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A. COMPLEXITY PROOFS (SECTION 3)

A.1 Small-Model Lemma for APT-Logic

The following lemmas are not part of the main text, but are needed to prove some
of the theorems.
Let us define the “size” of a rational number a

b (where a, b are relatively prime)
as the number of bits it takes to represent a and b. As stated earlier, for both the
probaiblity bound of rules, as well as the values returned by frequency functions,
we assume that this is a fixed quantity. In [Fagin et al. 1990], the authors provide
another result we can leverage to ensure that there is a solution to a linear program
where the solution can be represented with a polynomial number of bits.

Lemma A.1. If a system of r linear inequalities and/or equalities with integer
coefficients of length at most l has a nonnegetive solution, then it has a nonnegetive
solution with at most r entries positive, and where the size of each solution is
O(r · l + r · log(l)). (Lemma 2.7 in [Fagin et al. 1990]).

Lemma A.2. APT-program K is consistent iff it has an interpretation that only
assigns non-zero probabilities to at most 2·|K|+1 threads and the probability assigned
to each thread can be represented with O(|K|·size+|K|·log(size)) bits (where size is
the maximum number of bits required to represent the result of a freuqency function
of probability bounds of a rule).

Proof. By Proposition 3.9 of [Shakarian et al. 2011], an APT-program is con-
sistent iff there is a solution to the SLC constraints. By Remark 3.10 of [Shakarian
et al. 2011], there are 2 · |K| + 1 constraints in SLC. Hence, by Theorem 3.3, if
there is a solution to the SLC constraints, then there exists a solution where only
2 · |K|+1 are given positive values. The second part of the satement follows directly
from Lemma A.1. The statement of the theorem follows.
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A.2 Proof of Theorem 3.4

Deciding if APT-program K is consistent is NP-Complete if |K| is a polynomial in
terms of |BL|.

Proof. NP-Hardness by Theorem 3.4 of [Shakarian et al. 2011]. By Lemma A.2,
every consistent APT-program must be associated with a set T ′ of threads, where
|T ′| ≤ 2 · |K|+ 1 and that there exists an interpretation I ′ which only assigns non-
zero probabilities to threads in T ′ and satisfies K. Hence, we use T ′ as a witness.
We can check the witness in polynomial time by setting up SLC constraints using
only threads in T ′ rather than T . By the statement, such a linear program will have
a polynomial number of variables. Hence, K is consistent iff there is a solution to
this linear program (which can be checked in PTIME). The statement follows.

A.3 Proof of Theorem 3.5

Deciding if APT-rule r is entailed by APT-program K is coNP-Complete if |K| is a
polynomial in terms of |BL|.

Proof. coNP-hardness by Theorem 4.2 of [Shakarian et al. 2011]. Let [`, u] be
the probability bounds associated with r. Let num ∈ [0, 1] be a real number that
is outside of [`, u]. Create new rule r′ that is the same as r except the probability
bounds are [num, num]. Create APT-program K′ = K ∪ {r′}. Note that if K′ is
consistent, then r is not entailed. Hence, we can check the consistency of K′ using
a witness T ′ as described in Theorem 3.4 as well as num. Note that this check can
still be performed in PTIME. The statement follows.

A.4 Proof of Theorem 3.6

Given APT-program K, interpretation I, and ptf φ, determining the maximum `
and minimum u such that φ : [`, u] is entailed by K and is satisfied by I is #P -hard.
Further, for constant ε > 0, approximating either the maximum ` and/or minimum

u within 2|BL|
1−ε

is NP-Hard.
For ease of readability, we divide the above theorem into three leammas. The

statement of the theorem follows directly from Lemmas A.3 and A.4. Throughout
the proof, we shall define the problem APT-OPT-ENT as follows:
APT-OPT-ENT

INPUT: APT-program K, interpretation I, and ptf φ
OUTPUT: maximum ` and minimum u such that φ : [`, u] is entailed by K and is
satisfied by I.

Lemma A.3. APT-OPT-ENT is #P -hard.

Proof. Intuition Given an instance of #SAT (known to be #P-complete), we
can an instance of APT-ENT-OPT and such that #SAT ≤p APT-ENT-OPT.

Definition of #SAT:
INPUT: Set of atoms BL, formula f .
OUTPUT: Number of worlds in 2BL that satisfy f .

CONSTRUCTION:
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(1) Set F to be f .

(2) Set t = 1.

(3) For each a ∈ BL, add a : [1, 0.5, 0.5] to K.

(4) Set tmax = 1.

(5) We will consider BL (the set of atoms from the input of #SAT) as the set of
atoms used for the

(6) input of APT-ENT-OPT.

(7) Set IC ≡ ∅.

(8) Interpretation Iuniform sets each thread in T a probability of 1
|T |

For this construction, we shall denote the set of all threads formed with tmax = 1
on set of atoms BL as T .
As step 3 is the only step of the construction that cannot be done in constant time,
but requires O(|BL|) time, so the construction is polynomial.

CLAIM 1: Interpretation Iuniform satisfies K.
Each thread in T consists of only one world. For some atom a ∈ BL, half of all
possible worlds satisfy a. Hence, as Iuniform is a uniform probability distribution
among threads, the sum of probabilities for all threads that satisfy a in the first
(and only) time point is 0.5. By the construction of K in step 3 in the construction,
the claim follows.

CLAIM 2: For any annotated formula F : [t, `, u] that is entailed by K and satisfied
by Iuniform, ` must equal u.
As K is satisfied by exactly one interpretation, Iuniform, the sum of probabilities for
all threads that satisfy F at time t is bounded above and below by the same number.

CLAIM 3: If f is satisfied by exactly m worlds, then f : [1, m
2|BL|

, m
2|BL|

] is entailed
by K.
Let W1, . . . ,Wm be the worlds that satisfy f . Let Th1, . . . ,Thm be all the threads
in T where Thi ≡ Wi (Wi is the ith world that satisfies f). As we have only one
time point, and our threads are created using BL, we know that the following holds:

m
∑

i=1

Iuniform(Thi) =
m

2|BL|

This is equivalent to the following:
∑

Th∈T
Th(1)|=f

Iuniform(Th)

Hence, by claims 1-2 and the definition of satisfaction, the claim follows.
CLAIM 4: If f : [1, m

2|BL|
, m

2|BL|
] is entailed by K, then f is satisfied by exactly m

worlds.
By claims 1-3 and the definition of satisfaction, there are exactly m threads that
satisfy f in the first time point. As there is only one time point per threads, there
are also m worlds that satisfy f . Since BL is the set of atoms for both the instance
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of #SAT and APT-ENT-OPT, the statement follows.

The proof of the theorem follows directly from claims 3-4.

Lemma A.4. For constant ε > 0, approximating APT-ENT-OPT (i.e. ap-

proximating outputs ` and/or u) within 2|BL|
1−ε

is NP-Hard.

Proof. Suppose, by way of contradiction, that approximating a solution within
2|BL|

1−ε

is easier than NP-Hard. Then, using the construction from the proof of
Theorem A.3, we could approximate #SAT within 2|BL|

1−ε

. However, by [Roth
1996] (Theorem 3.2), approximating #2MONCNF, a more restricted version of

#SAT, within 2|BL|
1−ε

is NP-hard. The statement follows.
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B. SUPPLEMENTARY INFORMATION FOR SECTION 4

B.1 Proof of Proposition 4.1

If F1 : t1 ∧ . . . ∧ Fn : tn ∧ Fn+1 : t′1 ∧ . . . ∧ Fn+m : t′m and G1 : t1 ∧ . . . ∧ Gn :
tn ∧Gn+1 : t

′′
1 ∧ . . . ∧Gn+m : t′′m are time conjunctions, then

(F1∧G1) : t1∧. . .∧(Fn∧Gn) : tn∧Fn+1 : t
′
1∧. . .∧Fn+m : t′m∧Gn+1 : t

′′
1∧. . .∧Gn+m : t′′m

is also a time conjunction.

Proof. Straightforward from the definitions of satisfaction and time conjunc-
tion.

B.2 Proof of Proposition 4.4

For formulas F,G, time ∆t, and time conjunction φ,
EFR(F,G,∆t, φ) ⊆
[

cnt(φ, F, G,∆t) + end(φ, F, G,∆t)

denom(φ, F, G,∆t) + end(φ, F, G,∆t)
,

poss(φ, F, G,∆t) + endposs(φ, F, G,∆t)

denom(φ, F, G,∆t) + endposs(φ, F, G,∆t)

]

Proof. Straightforward from definitions.

B.3 Proof of Lemma 4.5

(1) If I |= φ : [`, u] and ρ : [`′, u′], then I |= φ ∧ ρ : [max(0, `+ `′ − 1),min(u, u′)]

(2) If I |= φ : [`, u] and ρ : [`′, u′], then I |= φ ∨ ρ : [max(`, `),min(1, u+ u′)]

(3) If I |= φ : [`, u] and φ⇒ ρ then I |= ρ : [`, 1]

(4) If I |= φ : [`, u] and ρ ⇒ φ then I |= ρ : [0, u]

(5) If I |= φ : [`, u] then I |= ¬φ : [1− u, 1− `]

Proof. Adapted from Theorem 1 of [Ng and Subrahmanian 1992] and Defini-
tion 2.8, except case 5:
Suppose, BWOC, I |= φ : [`, u] and I 6|= ¬φ : [1 − u, 1 − `]. By the definition of
satisfaction:

` ≤
∑

Th∈T
Th|=φ

I(Th) ≤ u

By the definitoin of negation, we know that:
∑

Th∈T
Th|=¬φ

I(Th) = 1−
∑

Th∈T
Th|=φ

I(Th)

Hence,

` ≤
∑

Th∈T
Th|=¬φ

I(Th) ≤ u

Which, by the definition of satisfaction, gives a contradiction.
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B.4 Proof of Theorem 4.6

If interpretation I |= φ : [1, 1] where EFR(F,G,∆t, φ) ⊆ [α, β], I |= F
efr
; G :

[∆t, α, β].

Proof. CLAIM 1: If interpreataion I satisfies φ : [`, u] andEFR(F,G,∆t, φ) ⊆

[α, β], then I |= F
efr
↪→ G : [∆t, `, 1, α, β].

Suppose, BWOC, there exists interpreation I s.t. I |= φ : [`, u] and I 6|= F
efr
↪→ G :

[∆t, `, 1, α, β]. By the definition of satisfaction, we know that:

` ≤
∑

Th∈T
Th|=φ

I(Th) ≤ u

As EFR(F,G,∆t, φ) ⊆ [α, β], we know that:
∑

Th∈T
Th|=φ

I(Th) ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th)

Hence,

` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) ≤ 1

So, by the definition of satisfaction, I |= F
efr
↪→ G : [∆t, `, 1, α, β] – a contradiction.

CLAIM 1.1: If I |= φ[1, 1], then I |= F
efr
↪→ G : [∆t, 1, 1, α, β] (directly from claim

1).

CLAIM 2: If interpretation I satisfies F
efr
↪→ G : [∆t, `, u, α, β], then I |= F

efr
;

G : [∆t, α · `, 1]. Suppose, BWOC, there exists interpreation I s.t. I |= F
efr
↪→ G :

[∆t, `, u, α, β] and I 6|= F
efr
; G : [∆t, α · `, 1]. By the definition of satisfaction,

` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) ≤ u

We multiply through by α:

α · ` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th)

It follows that:

α · ` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)/∈[α,β]

efr(Th, F, G,∆t) · I(Th)

and
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th) ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

efr(Th, F, G,∆t) · I(Th)
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Hence, it follows that:

α · ` ≤
∑

Th∈T

efr(Th, F, G,∆t) · I(Th) ≤ 1

So, by the definition of satisfaction, I |= F
efr
; G : [∆t, α · `, 1] – which is a contra-

diction. CLAIM 2.1: If I |= φ[1, 1], then I |= F
efr
; G : [∆t, α, 1]. (follows directly

from claims 1.1 and 2).

CLAIM 3: If interpretation I satisfies F
efr
↪→ G : [∆t, 1, 1, α, β], then I |= F

efr
; G :

[∆t, 0, β]. Suppose, BWOC, I |=
efr
↪→ G : [∆t, 1, 1, α, β] and I 6|= F

efr
; G : [∆t, 0, β].

By the definiton of satisfaction:
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) =
∑

Th∈T

I(Th) = 1

Hence,
∑

Th∈T

β · I(Th) = β

We know that:

0 ≤
∑

Th∈T

efr(Th, F, G,∆t) · I(Th) ≤
∑

Th∈T

β · I(Th)

Which leads to:

0 ≤
∑

Th∈T

efr(Th, F, G,∆t) · I(Th) ≤ β

Which, by the definition of satisfaction, gives us a contradiction.
PROOF OF THEOREM: Follows directly from claims 2.1 and 3.

B.5 Proof of Corollary 4.7

If interpretation I |= φ : [`, u] where EFR(F,G,∆t, φ) ⊆ [α, β], I |= F
efr
; G :

[∆t, α · `, 1].

Proof. Follows directly from the first two claims of Theorem 4.6.

B.6 Proof of Theorem 4.8

Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1] and EFR(F,G,∆t, φ ∧

ρ) ⊆ [α2, β2] and interpretation I that satisfies φ : [1, 1] (see note10) and F
efr
; G :

[∆t, `, u]:

(1) If β2 < β1, then I |= ρ : [0,min( `−β1

β2−β1
, 1)]

(2) If α2 > α1, then I |= ρ : [0,min( u−α1

α2−α1
, 1)]

10Note that Theorem 4.6 requires ` ≤ β1 and α1 ≤ u
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Proof. CLAIM 1: Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1]
and EFR(F,G,∆t, φ ∧ ρ) ⊆ [α2, β2] (where β2 < β1) and interpretation I that

satisfies φ : [1, 1] and F
efr
; G : [∆t, `, u] (` ≤ β1), I |= ρ : [0,min( `−β1

β2−β1
, 1)].

Assume, BWOC, I 6|= ρ : [0, `−β1

β2−β1
]. By the definition of satisfaction, we know

that:

` ≤
∑

Th∈T

efr(Th, F, G,∆t) · I(Th)

As I |= φ : [1, 1] and EFR(F,G,∆t, φ) ⊆ [α1, β1], we have:

` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

efr(Th, F, G,∆t) · I(Th)

We note that all threads either satisfy ρ or not. Hence, we have:
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th 6|=ρ

I(Th) = 1

Therefore:

` ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

β2 · I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th 6|=ρ

β1 · I(Th)

and:

` ≤ β2 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th) + β1 · (1−
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th))

`− β1 ≤ β2 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th)− β1 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th))

Notice that ` − β1 ≤ 0 as ` ≤ β1 by the statement. Also, we know that β2 < β1,
the quantity β2 − β1 is negative. We have the following:

`− β1

β2 − β1
≥

∑

Th∈T
Th|=ρ

I(Th)

By the definition of satisfaction, this gives us a contradiction.

CLAIM 2: Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1] andEFR(F,G,∆t, φ∧

ρ) ⊆ [α2, β2] (α2 > α1) and interpretation I that satisfies φ : [1, 1] and F
efr
; G :

[∆t, `, u] (α1 ≤ u or inconsistent), I |= ρ : [0,min( u−α1

α2−α1
, 1)].
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Assume, BWOC, I 6|= ρ : [0, u−α1

α2−α1
]. By the definition of satisfaction, we know

that:
∑

Th∈T

efr(Th, F, G,∆t) · I(Th) ≤ u

Hence, as all threads either satisfy ρ or not, and as I |= φ : [1, 1], we know that all
threads must also have a α1 lower bound for the frequency function, and that the
threads satisfying ρ must have α2 as a lower bound. So, we have the following:

∑

Th∈T
Th|=ρ

α2 · I(Th) +
∑

Th∈T
Th 6|=ρ

α1 · I(Th) ≤ u

As we know the sum of all theads must be 1, we have the following:

α2 ·
∑

Th∈T
Th|=ρ

I(Th) + α1 · (1−
∑

Th∈T
Th|=ρ

I(Th)) ≤ u

(α2 − α1) ·
∑

Th∈T
Th|=ρ

I(Th) ≤ u− α1

As, by the statement, we know the quantities α2 − α1 and u− α1 are positive, we
have the following:

∑

Th∈T
Th|=ρ

I(Th) ≤
u− α1

α2 − α1

Which, by the definition of satisfaction, gives us a contradiction.
Proof of theorem: Follows directly from claims 1-2.

B.7 Proof of Proposition 4.10

If for atoms Ai and program K, if BLK(Ai) :< blki ∈ K and if there exists a ptf
φ : [1, 1] ∈ K such that φ⇒ Ai : t− blki +1∧Ai : t− blki +2∧ . . .∧Ai : t− 1 then
K entails A : t : [0, 0].

Proof. Suppose, BWOC, there exists interpretation I s.t. I |= K and I 6|= A :
t : [0, 0]. As I |= K, we know I |= BLK(Ai) :< blki. Hence, for all therads s.t.
I(Th) 6= 0, there does not exist a series of blki or more consecutive worlds in Th
satisfying atom Ai. We note that as I |= φ : [1, 1], then I |= Ai : t− blki + 1 ∧Ai :
t − blki + 2 ∧ . . . ∧ Ai : t − 1 : [1, 1] by the statement. Hence, there is a sequence
of blki − 1 consecutive worlds satisfying Ai in every thread assigned a non-zero
probability by I. So, by the definition of satisfaction, we have a contradiction.

B.8 Proof of Proposition 4.11

If for atoms Ai and program K, if OCC(Ai) : [loi, upi] ∈ K and if there exists a
ptf φ : [1, 1] ∈ K such that there are numbers t1, . . . , tupi

∈ {1, . . . , tmax} where
φ⇒ Ai : t1 ∧ . . . ∧Ai : tupi

then for any t /∈ {t1, . . . , tupi
} K entails A : t : [0, 0].

Proof. Suppose, BWOC, there exists interpretation I s.t. I |= K and I 6|= A :
t : [0, 0]. As I |= K, we know I |= OCC(Ai) : [loi, upi]. Hence, for all therads s.t.
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I(Th) 6= 0, there does not exist more than upi worlds in Th satisfying atom Ai.
We note that as I |= φ : [1, 1], then I |= Ai : t1 ∧ . . . ∧ Ai : tupi

: [1, 1] by the state-
ment. Hence, there are upi worlds satisfying Ai in every thread assigned a non-zero
probability by I. So, by the definition of satisfaction, we have a contradiction.

B.9 Proof of Proposition 4.16

Given APT-program K, the following are true:

• ∀I s.t. I |= K, I |= Γ(K)

• ∀I s.t. I |= Γ(K), I |= K

Proof. Follows directly from Theorems 4.6-4.8 and Corollary 4.7.

B.10 Proof of Proposition 4.17

One iteration of Γ can be performed in time complexity O(|K|2 ·CHK) where CHK
is the bound on the time it takes to check (for arbitrary time formulas φ, ρ if φ |= ρ
is true.

Proof. To compare a given element of K with every other element (not con-
juncts of elements) - we obviously need O(|K| ·CHK) time. As we do this for every
element in K, the statement follows.

B.11 Proof of Lemma 4.21

Given ⊥ ≡ {} and > ≡ inconsistent, then 〈PROGBL,tmax
,v〉 is a complete lattice.

Proof. Wemust show that for any subset PROG′ of PROGBL,tmax
, that inf(PROG′)

and sup(PROG′) exist in PROGBL,tmax
. We show this for PROGBL,tmax

as a set
of APT-programs, and the result obviously extends for PROGBL,tmax

as a set of
equivalence classes of APT-programs.

CLAIM 1: For a set PROG′ of APT-programs, inf(PROG′) exists and is in
PROGBL,tmax

.
Let PROG′ = {K1, . . . ,Ki, . . . ,Kn}. We create K′ ≡ inf(PROG′) as follows. Con-
sider all φ such that φ : [`i, ui] appears in each Ki. Add φ : [min(`i),max(ui)] to K

′.

Next, consider all F,G,∆t s.t. F
efr
; G : [∆t, `i, ui] appears in all Ki. Add F,G,∆t

s.t. F
efr
; G : [∆t,min(`i),max(ui)] to K

′. Clearly, for each element in K′, there
is an element in every Ki with the same or tighter probability bounds. It is also
obvious tha K′ ∈ PROGBL,tmax

. Assume that there is a K′′ (not equivalent to K′)
that is below each Ki but above K

′. Then, for all elements in K′, there must be a
corresponding element (with tighter probability bounds) in K′′ s.t. the probability
bounds is looser than any Ki. However, by the construction, this is clearly not
possible unless K′ ≡ K′′, so we have a contradiction.

CLAIM 2: For a set PROG′ of APT-programs, sup(PROG′) exists and is in
PROGBL,tmax

.
Let PROG′ = {K1, . . . ,Ki, . . . ,Kn}. Let K′ =

⋃

i{Ki}. Clearly, by the defini-
tion of v, this is a least upper bound of PROG′. We must show that K′ is in
PROGBL,tmax

. We have two cases. (1) If K′ is inconsistent, then it is equivalent to
> and in PROGBL,tmax

. (2) If K′ is consistent, then it is also in PROGBL,tmax
.
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B.12 Proof of Lemma 4.22

K v Γ(K).

Proof. Follows directly from the definition of Γ - all rules and ptf’s in K are
in Γ(K) with equivalent or tighter probability bounds. All IC’s in K remain in
Γ(K).

B.13 Proof of Lemma 4.23

Γ is monotonic.

Proof. Given K1 v K2, we must show Γ(K1) v Γ(K2). Suppose, BWOC, there
exists φ : [`, u] ∈ Γ(K1) (see note

11) s.t. there does not exist φ : [`′, u′] ∈ Γ(K2)
where [`′, u′] ⊆ [`, u]. Therefore, there must exist a set of ptf’s and/or rules (call
this set K′1) in K1 s.t. for each element in K

′
1, there does not exist a an element in

K2 s.t. the probability bounds are tighter. However, as K1 v K2, this cannot be
possible, and we have a contradiction.

B.14 Proof of Theorem 4.24

Γ has a least fixed point.

Proof. Follows directly from Lemma 4.22 and Lemma 4.23.

B.15 Proof of Lemma 4.25

If APT-logic program K entails rule F
efr
; G : [∆t, `, u] or φ : [`, u] such that one of

the following is true:

• ` > u

• ` < 0 or ` > 1

• u < 0 or u > 1

Then K is inconsistent - i.e. there exists no interpretation I such that I |= K.

Proof. Following directly from the definitions of satisfaciton and entailment, if
K entails such a rule or ptf, there can be no satisfying interpreation.

B.16 Proof of Theorem 4.26

For APT-logic program K, if there exists natural number i such that Γ(K) ↑ i that

contains rule F
efr
; G : [∆t, `, u] or φ : [`, u] such that one of the following is true:

• ` > u

• ` < 0 or ` > 1

• u < 0 or u > 1

Then K is inconsistent.

Proof. We know by Propositions 4.16 that any number of applications of Γ
result in an APT-program entailed by K. Therefore, all of the elemenets of that
program must be entailed by K. By Lemma 4.25, the statement follows.

11Resp. F
efr
; G : [∆t, `, u] ∈ Γ(K1), we note that the proof can easily be mirrored for rules, we

only show with ptfs here.
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B.17 Proof of Proposition 4.27

If there does not exist at least one thread that satisfies all integrity constraints in
an APT-logic program, then that program is inconsistent.

Proof. For an APT-logic program to be consistent, then there must exist a sat-
isfying interpretation such that the sum of the probabilities assigned to all threads
is 1. However, if there is no thread that satisfies all integrity constraints, then
the sum of the probabilities of all threads in a satisfying interpretation is 0 – a
contradiction.

B.18 Proof of Proposition 4.29

If loi >
⌈

(blki−1)·tmax

blki

⌉

then there does not exist a partial thread for ground atom

Ai such that the single block-size and occurrence IC associated with Ai hold.
Follows directly from the following Proposition:

Proposition B.1. For atom ai, block size blki and tmax, if more than
⌈

(blki−1)·tmax

blki

⌉

worlds must be true, then all partial threads will have a block of size blki.

Proof. CLAIM 1: If we require less than (or equal)
⌈

(blki−1)·tmax

blki

⌉

worlds to

satisfy the atom, there exists at least one partial thread that does not contain a
block.
Simply consider blki − 2 sub-sequences of blki − 1 worlds, and one sub-sequence
of ≤ blki − 1 worlds satisfying atom ai - each separated by a world that does not
satisfy ai. Obviously, this partial thread does not contain a block.

CLAIM 2: If we require more than
⌈

(blki−1)·tmax

blki

⌉

worlds to satisfy the atom, there

can be no sequence of two consecutive worlds that do not satisfy ai, or there exists
a block.
This follows from the pigeon hole principle - if two consecutive worlds satisfy ¬ai,
then there must exists a sequence of at least blki worlds that satisfy ai.

PROOF OF PROPOSITION: Suppose we have a partial thread with
⌈

(blki−1)·tmax

blki

⌉

worlds satisfying the atom, and require one additional world to satisfy ai. By claim
2, this world must be between two sub-sequences, as there are no more than two
non-satisfying worlds, hence the statement of the proposition follows.

B.19 Proof of Propositon 4.30

For ground atom Ai with (with associated ICs), if upi >
⌈

(blki−1)·tmax

blki

⌉

we know that

for numbers of worlds satisfying Ai cannot be in the range
[⌈

(blki−1)·tmax

blki

⌉

, upi

]

.

Proof. As, in this case, upi >
⌈

(blki−1)·tmax

blki

⌉

, lowering the value of upi will not

cause an inconsistency unless Proposition 4.29 applies. We note that by Proposi-
tion B.1, we cannot have threads with more than this amount of worlds satisfying
ai.
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B.20 Proof of Proposition 4.31

ThEX can be solved in O(1).

Proof. As the check in Proposition 4.29 can be performed in O(1) time, the
statement follows.
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C. PROOFS FOR SECTION 5

C.1 Proof of Lemma 5.2

Given non-ground formulas Fng, Gng, time ∆t, and non-ground time formula φng.
Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng) and [αout, βout] = EFR OUT (Fng, Gng,∆t, φng).
Then the following holds true:

(1) If Th |= φng, then for all ground instances F,G of Fng, Gng we have efr(F,G,∆t,Th) ∈
[αout, βout]

(2) If Th |= φng, then there exists ground instances F,G of Fng, Gng we have
efr(F,G,∆t,Th) ≥ αin

(3) If Th |= φng, then there exists ground instances F,G of Fng, Gng we have
efr(F,G,∆t,Th) ≤ βin

Proof. CLAIM 1: Part 1 is true..
Suppose, BWOC, there is some thread, Th |= φng s.t. there are ground instances
F,G of Fng, Gng s.t. efr(F,G,∆t,Th) /∈ [αout, βout]. This directly contradicts
Definition 5.1.
CLAIM 2: Part 2 is true.
This directly contradicts Definition 5.1.
CLAIM 3: Part 3 is true.
This directly contradicts Definition 5.1.

C.2 Proof of Theorem 5.3

Given non-ground APT-program K(ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, `, u]

Non-ground ptf: φng : [1, 1]

Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K
(ng) is not consistent if one (or both) of the following is true:

(1) α−in > u

(2) β+
in < `

Proof. CLAIM 1: If α−in > u, then K(ng) is not consistent.
Suppose, BWOC that α−in > u and K(ng) is consistent. Then, by Lemma 5.2 there
exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆ [α−in, 1].

Therefore, by Theorem 4.6, K(ng) entails F
efr
; G : [∆t, α−in, 1]. However, as K(ng)

includes Fng
efr
; Gng : [∆t, `, u], then K(ng) also entails F

efr
; G : [∆t, `, u]. As

[α−in, 1] ∩ [`, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 4.25) – a
contradiction.

CLAIM 2: If β+
in < `, then K(ng) is not consistent.

Suppose, BWOC, that β+
in < ` and K(ng) is consistent. Then, by Lemma 5.2 there

exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆ [0, β+
in].

Therefore, by Theorem 4.6, K(ng) entails F
efr
; G : [∆t, 0, β+

in]. However, as K
(ng)

includes Fng
efr
; Gng : [∆t, `, u], then K(ng) also entails F

efr
; G : [∆t, `, u]. As
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[0, β+
in] ∩ [`, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 4.25) – a

contradiction.

C.3 Proof of Corollary 5.4

Given non-ground APT-program K(ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, `, u]

Non-ground ptf: φng : [`
′, u′]

Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K
(ng) is not consistent if α−in · `

′ > u.

Proof. Suppose, BWOC, α−in·`
′ > u andK(ng) is consistent. Then, by Lemma 5.2

there exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆

[α−in, 1]. Therefore, by Corollary 4.7, K(ng) entails F
efr
; G : [∆t, α−in ·`

′, 1]. However,

as K(ng) includes Fng
efr
; Gng : [∆t, `, u], then K(ng) also entails F

efr
; G : [∆t, `, u].

As [α−in ·`
′, 1]∩ [`, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 4.25)

– a contradiction.

C.4 Proof of Proposition 5.5

If the list returned by NG-INCONSIST-CHK contains any elements, then K(ng) is
not consistent.

Proof. Follows directly from Theorem 5.3 and Corollary 5.4.

C.5 Proof of Proposition 5.6

NG-INCONSIST-CHK performs O(|K(ng)|2) comparisons.

Proof. The algorithm consists of two nested loops. The outer loop considers all
ptf’s in the program – requiring O(|K(ng)|) time, while the inner loop considers all
rules in the program – also requiring O(|K(ng)|) time. The statement follows.

C.6 Proof of Lemma 5.8

K ⊆ ΛK(ng)(K) wrt 〈PROGBL,tmax
,v〉

Proof. Follows directly from Definition 5.7.

C.7 Proof of Lemma 5.9

ΛK(ng) is monotonic.

Proof. Given K1 v K2 (both ground), we must show ΛK(ng)(K1) v ΛK(ng)(K2).
Suppose, BWOC, there is an element (rule, ptf, or IC) of ΛK(ng)(K1) that either
has a tighter probability bound than a corresponding element in ΛK(ng)(K2) or not
in ΛK(ng)(K2). However, this is a contradiction as all elements in K1 are in K2 –
or in K2 with a tighter probability bound. Therefore, such an element would be in
ΛK(ng)(K2) – a contradiction.
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C.8 Proof of Theorem 5.11

ΛK(ng) has a least fixed point.

Proof. Follows directly from Lemma 5.8 and Lemma 5.9.

C.9 Proof of Lemma 5.12

Given non-ground programK(ng), and ground programK, lfp(ΛK(ng)(K)) ⊆ ground(K(ng))∪
K.

Proof. Suppose, BWOC, that lfp(ΛK(ng)(K)) 6⊆ ground(K(ng)) ∪ K. Then,
there must exist a ground rule, ptf, or IC in element in lfp(ΛK(ng)(K)) that is not
in ground(K(ng))∪K. However, all elements in lfp(ΛK(ng)(K)) are either elements
of K or ground instances of elements in K(ng) – hence a contradiction.

C.10 Proof of Theorem 5.13

Definition C.1 Tightening. For APT-rule F
efr
; G : [∆t, `, u] or ptf φ : [`, u], for

any [`′, u′] ⊆ [`, u],

(1) F
efr
; G : [∆t, `′, u′] is a tightening of F

efr
; G : [∆t, `, u]

(2) φ : [`, u] is a tightening of φ : [`′, u′]

Definition C.2 Update. Given ground APT-program K, ground rule r = F
efr
;

G : [∆t, `1, u1], and ground ptf p = φ : [`2, u2], any tightening to the bounds of r
or p causes by an application of the operator Γ is an update.

Definition C.3 Update Widget. Given ground APT-program K, ground rule r =

F
efr
; G : [∆t, `1, u1], and ground ptf p = φ : [`2, u2], ground atomic time formula

A : t, we define the following update widgets.

(1) Let the ground rule r′ = F
efr
; G : [∆t, `′, u′] be a tightening of r where

`′ = l bnd(F,G,∆t,K) or u′ = u bnd(F,G,∆t,K). Then an update widget

consists of a graph of a vertex vr′ for r′ (called a top vertex) and set V of
vertices - one vertex for each ground rule and ptf in K that led to the tightening
(as per Definition 4.13) (called bottom vertices) and directed edges from all
elements in V to vr′ .

(2) Let the ground ptf p′ = φ : [`′, u′] be a tightening of φ : [`2, u2] where `′ ∈
{l bnd(φ,K), 1−u bnd(¬φ,K)} or u′ ∈ {u bnd(φ,K), 1− l bnd(¬φ,K)}. Then
an update widget consists of a graph of a vertex vp′ for p′ (called a top

vertex) and set V of vertices - one vertex for each ground rule and ptf in K
that led to the tightening (as per Definition 4.13) (called bottom vertices)
and directed edges from all elements in V to vp′ .

(3) If K entails A : t : [0, 0] due to the presence of ptf’s and IC’s (as per Proposi-
tions 4.10-4.11), then Then an update widget consists of a graph of a vertex
vA:t:[0,0] for A : t : [0, 0] (called a top vertex) and set V of vertices - one for
each IC and ptf in K that led to the entailment of A : t : [0, 0] (called bottom

vertices) and directed edges from all elements in V to vr′ .
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Definition C.4 Deduction Tree. A series of update widgets with the top vertices
of all but one widgets are the bottom vertices for another widget is called a de-

duction tree. A vertex that is not a bottom vertex for any widget in the tree is a
root and a vertex that is not top vertex for any widget in the tree is a leaf. For a
given deduction tree, T , let leaf(T ) be the set of ptf’s or rules corresponding with
leaf nodes in the tree.

Definition C.5 Corresponding Deduction Tree. Given ground APT-program K,
for ground ptf p = φ : [`2, u2], s.t. p ∈ lfp(Γ(K)), then the corresponding

deduction tree is a deduction tree, rooted in a node representing p s.t. for each
update performed by Γ, there is a corresponding update widget in the tree. For
program K and ptf p, let TK,p be the corresponding deduction tree.

Lemma C.6. If φ : [`, u] ∈ lfp(Γ(K ∪ {φ : [0, 1]}) then there exists φ : [`′, u′] ∈
lfp(Γ(leaf(TK,φ:[`,u]) ∪ {φ : [0, 1]}) s.t. [`′, u′] ⊆ [`, u].

Proof. Suppose, BWOC, that [`′, u′] 6⊆ [`, u]. Then, there must exist an update
performed by Γ that uses some ptf or rule other ∈ K s.t. other /∈ leaf(TK,φ:[`,u]).
However, by the Definition C.5 this is not possible as TK,φ:[`,u] accounts for all
updates performed by Γ.

Theorem 5.13
Given non-ground program K(ng)

φ : [`, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]}))))

iff

φ : [`, u] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]}))

Proof. CLAIM 1: If φ : [`, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]})))) then for some
[`′, u′] ⊆ [`, u], φ : [`′, u′] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]})).
By Lemma 5.12, we know that lfp(ΛK(ng)({φ : [0, 1]})) ⊆ ground(K(ng)) ∪ {φ :
[0, 1]}, so the claim follows.

CLAIM 2: If φ : [`, u] ∈ lfp(Γ(ground(K(ng))∪{φ : [0, 1]})) then for some [`′, u′] ⊆
[`, u], φ : [`, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]})))).
By Definition 5.7 and Definition C.5, leaf(TK,φ:[`,u])∪{φ : [0, 1]} ⊆ lfp(ΛK(ng)({φ :
[0, 1]})). Hence, we can apply Lemma C.6 and the claim follows.
The statement of the theorem follows directly from claims 1-2.
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D. SUPPLEMENTAL INFORMATION FOR SECTION 6

D.1 Proof of Proposition 6.1

OC-EXTRACT runs in time O((n− tmax) · tmax).

Proof. This follows directly from the two for loops in the algorithm - the first
iterating (n− tmax) time and a nested loop iterating tmax times.

D.2 Proof of Proposition 6.2

There are no historical threads such that atom ai is satisfied by less than loi or
more than upi worlds when loi, upi are produced by OC-EXTRACT.

Proof. Suppose, by way of contradiction, that there exists a historical thread
that does not meet the constraints. As we examine all possible historical threads in
OC-EXTRACT and take the minimum and maximum number of times ai is satisfied
over all these threads, we have a contradiction.

D.3 Proof of Proposition 6.3

BLOCK-EXTRACT runs in time O(n).

Proof. Follows directly from the for loop in the algorithm - which iterates n
times.

D.4 Proof of Proposition 6.4

Given blki as returned by BLOCK-EXTRACT, there is no sequence of blki or more
consecutive historical worlds that satisfy atom ai.

Proof. Suppose there is a sequence of at least blki or more. However, the
algorithm maintains the variable best which is the greatest number of consecutive
time points in the historical data where ai is true – this is a contradiction.
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