-at-a-time version
with respect to the number of accesses to secondary storage. We give also other re-
marks.

Test1 of [Nguyen 2011] is the one taken from [Nejdl 1987]. It is presented and manu-
ally explored in Example A.1 of the electronic appendix of this paper. Test1 uses exten-
sional predicates p = {(c, d), (b, c), (c, b)} and q = {(e, a), (a, i), (i, o)}. Test2 of [Nguyen

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:21

2011] is similar to Test1, but the extensional predicates p and q are specified as below,
using n = 9:

p = {(c, d)} ∪ {(bi, c), (c, bi) | 0 ≤ i ≤ n}
q = {(e, a0)} ∪ {(ai, bi), (bi, ai+1) | 0 ≤ i ≤ n}.

Test3 of [Nguyen 2011] is similar to Test2, but uses n = 19. Test4 of [Nguyen 2011]
is the “reverse-same-generation” query of [Abiteboul et al. 1995]. The experimental
results on these tests, which are presented in Figure 4, clearly show that the set-at-
a-time technique significantly reduces the number of accesses to secondary storage.
See [Nguyen 2011] for more details.

Test5 and Test6 of [Nguyen 2011] show that the order of clauses in the used logic
program affects the computational time consumed by our evaluation algorithms. Like
in logic programming, more “specific” program clauses should be processed first. Sim-
ilarly, Test7 - Test9 of [Nguyen 2011] show that the order of atoms in the body of a
program clause affects the computational time as in the case of logic programming.

6. CONCLUDING REMARKS
We have generalized the QSQR evaluation method to give the first set-oriented depth-
first evaluation method for Horn knowledge bases. The resulting procedure closely
simulates SLD-resolution to take advantages of the goal-directed approach and highly
exploits set-at-a-time tabling to reduce the number of accesses to secondary storage.
We have proved that our procedure is sound and complete.

Our generalization uses the steering control of the (corrected) QSQR method but
does not use adornments and annotations. Instead of “input” and “answer” relations
consisting of tuples of constant symbols, we use “input” and “answer” relations con-
sisting of tuples of terms (which may contain variables and function symbols), and
instead of “supplementary” relations consisting of tuples of constant symbols, we use
“supplementary” relations consisting of substitutions. This technique was inspired by
Nguyen’s computational methods for modal deductive databases [Nguyen 2007]. To
deal with function symbols, we propose to use iterative deepening search which iter-
atively increases term-depth bound for atoms and substitutions occurring in the com-
putation. This search strategy differs from the usual iterative derivation-deepening
search. It also essentially differs from the “subgoal generalization” technique of SLD-
ALG [Vieille 1989]. An alternative way is to use D&B-search [Brodt et al. 2009]. When
the term-depth bound is fixed, our evaluation procedure runs in polynomial time in
the size of extensional relations.

The differences between Vieille’s evaluation methods QSQR [Vieille 1986] and
QoSaQ [Vieille 1989] for Datalog deductive databases were characterized by himself
as follows [Vieille 1989, pages 47-48]:

“SLD-AL trees are complex structures to search, as a lemma lem to be re-
solved against a non-admissible goal G may be proved only after G was cre-
ated. Therefore, two solutions can be adopted.

The first one, adopted in QoSaQ, consists in constructively searching the
SLD-AL tree. This requires that the goal G be stored until all the relevant
lemmas lem have been produced and resolved against G. [. . .]

The second solution, adopted in QSQR and implemented in DedGin, tries
to take maximal advantage of depth-first techniques (and of their ease of im-
plementation) to search SLD and SLD-AL trees. In this approach, the goal
G is not stored until all the lemmas have been found. Rather,G is repeatedly
regenerated to be resolved each time, potentially with new lemmas. [. . .]

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:22 E. Madalińska-Bugaj and L.A. Nguyen

This solution, which, for short, we call an iterative-deepening search [30] 7

involves redundant computation, as the same goal must be reconstructed
again and again. On the other hand, it is economical of space, as we do not
need to store the goal G.”.

One can view the QoSaQ evaluation method as a connection between the QSQ ap-
proach and the magic-set approach.8 Recall, however, that the specific techniques of
QoSaQ like “instantiation pattern”, “rule compilation”, “projection” are heavily based
on the range-restrictedness and function-free conditions.

Our generalized QSQR evaluation method is the first set-oriented depth-first evalu-
ation method for Horn knowledge bases. As shown in Section 5, in comparison with the
tuple-oriented depth-first approach, it significantly reduces the number of accesses to
secondary storage. As future work, we intend to further improve the method, for exam-
ple, by using some ideas of the QoSaQ and seminaive (bottom-up) evaluation methods,
and apply our method for Datalog-like rule languages of Semantic Web [Cao et al.
2011a; 2011b].

APPENDIX
In this appendix we present and prove theorems about soundness and completeness of
Algorithm 2. These theorems are counterparts, respectively, of Theorems 3.3 and 3.5,
with “Algorithm 1” replaced by “Algorithm 2”. A counterpart of Corollary 3.6 is also
given. The proofs are very similar to the ones given for Algorithm 1. We present them
here just to make the paper self-contained.

THEOREM A.1 (SOUNDNESS). After a run of Algorithm 2 on a query (P, q(x)) and
an extensional instance I, for all intensional predicates p of P , every computed answer
A′′ ∈ ans p is a correct answer in the sense that P ∪ I |= ∀(A′′).

PROOF. We prove P ∪ I |= ∀(A′′) by induction on the number of the step
at which A′′ = Aδn is added to ans p in Step 13 of an execution of proce-
dure s-process-goal-using-clause (given on page 16) for J and ϕ = (A′ ←
B1, . . . , Bn). Let δ0, . . . , δn−1 and γ1, . . . , γn be the substitutions used in functions
resolve-using-head-atom and resolve-using-body-atom (given on page 17) for com-
puting δn. We have that δi = (δi−1γi)|X for 1 ≤ i ≤ n. Hence, δn = (δi−1γi . . . γn)|X for
1 ≤ i ≤ n.

We will construct an SLD-refutation for the goal ← B1δn, . . . , Bnδn by tracing the
mentioned execution of s-process-goal-using-clause.

Consider Step 9 of procedure s-process-goal-using-clause and the call
resolve-using-body-atom(K,Bi, I(pi), Y). Since γi is an mgu for Biδi−1 and a vari-
ant of B′i ∈ I(pi) (see Step 5 of function resolve-using-body-atom on page 17),
Biδn = Biδi−1γi . . . γn is an instance of a variant of B′i. Hence P ∪ I ∪ {← Biδn} has
an SLD-refutation with the empty substitution as the computed answer.

Consider Step 12 of procedure s-process-goal-using-clause and the call
resolve-using-body-atom(K,Bi, ans pi, Y). Since γi is an mgu for Biδi−1 and a vari-
ant of B′i ∈ ans pi (see Step 5 of function resolve-using-body-atom on page 17),
Biδn = Biδi−1γi . . . γn is an instance of a variant of B′i ∈ ans pi. By the inductive as-
sumption, P ∪ I |= ∀(B′i), and hence P ∪ I |= ∀(Biδn). By Lemma 2.3, it follows that
P ∪ I ∪ {← Biδn} has an SLD-refutation with the empty substitution as the computed
answer.

7Although it is not quite the same.
8Vieille also categorized the magic-set evaluation method as a “constructive search” of SLD-AL trees [Vieille
1989, page 41].

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:23

The refutations with empty computed answers of P ∪ I ∪ {← Biδn} for 1 ≤ i ≤ n
can be combined into an SLD-refutation of P ∪ I ∪ {← B1δn, . . . , Bnδn} with an empty
computed answer. By Theorem 2.1 on soundness of SLD-resolution, we have that P ∪
I |= ∀((B1 ∧ . . .∧Bn)δn). It follows that P ∪ I |= ∀(A′δn). Since Aδ0 = A′δ0 (see Step 3 of
function resolve-using-head-atom on page 17) and δn = (δ0γ1 . . . γn)|X , we also have
that Aδn = A′δn. Therefore P ∪ I |= ∀(Aδn), which completes the proof.

The following lemma is a counterpart of Lemma 3.4. We also assume that the
sets of fresh variables used for renaming variables of input program clauses in SLD-
refutations and in Algorithm 2 are disjoint.

LEMMA A.2. After a run of Algorithm 2 (using parameter l) on a query (P, q(x))
and an extensional instance I, for every intensional predicate p of P , for every tuple
t ∈ input p and for every SLD-refutation of P∪I∪{← p(t)} that uses the leftmost selection
function and does not contain any goal with term-depth greater than l, if θ1, . . . , θh are
the mgu’s used in the refutation and the term-depth of θ1 . . . θh is not greater than l then
there exists a tuple t′ ∈ ans p such that p(t)θ1 . . . θh is an instance of a variant of p(t′).

PROOF. We prove this lemma by induction on the length of the mentioned SLD-
refutation. Let A = p(t) and suppose that the first step of the refutation of P ∪ I ∪
{← A} uses an input program clause ϕ′ = (A′′ ← B′′1 , . . . , B

′′
n), giving the resolvent

← (B′′1 , . . . , B
′′
n)θ1. Let j1 = 2, jn+1 = h+ 1 and suppose that, for 1 ≤ i ≤ n,

the fragment for processing ← B′′i θ1 . . . θji−1 of the refutation
of P ∪ I ∪ {← A} uses mgu’s θji , . . . , θji+1−1. (15)

Thus, after processing the atom B′′i−1, for 2 ≤ i ≤ n+ 1, the next goal of the refutation
of← A is← (B′′i , . . . , B

′′
n)θ1 . . . θji−1. (If i = n+ 1 then the goal is empty.)

Consider the last iteration of the main loop of Algorithm 2, the execution of
s-process-goal in that iteration that adds t to input p, and the execution of
s-process-goal-using-clause(J, ϕ) in that execution of s-process-goal, where ϕ =
(A′ ← B1, . . . , Bn) is a variant of ϕ′. We have that J contains A = p(t). Let ϕ′ = ϕ%,
where % is a renaming substitution that uses only variables of ϕ and ϕ′. Thus,

(A′′ ← B′′1 , . . . , B
′′
n) = (A′ ← B1, . . . , Bn)%. (16)

Since θ1 is an mgu for A and A′′ = A′%, we have that Aθ1 = A′%θ1. Since
% does not use variables of A, we have that A% = A. Hence A%θ1 = Aθ1 =
A′%θ1. That is, %θ1 is a unifier for A and A′. Let δ0 be the substitution used
in Step 3 of function resolve-using-head-atom for the considered atom A in
the call resolve-using-head-atom(J,A′) in Step 4 of the considered execution of
s-process-goal-using-clause(J, ϕ). Since δ0 is an mgu for A and A′, it follows that
%θ1 = δ0γ

′
0 for some substitution γ′0.

As an inner induction, let the induction hypothesis be that, after process-
ing the first i − 1 iterations of the “while” loop of the considered execution of
s-process-goal-using-clause(J, ϕ), where 1 ≤ i ≤ n+ 1, it holds that

(%θ1 . . . θji−1)|X = (δi−1γ
′
i−1)|X (17)

for some (A, δi−1) ∈ K and some substitution γ′i−1. This induction hypothesis holds
for i = 1 because j1 = 2, %θ1 = δ0γ

′
0 and the term-depth of %θ1 is not greater than l.

Suppose that the induction hypothesis holds for some 1 ≤ i ≤ n. We show that it also
holds for i+ 1.

By (16) and the inductive assumption (17), we have that:

(← B′′i θ1 . . . θji−1) = (← Bi%θ1 . . . θji−1) = (← Biδi−1γ
′
i−1). (18)

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:24 E. Madalińska-Bugaj and L.A. Nguyen

Since the term-depth ofBiδi−1γ′i−1 = B′′i θ1 . . . θji−1 is not greater than l, the term-depth
of Biδi−1 is also not greater than l. By (15), (18) and Lifting Lemma 2.2, we have that

there exists a refutation of P ∪ I ∪ {← Biδi−1} using the leftmost se-
lection function and mgu’s θ′ji , . . . , θ

′
ji+1−1 such that the term-depths of

the goals and the composition θ′ji . . . θ
′
ji+1−1 are not greater than l and

γ′i−1θji . . . θji+1−1 = θ′ji . . . θ
′
ji+1−1µi for some substitution µi.

(19)

Consider the case when the predicate pi of Bi is an extensional predicate.
Thus,

ji+1 = ji + 1 (20)

and

Biδi−1θ
′
ji = B′iσθ

′
ji (21)

where B′iσ is the input program clause used for resolving ← Biδi−1, with B′i ∈ I(pi)
and σ being a renaming substitution. Let σ′ be the renaming substitution used
for making a variant of B′i in Step 5 of function resolve-using-body-atom for the
call resolve-using-body-atom(K,Bi, I(pi), Y) in Step 9 of the considered execution of
s-process-goal-using-clause(J, ϕ). We have that σ = σ′σ′′ for some renaming substi-
tution σ′′ which does not use variables of Bi, δi−1 and X. Thus Biδi−1σ′′θ′ji = Biδi−1θ

′
ji

,
and by using (21) and the fact that σ = σ′σ′′, we have that

(Biδi−1)σ′′θ′ji = Biδi−1θ
′
ji = B′iσθ

′
ji = (B′iσ

′)σ′′θ′ji .

Hence, Biδi−1 and B′iσ′ are unifiable using σ′′θ′ji , and γi is an mgu for them (Step 5 of
the mentioned call of resolve-using-body-atom). Hence

σ′′θ′ji = γiµ
′
i (22)

for some substitution µ′i. Let

γ′i = µ′iµi. (23)

We have that:
(%θ1 . . . θji+1−1)|X

= ((%θ1 . . . θji−1)|Xθji . . . θji+1−1)|X
= ((δi−1γ

′
i−1)|Xθji . . . θji+1−1)|X (by the inner inductive assumption (17))

= (δi−1γ
′
i−1θji . . . θji+1−1)|X

= (δi−1θ
′
ji
. . . θ′ji+1−1µi)|X (by (19))

= (δi−1σ
′′θ′ji . . . θ

′
ji+1−1µi)|X (since σ′′ does not use variables of δi−1, X)

= (δi−1γiµ
′
iµi)|X (by (20) and (22))

= (δi−1γiγ
′
i)|X (by (23)).

Since the term-depth of θ1 . . . θh is not greater than l and % is a renaming substitu-
tion, the term-depth of (%θ1 . . . θji+1−1)|X is not greater than l. It follows that the term-
depth of (δi−1γi)|X is also not greater than l. Hence, for δi = (δi−1γi)|X , we have that
(%θ1 . . . θji+1−1)|X = (δiγ

′
i)|X and (A, δi) was added to K ′ in Step 6 of the mentioned call

of resolve-using-body-atom, which is then passed to K in Step 12 of the considered
execution of s-process-goal-using-clause(J, ϕ). That is, the induction hypothesis of
the inner induction holds for i+ 1.

Now consider the case when the predicate pi of Bi is an intensional predicate.
We first show that ans pi contains an atom B′i such that Biδi−1θ

′
ji
. . . θ′ji+1−1

is an instance of a variant of B′i. As procedure s-process-goal was called for

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:25

a goal relation containing Biδi−1 (in Step 11 of the considered execution of
s-process-goal-using-clause(J, ϕ)), input pi must contain an atom B�i such that
Biδi−1 is an instance of a variant of B�i . Let α be a substitution such that

Biδi−1 = B�i α (24)

and α uses only variables fromBiδi−1 andB�i . By (19) and Lifting Lemma 2.2, it follows
that there exists a refutation of P ∪ I ∪ {← B�i } using the leftmost selection function
and mgu’s θ′′ji , . . . , θ

′′
ji+1−1 such that the term-depths of the goals and the composition

θ′′ji . . . θ
′′
ji+1−1 are not greater than l and

αθ′ji . . . θ
′
ji+1−1 = θ′′ji . . . θ

′′
ji+1−1β (25)

for some substitution β. By the outer inductive assumption, ans pi contains an atom B′i
such that B�i θ′′ji . . . θ

′′
ji+1−1 is an instance of a variant of B′i. Since

Biδi−1θ
′
ji
. . . θ′ji+1−1 = B�i αθ

′
ji
. . . θ′ji+1−1 (by (24))

= B�i θ
′′
ji
. . . θ′′ji+1−1β (by (25)),

it follows that

Biδi−1θ
′
ji . . . θ

′
ji+1−1 is also an instance of a variant of B′i. (26)

Let σ be the renaming substitution used for making a variant
B′iσ of B′i in Step 5 of function resolve-using-body-atom for the call
resolve-using-body-atom(K,Bi, ans pi, Y) in Step 12 of the considered execution
of s-process-goal-using-clause(J, ϕ). The atom B′iσ does not contain variables
of X, δi−1 and θ′ji . . . θ

′
ji+1−1. Hence, by (26), Biδi−1θ

′
ji
. . . θ′ji+1−1 is an instance

of B′iσ. Let ρ be a substitution with domain contained in Var(B′iσ) such that
Biδi−1θ

′
ji
. . . θ′ji+1−1 = B′iσρ. We have that θ′ji . . . θ

′
ji+1−1 ∪ ρ is a unifier for Biδi−1 and

B′iσ. As γi is an mgu for Biδi−1 and B′iσ, we have that γiµ′i = (θ′ji . . . θ
′
ji+1−1 ∪ ρ) for

some substitution µ′i. Hence

(γiµ
′
i)|X∪Var(δi−1) = (θ′ji . . . θ

′
ji+1−1)|X∪Var(δi−1). (27)

Let

γ′i = µ′iµi. (28)

We have that:
(%θ1 . . . θji+1−1)|X

= (δi−1θ
′
ji
. . . θ′ji+1−1µi)|X (as for the case when pi is an extensional predicate)

= (δi−1(θ′ji . . . θ
′
ji+1−1)|X∪Var(δi−1)µi)|X

= (δi−1(γiµ
′
i)|X∪Var(δi−1)µi)|X (by (27))

= (δi−1γiµ
′
iµi)|X

= (δi−1γiγ
′
i)|X (by (28)).

Analogously as for the case when pi is an extensional predicate, the term-depth of
(δi−1γi)|X is not greater than l, and for δi = (δi−1γi)|X , the induction hypothesis of the
inner induction holds for i+ 1.

We have proved the induction hypothesis of the inner induction, which implies
that (%θ1 . . . θjn+1−1)|X = (δnγ

′
n)|X . That is, (%θ1 . . . θh)|X = (δnγ

′
n)|X . Hence Aδnγ′n =

A%θ1 . . . θh = Aθ1 . . . θh (since A% = A). Hence p(t)θ1 . . . θh = Aθ1 . . . θh is an instance of
Aδn. By Step 13 of the considered execution of s-process-goal-using-clause(J, ϕ), it
follows that p(t)θ1 . . . θh is an instance of a variant of some atom from ans p.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

?:26 E. Madalińska-Bugaj and L.A. Nguyen

THEOREM A.3 (COMPLETENESS). After a run of Algorithm 2 (using parameter l)
on a query (P, q(x)) and an extensional instance I, for every SLD-refutation of P ∪I∪{←
q(x)} that uses the leftmost selection function and does not contain any goal with term-
depth greater than l, if θ1, . . . , θh are the mgu’s used in the refutation and the term-depth
of the composition θ1 . . . θh is not greater than l then there exists a tuple t ∈ ans q such
that xθ1 . . . θh is an instance of a variant of t.

This theorem immediately follows from Lemma A.2. Together with Theorem 2.1 (on
completeness of SLD-resolution) it makes a relationship between correct answers of
P ∪ I ∪ {← q(x)} and the answers computed by Algorithm 2 for the query (P, q(x)) on
the extensional instance I.

For queries and extensional instances without function symbols, we take term-depth
bound l = 0 and obtain the following completeness result, which immediately follows
from the above theorem.

COROLLARY A.4. After a run of Algorithm 2 using l = 0 on a query (P, q(x)) and an
extensional instance I that do not contain function symbols, for every computed answer
θ of an SLD-refutation of P ∪I∪{← q(x)} that uses the leftmost selection function, there
exists a tuple t ∈ ans q such that xθ is an instance of a variant of t.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We would like to thank Mohamed Yahya for pointing out a mistake in the conference version [Madalińska-
Bugaj and Nguyen 2008] of this paper. We are grateful to the reviewers for very helpful comments and
suggestions.

REFERENCES
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison Wesley.
APT, K. 1997. From Logic Programming to Prolog. Prentice-Hall.
BANCILHON, F., MAIER, D., SAGIV, Y., AND ULLMAN, J. 1986. Magic sets and other strange ways to imple-

ment logic programs. In Proceedings of PODS’1986. ACM, 1–15.
BRODT, S., BRY, F., AND EISINGER, N. 2009. Search for more declarativity. In Proceedings of Web Reasoning

and Rule Systems 2009, A. Polleres and T. Swift, Eds. LNCS Series, vol. 5837. Springer, 71–86.
BRY, F. 1990. Query evaluation in deductive databases: Bottom-up and top-down reconciled. Data Knowl.

Eng. 5, 289–312.
CALÌ, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2009. Datalog±: a unified approach to ontologies and in-

tegrity constraints. In Proceedings of ICDT 2009, R. Fagin, Ed. ACM International Conference Proceed-
ing Series Series, vol. 361. ACM, 14–30.

CAO, S., NGUYEN, L., AND SZALAS, A. 2011a. On the web ontology rule language OWL 2 RL. In Proceedings
of ICCCI’2011, P. Jedrzejowicz, N.-T. Nguyen, and K. Hoang, Eds. LNCS Series, vol. 6922. Springer,
254–264.

CAO, S., NGUYEN, L., AND SZALAS, A. 2011b. WORL: A Web ontology rule language. In Proceedings of
KSE’2011. IEEE, 32–39.

CLARK, K. 1979. Predicate logic as a computational formalism. Research Report DOC 79/59, Department of
Computing, Imperial College.

FREIRE, J., SWIFT, T., AND WARREN, D. 1997. Taking I/O seriously: Resolution reconsidered for disk. In
Proc. of ICLP’1997, L. Naish, Ed. MIT Press, 198–212.

LLOYD, J. 1987. Foundations of Logic Programming, 2nd Edition. Springer.
MADALIŃSKA-BUGAJ, E. AND NGUYEN, L. 2008. Generalizing the QSQR evaluation method for Horn

knowledge bases. In New Challenges in Applied Intelligence Technologies, N.-T. Nguyen and R. Katarzy-
niak, Eds. Studies in Computational Intelligence Series, vol. 134. Springer, 145–154.

NEJDL, W. 1987. Recursive strategies for answering recursive queries - the RQA/FQI strategy. In Proceed-
ings of VLDB’87, P. Stocker, W. Kent, and P. Hammersley, Eds. Morgan Kaufmann, 43–50.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases ?:27

NGUYEN, L. 2007. Foundations of modal deductive databases. Fundamenta Informaticae 79, 1-2, 85–135.
NGUYEN, L. 2011. An implementation in Prolog of the generalized QSQR evaluation method for Horn knowl-

edge bases. http://www.mimuw.edu.pl/~nguyen/GQSQR-PL.zip.
RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. 1992. Efficient bottom-up evaluation of logic

programs. In J. Vandewalle, editor, The State of the Art in Computer Systems and Software Engineering.
Kluwer Academic Publishers.

ROHMER, J., LESCOUER, R., AND KERISIT, J.-M. 1986. The Alexander method – a technique for the pro-
cessing of recursive axioms in deductive databases. New Generation Computing 4, 3, 273–285.

ROSS, K. 1996. Tail recursion elimination in deductive databases. ACM Trans. Database Syst. 21, 2, 208–
237.

SAGONAS, K. AND SWIFT, T. 1998. An abstract machine for tabled execution of fixed-order stratified logic
programs. ACM Trans. Program. Lang. Syst. 20, 3, 586–634.

SAGONAS, K., SWIFT, T., AND WARREN, D. 1994. XSB as an efficient deductive database engine. In Pro-
ceedings of the 1994 ACM SIGMOD Conference on Management of Data, R. Snodgrass and M. Winslett,
Eds. ACM Press, 442–453.

SHEN, Y.-D., YUAN, L.-Y., YOU, J.-H., AND ZHOU, N.-F. 2001. Linear tabulated resolution based on Prolog
control strategy. TPLP 1, 1, 71–103.

STAAB, S. 2008. Completeness of the SLD-resolution. Slides of a course on Advanced Data Modeling, http:
//www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Teaching/SS08/adm08/DB2-SS08-Slides9.ppt.

STÄRK, R. 1990. A direct proof for the completeness of SLD-resolution. In Proceedings of CSL’89, E. Börger,
H. Büning, and M. Richter, Eds. LNCS Series, vol. 440. Springer, 382–383.

TAMAKI, H. AND SATO, T. 1986. OLD resolution with tabulation. In Proceedings of ICLP’1986, LNCS 225,
E. Shapiro, Ed. Springer, 84–98.

VIEILLE, L. 1986. Recursive axioms in deductive databases: The query/subquery approach. In Proceedings
of Expert Database Conf. 253–267.

VIEILLE, L. 1987. A database-complete proof procedure based on SLD-resolution. In Proceedings of ICLP.
74–103.

VIEILLE, L. 1989. Recursive query processing: The power of logic. Theor. Comput. Sci. 69, 1, 1–53.
ZHOU, N.-F. AND SATO, T. 2003. Efficient fixpoint computation in linear tabling. In Proceedings of

PPDP’2003. ACM, 275–283.

Received May 2010; revised September 2011; accepted December 2011

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

Online Appendix to:
A Generalized QSQR Evaluation Method for Horn Knowledge Bases

EWA MADALIŃSKA-BUGAJ, University of Warsaw
LINH ANH NGUYEN, University of Warsaw

A. ILLUSTRATIVE EXAMPLES
Example A.1. This example illustrates Algorithm 1. Consider the following

query [Nejdl 1987], in which x, y, z, w denote variables, and a, b, c, d, e, i, o denote
constant symbols:

— program P :

n(x, y)← r(x, y)
n(x, y)← p(x, z), n(z, w), q(w, y)
s(x)← n(c, x)

— extensional instance I :
p(c, d) r(d, e) q(e, a)
p(b, c) q(a, i)
p(c, b) q(i, o)

— query: s(x).

We give below a trace of a run of Algorithm 1 on this query (using term-depth bound
l = 0). In this trace variables of the form δ or sup are local variables of procedure
process-goal-using-clause. Figures 5 and 6 contain a proof-tree based presentation
of this trace.

(1) ans variables are set to empty relations
(2) input variables are set to empty relations
(3) calling process-goal (s(x))
(4) input s := {x}
(5) calling process-goal-using-clause (s(x), (s(x1)← n(c, x1)))
(6) δ0 := {x1/x}, sup0 := {δ0}
(7) sup1 := ∅
(8) calling process-goal (n(c, x))
(9) input n := {(c, x)}

(10) calling process-goal-using-clause (n(c, x), (n(x2, y2)← r(x2, y2)))
(11) δ0 := {x2/c, y2/x}, sup0 := {δ0}
(12) sup1 := ∅
(13) exiting the call 10
(14) calling process-goal-using-clause (n(c, x),

(n(x3, y3)← p(x3, z3), n(z3, w3), q(w3, y3)))
(15) δ0 := {x3/c, y3/x}, sup0 := {δ0}
(16) sup1 := ∅
(17) sup1 := {{x3/c, y3/x, z3/d}, {x3/c, y3/x, z3/b}}
(18) sup2 := ∅
(19) δ1 := {x3/c, y3/x, z3/d}

c© 2012 ACM 1529-3785/2012/01-ART? $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

App–2 E. Madalińska-Bugaj and L.A. Nguyen

← s(x) (3)

(5)

��
← n(c, x)

(8)-(59) ans n (60)

��
2

a is added to anss (61)

input s anss inputn ansn
x (4) a (61) (c, x) (9) (d, e) (26)

(d, w3) (21) (c, a) (57)
(b, w3) (38)

← n(c, x) (8)

(10)

uukkkkkkkkkkkkkk
(14)

��
← r(c, x) ← p(c, z3), n(z3, w3), q(w3, x)

(19)

��
(36)))TTTTTTTTTTTTTTT

← n(d, w3), q(w3, x)

(20)-(34) ans n (55)

��

← n(b, w3), q(w3, x)

calling (37)

← q(e, x)

(56)

��
2

(c, a) is added to ansn (57)

← n(d, w3) (20)

(22)

�� (28) ++VVVVVVVVVVVVVVVVVVV

← r(d, w3)

(25)

��

← p(d, z5), n(z5, w5), q(w5, w3)

2

(d, e) is added to ansn (26)

← n(b, w3) (37)

(39)

�� (43) **UUUUUUUUUUUUUUUU

← r(b, w3) ← p(b, z7), n(z7, w7), q(w7, w3)

(48)
��

← n(c, w7), q(w7, w3)

calling (49)

resolved only with ansn literals

Fig. 5. A proof-tree based presentation of a trace of the first iteration of the outer loop of a run of Algorithm 1
on the query given in Example A.1. The numbers in bold font indicate the corresponding steps of that trace,
which are listed in the example.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases App–3

← s(x) (65)

(67)

��
← n(c, x)

(70)-(127)

ans n (128)

��

ans n (128)

$$IIIIIIIII

2

2

o is added to
anss (129)

input s anss inputn ansn
x (66) a (61) (c, x) (71) (d, e) (26)

o (129) (d, w10) (83) (c, a) (57)
(b, w10) (99) (b, i) (116)

(c, o) (125)

← n(c, x) (70)

(72)

uujjjjjjjjjjjjjjj
(76)

��
← r(c, x) ← p(c, z10), n(z10, w10), q(w10, x)

(81)

�� (97) ++WWWWWWWWWWWWWWWWWWW

← n(d, w10), q(w10, x)

(82)-(95) ans n (121)

��

← n(b, w10), q(w10, x)

(98)-(118) ans n (123)

��
← q(e, x)

(122)

��

← q(i, x)

(124)

��
2

2

(c, o) is added to ansn (125)

← n(d, w10) (82)

(84)

�� (89) **UUUUUUUUUUUUUUUUU

← r(d, w10)

(87)

��

← p(d, z12), n(z12, w12), q(w12, w10)

2

← n(b, w10) (98)

(100)

��

(104)

// ← p(b, z14), n(z14, w14), q(w14, w10)

(109)

��
← r(b, w10) ← n(c, w14), q(w14, w10)

(110)-(111) ans n (114)

��
← q(a,w10)

(115)

��
2

(b, i) is added to ansn (116)

Fig. 6. A proof-tree based presentation of a trace of the second iteration of the outer loop of a run of Al-
gorithm 1 on the query given in Example A.1 (after clearing input variables). The numbers in bold font
indicate the corresponding steps of that trace, which are listed in the example.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

App–4 E. Madalińska-Bugaj and L.A. Nguyen

(20) calling process-goal (n(d,w3))
(21) input n := {(c, x), (d,w3)}
(22) calling process-goal-using-clause (n(d,w3), (n(x4, y4)← r(x4, y4)))
(23) δ0 := {x4/d, y4/w3}, sup0 := {δ0}
(24) sup1 := ∅
(25) sup1 := {{x4/d, y4/e, w3/e}}
(26) ans n := {(d, e)}
(27) exiting the call 22
(28) calling process-goal-using-clause (n(d,w3),

(n(x5, y5)← p(x5, z5), n(z5, w5), q(w5, y5)))
(29) δ0 := {x5/d, y5/w3}, sup0 := {δ0}
(30) sup1 := ∅
(31) sup2 := ∅
(32) sup3 := ∅
(33) exiting the call 28
(34) exiting the call 20
(35) sup2 := {{x3/c, y3/x, z3/d, w3/e}}
(36) δ1 := {x3/c, y3/x, z3/b}
(37) calling process-goal (n(b, w3))
(38) input n := {(c, x), (d,w3), (b, w3)}
(39) calling process-goal-using-clause (n(b, w3), (n(x6, y6)← r(x6, y6)))
(40) δ0 := {x6/b, y6/w3}, sup0 := {δ0}
(41) sup1 := ∅
(42) exiting the call 39
(43) calling process-goal-using-clause (n(b, w3),

(n(x7, y7)← p(x7, z7), n(z7, w7), q(w7, y7)))
(44) δ0 := {x7/b, y7/w3}, sup0 := {δ0}
(45) sup1 := ∅
(46) sup1 := {{x7/b, y7/w3, z7/c}}
(47) sup2 := ∅
(48) δ1 := {x7/b, y7/w3, z7/c}
(49) calling process-goal (n(c, w7))
(50) exiting the call 49
(51) sup3 := ∅
(52) exiting the call 43
(53) exiting the call 37
(54) sup3 := 0
(55) δ2 := {x3/c, y3/x, z3/d, w3/e}
(56) sup3 := {{x3/c, y3/x, z3/d, w3/e, x/a}}
(57) ans n := {(d, e), (c, a)}
(58) exiting the call 14
(59) exiting the call 8
(60) sup1 := {{x1/a, x/a}}
(61) ans s := {a}
(62) exiting the call 5
(63) exiting the call 3

(64) input variables are reset to empty relations

(65) calling process-goal (s(x))
(66) input s := {x}
(67) calling process-goal-using-clause (s(x), (s(x8)← n(c, x8)))
(68) δ0 := {x8/x}, sup0 := {δ0}

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases App–5

(69) sup1 := ∅
(70) calling process-goal (n(c, x))
(71) input n := {(c, x)}
(72) calling process-goal-using-clause (n(c, x), (n(x9, y9)← r(x9, y9)))
(73) δ0 := {x9/c, y9/x}, sup0 := {δ0}
(74) sup1 := ∅
(75) exiting the call 72
(76) calling process-goal-using-clause (n(c, x),

(n(x10, y10)← p(x10, z10), n(z10, w10), q(w10, y10)))
(77) δ0 := {x10/c, y10/x}, sup0 := {δ0}
(78) sup1 := ∅
(79) sup1 := {{x10/c, y10/x, z10/d}, {x10/c, y10/x, z10/b}}
(80) sup2 := ∅
(81) δ1 := {x10/c, y10/x, z10/d}
(82) calling process-goal (n(d,w10))
(83) input n := {(c, x), (d,w10)}
(84) calling process-goal-using-clause (n(d,w10), (n(x11, y11)← r(x11, y11)))
(85) δ0 := {x11/d, y11/w10}, sup0 := {δ0}
(86) sup1 := ∅
(87) sup1 := {{x11/d, y11/e, w10/e}}
(88) exiting the call 84
(89) calling process-goal-using-clause (n(d,w10),

(n(x12, y12)← p(x12, z12), n(z12, w12), q(w12, y12)))
(90) δ0 := {x12/d, y12/w10}, sup0 := {δ0}
(91) sup1 := ∅
(92) sup2 := ∅
(93) sup3 := ∅
(94) exiting the call 89
(95) exiting the call 82
(96) sup2 := {{x10/c, y10/x, z10/d, w10/e}}
(97) δ1 := {x10/c, y10/x, z10/b}
(98) calling process-goal (n(b, w10))
(99) input n := {(c, x), (d,w10), (b, w10)}

(100) calling process-goal-using-clause (← n(b, w10), (n(x13, y13)← r(x13, y13)))
(101) δ0 := {x13/b, y13/w10}, sup0 := {δ0}
(102) sup1 := ∅
(103) exiting the call 100
(104) calling process-goal-using-clause (n(b, w10),

(n(x14, y14)← p(x14, z14), n(z14, w14), q(w14, y14)))
(105) δ0 := {x14/b, y14/w10}, sup0 := {δ0}
(106) sup1 := ∅
(107) sup1 := {{x14/b, y14/w10, z14/c}}
(108) sup2 := ∅
(109) δ1 := {x14/b, y14/w10, z14/c}
(110) calling process-goal (n(c, w14))
(111) exiting the call 110
(112) sup2 := {{x14/b, y14/w10, z14/c, w14/a}}
(113) sup3 := ∅
(114) δ2 := {x14/b, y14/w10, z14/c, w14/a}
(115) sup3 := {{x14/b, y14/i, z14/c, w14/a, w10/i}}
(116) ans n := {(d, e), (c, a), (b, i)}
(117) exiting the call 104

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

App–6 E. Madalińska-Bugaj and L.A. Nguyen

(118) exiting the call 98
(119) sup2 := {{x10/c, y10/x, z10/d, w10/e}, {x10/c, y10/x, z10/b, w10/i}}
(120) sup3 := ∅
(121) δ2 := {x10/c, y10/x, z10/d, w10/e}
(122) sup3 := {{x10/c, y10/a, z10/d, w10/e, x/a}}
(123) δ2 := {x10/c, y10/x, z10/b, w10/i}
(124) sup3 := {{x10/c, y10/a, z10/d, w10/e, x/a}, {x10/c, y10/o, z10/b, w10/i, x/o}}
(125) ans n := {(d, e), (c, a), (b, i), (c, o)}
(126) exiting the call 76
(127) exiting the call 70
(128) sup1 := {{x8/a, x/a}, {x8/o, x/o}}
(129) ans s := {a, o}
(130) exiting the call 67
(131) exiting the call 65
(132) the main loop is repeated once more, without affecting ans relations
(133) the returned result is {a, o}.

Example A.2. We illustrate Algorithm 2 by tracing it on the query given in Ex-
ample A.1 (using term-depth bound l = 0). Here, we assume that the instruction
K ′ := K ′∪{(A, (δi−1γi)|X)} in Step 6 of function resolve-using-body-atom is optimized
to K ′ := K ′ ∪ {(A, (δi−1γi)|Var((A,Bi+1,...,Bn)))}, where Bi+1, . . . , Bn are the remaining
atoms of the body of the processed program clause. In the presented trace variables K
and i are local variables of procedure s-process-goal-using-clause. Figures 7 and 8
contain a proof-tree based presentation of this trace.

(1) ans variables are set to empty relations
(2) input variables are set to empty relations
(3) calling s-process-goal ({s(x)})
(4) input s := {x}
(5) calling s-process-goal-using-clause ({s(x)}, (s(x1)← n(c, x1)))
(6) K := {(s(x), {x1/x})}
(7) i := 1
(8) calling s-process-goal ({n(c, x)})
(9) input n := {(c, x)}

(10) calling s-process-goal-using-clause ({n(c, x)}, (n(x2, y2)← r(x2, y2)))
(11) K := {(n(c, x), {x2/c, y2/x})}
(12) i := 1
(13) K := ∅
(14) exiting the call 10
(15) calling s-process-goal-using-clause ({n(c, x)},

(n(x3, y3)← p(x3, z3), n(z3, w3), q(w3, y3)))
(16) K := {(n(c, x), {x3/c, y3/x})}
(17) i := 1
(18) K := {(n(c, x), {y3/x, z3/d}), (n(c, x), {y3/x, z3/b})}
(19) i := 2
(20) calling s-process-goal ({n(d,w3), n(b, w3)})
(21) input n := {(c, x), (d,w3), (b, w3)}
(22) calling s-process-goal-using-clause ({n(d,w3), n(b, w3)},

(n(x4, y4)← r(x4, y4)))
(23) K := {(n(d,w3), {x4/d, y4/w3}), (n(b, w3), {x4/b, y4/w3})}
(24) i := 1

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases App–7

← s(x) (3)

(5)

��
← n(c, x)

(8)-(42) ans n (43)

��
2

a is added to anss (44)

input s anss inputn ansn
x (4) a (44) (c, x) (9) (d, e) (26)

(d, w3) (21) (c, a) (40)
(b, w3) (21)

← n(c, x) (8)

(10)

uukkkkkkkkkkkkkk
(15)

��
← r(c, x) ← p(c, z3), n(z3, w3), q(w3, x)

(18)

��
← n(d, w3), q(w3, x)
← n(b, w3), q(w3, x)

(20)-(36) ans n (37)

��
← q(e, x)

(39)

��
2

(c, a) is added to ansn (40)

← n(d, w3)
← n(b, w3)

(20)

(22)

�� (28) **TTTTTTTTTTTTTTTT

← r(d, w3)
← r(b, w3)

(25)

��

← p(d, z5), n(z5, w5), q(w5, w3)
← p(b, z5), n(z5, w5), q(w5, w3)

(31)

��

2

(d, e) is added to ansn (26)

← n(c, w5), q(w5, w3)

calling (33)

resolved only with ansn literals

Fig. 7. A proof-tree based presentation of a trace of the first iteration of the outer loop of a run of Algorithm 2
on the query given in Example A.2. The numbers in bold font indicate the corresponding steps of that trace,
which are listed in the example.

(25) K := {(n(d,w3), {w3/e})}
(26) ans n := {(d, e)}
(27) exiting the call 22
(28) calling s-process-goal-using-clause ({n(d,w3), n(b, w3)},

(n(x5, y5)← p(x5, z5), n(z5, w5), q(w5, y5)))
(29) K := {(n(d,w3), {x5/d, y5/w3}), (n(b, w3), {x5/b, y5/w3})}
(30) i := 1
(31) K := {(n(b, w3), {y5/w3, z5/c})}
(32) i := 2

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

App–8 E. Madalińska-Bugaj and L.A. Nguyen

← s(x) (48)

(50)

��
← n(c, x)

(53)-(90) ans n (91)

��
2

2

o is added to anss (92)

input s anss inputn ansn
x (49) a (44) (c, x) (54) (d, e) (26)

o (92) (d, w8) (66) (c, a) (40)
(b, w8) (66) (b, i) (82)

(c, o) (88)

← n(c, x) (53)

(55)

uukkkkkkkkkkkkkk
(60)

��
← r(c, x) ← p(c, z8), n(z8, w8), q(w8, x)

(63)

��
← n(d, w8), q(w8, x)
← n(b, w8), q(w8, x)

(65)-(84) ans n (85)

��
← q(e, x)
← q(i, x)

(87)

��
2

2

(c, o) is added to ansn (88)

← n(d, w8)
← n(b, w8)

(65)

(67)

�� (72)))SSSSSSSSSSSSSS

← r(d, w8)
← r(b, w8)

(70)

��

← p(d, z10), n(z10, w10), q(w10, w8)
← p(b, z10), n(z10, w10), q(w10, w8)

(75)

��
2 ← n(c, w10), q(w10, w8)

(77)-(78) ans n (79)

��
← q(a,w8)

(81)

��
2

(b, i) is added to ansn (82)

Fig. 8. A proof-tree based presentation of a trace of the second iteration of the outer loop of a run of Al-
gorithm 2 on the query given in Example A.2 (after clearing input variables). The numbers in bold font
indicate the corresponding steps of that trace, which are listed in the example.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

A Generalized QSQR Evaluation Method for Horn Knowledge Bases App–9

(33) calling s-process-goal ({n(c, w5)})
(34) exiting the call 33
(35) exiting the call 28
(36) exiting the call 20
(37) K := {(n(c, x), {y3/x,w3/e})}
(38) i := 3
(39) K := {(n(c, x), {x/a})}
(40) ans n := {(d, e), (c, a)}
(41) exiting the call 15
(42) exiting the call 8
(43) K := {(s(x), {x/a})}
(44) ans s := {a}
(45) exiting the call 5
(46) exiting the call 3

(47) input variables are reset to empty relations

(48) calling s-process-goal ({s(x)})
(49) input s := {x}
(50) calling s-process-goal-using-clause ({s(x)}, (s(x6)← n(c, x6)))
(51) K := {(s(x), {x6/x})}
(52) i := 1
(53) calling s-process-goal ({n(c, x)})
(54) input n := {(c, x)}
(55) calling s-process-goal-using-clause ({n(c, x)}, (n(x7, y7)← r(x7, y7)))
(56) K := {(n(c, x), {x7/c, y7/x})}
(57) i := 1
(58) K := ∅
(59) exiting the call 55
(60) calling s-process-goal-using-clause ({n(c, x)},

(n(x8, y8)← p(x8, z8), n(z8, w8), q(w8, y8)))
(61) K := {(n(c, x), {x8/c, y8/x})}
(62) i := 1
(63) K := {(n(c, x), {y8/x, z8/d}), (n(c, x), {y8/x, z8/b})}
(64) i := 2
(65) calling s-process-goal ({n(d,w8), n(b, w8)})
(66) input n := {(c, x), (d,w8), (b, w8)}
(67) calling s-process-goal-using-clause ({n(d,w8), n(b, w8)},

(n(x9, y9)← r(x9, y9)))
(68) K := {(n(d,w8), {x9/d, y9/w8}), (n(b, w8), {x9/b, y9/w8})}
(69) i := 1
(70) K := {(n(d,w8), {w8/e})}
(71) exiting the call 67
(72) calling s-process-goal-using-clause ({n(d,w8), n(b, w8)},

(n(x10, y10)← p(x10, z10), n(z10, w10), q(w10, y10)))
(73) K := {(n(d,w8), {x10/d, y10/w8}), (n(b, w8), {x10/b, y10/w8})}
(74) i := 1
(75) K := {(n(b, w8), {y10/w8, z10/c})}
(76) i := 2
(77) calling s-process-goal ({n(c, w10)})
(78) exiting the call 77
(79) K := {(n(b, w8), {y10/w8, w10/a})}
(80) i := 3

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

App–10 E. Madalińska-Bugaj and L.A. Nguyen

(81) K := {(n(b, w8), {w8/i})}
(82) ans n := {(d, e), (c, a), (b, i)}
(83) exiting the call 72
(84) exiting the call 65
(85) K := {(n(c, x), {y8/x,w8/e}), (n(c, x), {y8/x,w8/i})}
(86) i := 3
(87) K := {(n(c, x), {x/a}), (n(c, x), {x/o})}
(88) ans n := {(d, e), (c, a), (b, i), (c, o)}
(89) exiting the call 60
(90) exiting the call 53
(91) K := {(s(x), {x/a}), (s(x), {x/o})}
(92) ans s := {a, o}
(93) exiting the call 50
(94) exiting the call 48

(95) the main loop is repeated once more, without affecting ans relations
(96) the returned result is {a, o}.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: January 2012.

