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Corso Svizzera 185, 10149 Torino, Italy, ronchi@di.unito.it

We present a type system for an extension of lambda calculus with a conditional construction, named STAB,

that characterizes the PSPACE class. This system is obtained by extending STA, a type assignment for
lambda-calculus inspired by Lafont’s Soft Linear Logic and characterizing the PTIME class. We extend

STA by means of a ground type and terms for booleans and conditional. The key issue in the design of the

type system is to manage the contexts in the rule for conditional in an additive way. Thanks to this rule, we
are able to program polynomial time Alternating Turing Machines. From the well-known result APTIME

= PSPACE, it follows that STAB is complete for PSPACE.

Conversely, inspired by the simulation of Alternating Turing machines by means of Deterministic Turing
machine, we introduce a call-by-name evaluation machine with two memory devices in order to evaluate

programs in polynomial space. As far as we know, this is the first characterization of PSPACE that is based
on lambda calculus and light logics.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—Machine-independent Complexity; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type Structure; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Lambda Calculus and Related Systems; Proof Theory

General Terms: Languages, Theory, Design

Additional Key Words and Phrases: Implicit Computational Complexity, Linear Logic, Operational Seman-
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1. INTRODUCTION
The argument of this paper fits in the so called Implicit Computational Complexity
area, whose aim is to provide complexity control through language restrictions, with-
out using explicit machine models or external measures. In this setting, we are inter-
ested in the design of programming languages with bounded computational complex-
ity. We want to use a ML-like approach, so having a λ-calculus like language, and a
type assignment system for it, where the types guarantee, besides the functional cor-
rectness, also complexity properties. So, types can be used in a static way in order to
check the correct behaviour of the programs, also with respect to the resource usage.
According to these lines, we design in this paper a language correct and complete with
respect to PSPACE. Namely, we supply, besides the calculus, a type assignment system
and an evaluation machine, and we prove that well typed programs can be evaluated
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A:2 Gaboardi et al.

by the machine in polynomial space, and moreover that all decision functions com-
putable in polynomial space can be coded by well typed programs.

Light Logics and type systems Several type systems characterizing complexity
classes have been proposed so far [Leivant and Marion 1993; Bellantoni et al. 2000;
Hofmann 1999; Baillot and Terui 2004; Danner and Royer 2006; Gaboardi and Ronchi
Della Rocca 2007; Dal Lago and Schöpp 2010; Baillot et al. 2010].

We are here mainly concerned with using ideas from Linear Logic to obtain type
assignment systems for λ-calculus. In this setting, some proposal have been made but
they are quite all related to time complexity. The key idea is to use as types the for-
mulae of the light logics, which characterize some classes of time complexity: Light
Linear Logic (LLL) of Girard [Girard 1998], and Soft Linear Logic (SLL) of Lafont
[Lafont 2004] characterize polynomial time, while Elementary Linear Logic (ELL) [Gi-
rard 1998] characterizes elementary time. The characterization is based on the fact
that cut-elimination on proofs in these logics is performed in a number of steps which
depends in a polynomial or elementary way from the initial size of the proof (while
the degree of the proof, i.e., the nesting of exponential rules, is fixed). Moreover, the
size of each proof in the cut elimination process can be bound by a polynomial or an
elementary function in the initial size of the proof, respectively. In addition, all these
logics are also complete with respect to the related complexity class, using proof-nets
for coding functions.

The good properties of such logics have been fruitfully used in order to design type
assignment systems for λ-calculus which are correct and complete with respect to the
polynomial or elementary time complexity bound. Namely, every well typed term β-
reduces to normal form in a number of steps that depends in a polynomial or elemen-
tary way from its size, and moreover all functions with the corresponding complexity
are representable by a well typed term. Examples of polynomial time type assignment
systems are in [Baillot and Terui 2004; 2009] and [Gaboardi and Ronchi Della Rocca
2007; 2009], based respectively on LAL (an affine variant of LLL designed by Asperti
and Roversi [Asperti and Roversi 2002]) and on SLL. Moreover, an example of an
elementary type assignment system is in [Coppola et al. 2005; 2008].

Contribution Our starting point is the fact that polynomial space computations
coincide with polynomial time Alternating Turing Machine computations (APTIME).
In particular, by the results in [Savitch 1970] and [Chandra et al. 1981], it follows

PSPACE = NPSPACE = APTIME

So, we start from the type assignment system STA for λ-calculus introduced in
[Gaboardi and Ronchi Della Rocca 2007]. It is based on SLL, in the sense that in STA
both types are a proper subset of SLL formulae, and type assignment derivations corre-
spond, through the Curry-Howard isomorphism, to a proper subset of SLL derivations.
STA is correct and complete (in the sense said before) with respect to polynomial time
computations.

Then, we design the language ΛB, which is an extension of λ-calculus with two
boolean constants and a conditional constructor, and we supply it by a type assignment
system (STAB), where the types are STA types plus a constant type B for booleans, and
rules for conditional. In particular, the elimination rule for conditional is the following:

Γ ` M : B Γ ` N0 : A Γ ` N1 : A
Γ ` if M then N0 else N1 : A

(BE)

In this rule, contexts are managed in an additive way, that is with free contractions.
From a computational point of view, this intuitively means that a computation can
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repeatedly fork into subcomputations and the result is obtained by a backward com-
putation from all subcomputation results.

While the time complexity result for STA is not related to a particular evaluation
strategy, here, for characterizing space complexity, the evaluation should be done care-
fully. Indeed, an uncontrolled evaluation can construct exponential size terms. So we
define a call-by-name evaluation machine, KCB, inspired by Krivine’s machine [Krivine
2007] for λ-calculus, where substitutions are made only on head variables. This ma-
chine is equipped with two memory devices, and the space used by it is proved to be
the dimension of its maximal configuration. The proof is made through the design of
an equivalent small step machine. Then, we prove that, if KCB takes a program (i.e., a
closed term well typed by a ground type) as input, then the size of each configuration is
polynomially bounded in the size of the input. From this it follows that every program
can be evaluated by a Turing Machine in polynomial space. Conversely, we encode ev-
ery polynomial time Alternating Turing Machine by a program well typed in STAB.
The simulation relies on a higher order representation of a parameter substitution
recurrence schema inspired by the one in [Leivant and Marion 1994].

Related works The present work extends the preliminary results that have been
presented to POPL ’08 [Gaboardi et al. 2008a]. The system STAB is the first charac-
terization of PSPACE through a type assignment system in the light logics setting. A
proposal for a similar characterization has been made by Terui [Terui 2000], but the
work has never been completed.

The characterization presented here is strongly based on the additive rule (BE) pre-
sented above. The key role played by this rule in the characterization of the PSPACE
class has been independently suggested by Hofmann in the context of non-size-
increasing computations [Hofmann 2003]. There, the author showed that by adding
to his LFPL language a form of restricted duplication one can encode the “quantified
boolean formulas problem” and recover exactly the behaviour of the rule (BE). Besides
the difference in the setting where our study is developed with respect to the Hof-
mann’s one, our work differs from this also in the fact that we give a concrete syntactic
proof of PSPACE soundness for programs by means of an evaluation machine that is
close to a possible implementation. Hofmann’s PSPACE soundness instead relies on
a semantic argument that by being abstract hides the technical difficulties that one
needs to deal with in the evaluation of programs. Moreover, instead of encoding quan-
tified boolean formulas as done by Hofmann, we here give a PSPACE completeness
result based on the definability of all polynomial time Alternating Turing Machines.

In our characterization we make use of boolean constants in order to have a fine
control of the space needed to evaluate programs. A use of constants similar in spirit
to the present one has been also employed by the second author in [Leivant and Marion
1993], in order to give a characterization of the PTIME class.

There are several other implicit characterizations of polynomial space computations
using principles that differ from the ones explored in this paper. The characterizations
in [Leivant and Marion 1994; 1997] and [Oitavem 2001; 2008] are based on ramified
recursions over binary words. Schubert has shown that the β-reduction of simply typed
λ-terms containing redexes of order at most three is complete for PSPACE [Schubert
2001]. In finite model theory, PSPACE is captured by first order queries with a partial
fixed point operator [Vardi 1982; Abiteboul and Vianu 1989]. The reader may consult
the recent book [Grädel et al. 2007]. Finally there are some algebraic characteriza-
tions like the one [Goerdt 1992] or [Jones 2001] but which are, in essence, over finite
domains.

Apart from the class PSPACE, the light logic principles have been used to charac-
terize other interesting complexity classes. As already stressed, the light logics have
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been used to characterize the class PTIME [Girard 1998; Lafont 2004] and the class of
Elementary functions [Girard 1998]. Moreover, in [Maurel 2003] and [Gaboardi et al.
2008b] an explicit sum rule to deal with non deterministic computation has been stud-
ied in the setting of Light Linear Logic and Soft Linear Logic, respectively. Both these
works give implicit characterizations of the class NPTIME. Another important work
in this direction is the one in [Schöpp 2007] where a logical system characterizing log-
arithmic space computations is defined, the Stratified Bounded Affine Logic (SBAL).
Interestingly, the logarithmic space soundness for SBAL is proved in an interactive
way by means of a geometry of interaction algorithm considering only proofs of certain
sequents to represent the functions computable in logarithmic space. This idea was al-
ready present in the previous work [Schöpp 2006] of the same author and it has been
further explored in the recent work [Dal Lago and Schöpp 2010].

Outline of the paper In Section 2 the system STAB is introduced and the proofs of
the subject reduction and of the strong normalization properties are given. The strong
normalization is proved by using a translation from STAB to System F terms. In Sec-
tion 3 the operational semantics of STAB programs is defined. Two abstract machines
KCB and kCB are given. One implements a big step evaluation while the other implements
a small step reduction. The computations in the two machines are then proved to be
equivalent. In Section 4 we show that STAB programs can be executed in polynomial
space. This is shown by establishing some formal relations between the configurations
in the big step machine computations and the type derivations in STAB. In this way,
the bound on the size of each computation can be extracted from the information in-
herited from the type derivation. In Section 5 the completeness for PSPACE is proved
by showing that the Alternating Turing Machines working in polynomial time can be
programmed using STAB programs. Finally, Section 6 contains some conclusions.

2. SOFT TYPE ASSIGNMENT SYSTEM WITH BOOLEANS
In this section we present the paradigmatic language ΛB and a type assignment for
it, STAB, and we will prove that STAB enjoys the properties of subject reduction and
strong normalization. ΛB is an extension of the λ-calculus with boolean constants 0, 1
and an if constructor. STAB is an extension of the type system STA for λ-calculus
introduced in [Gaboardi and Ronchi Della Rocca 2007], which assigns to λ-terms a
proper subset of formulae of Lafont’s Soft Linear Logic [Lafont 2004], and it is correct
and complete for polynomial time computations.

Definition 2.1 (ΛB).

(1) The set ΛB of terms is defined by the following grammar:
M ::= x | 0 | 1 | λx.M | MM | if M then M else M

where x ranges over a countable set of variables and B = {0, 1} is the set of
booleans.

(2) The reduction relation →βδ⊆ ΛB × ΛB is the contextual closure of the following
rules:

(λx.M)N→β M[N/x]

if 0 then M else N →δ M

if 1 then M else N →δ N

→+
βδ denotes the transitive closure of →βδ, the notation →∗βδ stands for the tran-

sitive and reflexive closure of →βδ, while =βδ denotes its transitive, reflexive and
symmetric closure.
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(3) The size of a term M is denoted as |M| and is defined inductively as
|x| = |0| = |1| = 1 |λx.M| = |M|+1 |MN| = |M|+ |N|

| if M then N0 else N1 | = |M|+ |N0|+ |N1|+ 1

Note that we use the term 0 to denote “true” and the term 1 to denote “false”.

NOTATION 1. Terms are denoted by M, N, V, P. In order to avoid unnecessary paren-
thesis, we use the Barendregt convention, so abstraction associates on the left and ap-
plications associates on the right. Moreover λxy.M stands for λx.λy.M. As usual terms
are considered up to α-equivalence, namely a bound variable can be renamed provided
no free variable is captured. Moreover, M[N/x] denotes the capture-free substitution of all
free occurrences of x in M by N, FV(M) denotes the set of free variables of M and no(x, M)
denotes the number of free occurrences of the variable x in M.

In the sequel we will be interested only in typable terms.

Definition 2.2 (STAB).

(1) The set TB of types contains all the objects defined by the following grammar:

A ::= B | α | σ ( A | ∀α.A (Linear Types)
σ ::= A |!σ (Types)

where α ranges over a countable set of type variables and B is the only ground
type.

(2) A context is a set of assumptions of the shape x : σ, where all variables are different.
We use Γ,∆ to denote contexts.

(3) The system STAB proves judgments of the shape Γ ` M : σ where Γ is a context, M
is a term, and σ is a type. The rules are given in Table I.

NOTATION 2. Type variables are denoted by α, β, linear types by A,B,C, and types
by σ, τ, µ. The symbol ≡ denotes the syntactical equality both for types and terms (mod-
ulo renaming of bound variables). As usual ( associates to the right and has prece-
dence on ∀, while ! has precedence on everything else. The notation σ[A/α] stands for
the usual capture free substitution in σ of all occurrences of the type variable α by the
linear type A. We use dom(Γ) and FTV(Γ) to denote respectively the sets of variables
and of free type variables that occur in the assumptions of the context Γ. The notation
Γ#∆ stands for dom(Γ) ∩ dom(∆) = ∅. Derivations are denoted by Π,Σ,Θ. Π � Γ ` M : σ
denotes a derivation Π with conclusion Γ ` M : σ. We let ` M : σ abbreviate ∅ ` M : σ.
As usual, ∀~α.A is an abbreviation for ∀α1....∀αm.A, and !nσ is an abbreviation for !...!σ
n-times (m,n ≥ 0).

We stress that each type is of the shape !n∀~α.A. The type assignment system STAB is
obtained form STA just by adding the rules for dealing with the if constructor. Note
that the rule (BE) has an additive treatment of the contexts, and so contraction is free,
while all other rules are multiplicative. Moreover STAB is affine, since the weakening
is free, so it enjoys the following properties.

LEMMA 2.3 (FREE VARIABLE LEMMA).

(1) Γ ` M : σ implies FV(M) ⊆ dom(Γ).
(2) Γ ` M : σ,∆ ⊆ Γ and FV(M) ⊆ dom(∆) imply ∆ ` M : σ.
(3) Γ ` M : σ,Γ ⊆ ∆ implies ∆ ` M : σ.

PROOF. All the three points can be easily proved by induction on the derivation
proving Γ ` M : σ.
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Table I. The Soft Type Assignment system with Booleans.

x : A ` x : A
(Ax)

` 0 : B
(B0I) ` 1 : B

(B1I)
Γ ` M : σ

Γ, x : A ` M : σ
(w)

Γ, x : σ ` M : A

Γ ` λx.M : σ ( A
(( I)

Γ ` M : σ ( A ∆ ` N : σ Γ#∆

Γ,∆ ` MN : A
(( E)

Γ, x1 : σ, . . . , xn : σ ` M : τ

Γ, x :!σ ` M[x/x1, . . . , x/xn] : τ
(m) Γ ` M : σ

!Γ ` M :!σ
(sp)

Γ ` M : ∀α.B
Γ ` M : B[A/α]

(∀E)

Γ ` M : B Γ ` N0 : A Γ ` N1 : A

Γ ` if M then N0 else N1 : A
(BE)

Γ ` M : A α /∈ FTV(Γ)

Γ ` M : ∀α.A
(∀I)

Moreover, the following property holds:

LEMMA 2.4. Γ, x : A ` M :!σ implies x 6∈ FV(M).

PROOF. Easy, by induction on the derivation proving Γ, x : A ` M :!σ noticing that
the only way to have a modal conclusion is by using the (sp) rule.

In what follows, we will need to talk about proofs modulo some simple operations.

Definition 2.5. Let Π and Π′ be two derivations in STAB, proving the same conclu-
sion. Then, Π ; Π′ denotes the fact that Π′ is obtained from Π by commuting and/or
deleting some rules and/or by inserting some applications of the rule (w).

The system STAB is not syntax directed, but the Generation Lemma shows that we
can modify the derivations, using the relation ; defined above, in order to connect the
shape of a term with the shape of its typings.

LEMMA 2.6 (GENERATION LEMMA).

(1) Π � Γ ` λx.M : ∀α.A implies there is Π′, proving the same conclusion as Π and ending
with an application of rule (∀I), such that Π ; Π′.

(2) Π � Γ ` λx.M : σ ( A implies there is Π′, proving the same conclusion as Π and
ending with an application of rule (( I), such that Π ; Π′.

(3) Π � Γ ` M :!σ implies there is Π′, proving the same conclusion as Π, such that Π ; Π′
and Π′ consists of a subderivation, ending with the rule (sp) proving !Γ′ ` M :!σ,
followed by a sequence of rules (w) and/or (m) dealing with variables not occurring
in M.

(4) Π �!Γ ` M :!σ implies there is Π′, proving the same conclusion as Π and ending with
an application of rule (sp), such that Π ; Π′.

PROOF.

(1) By induction on Π. If the last rule of Π is (∀I) then the conclusion follows immedi-
ately. Otherwise consider the case λy.M ≡ λy.N[x/x1, . . . , x/xn] and Π ends as:

Σ � Γ, x1 : σ, . . . , xn : σ ` λy.N : ∀α.A
Γ, x :!σ ` λy.N[x/x1, . . . , x/xn] : ∀α.A

(m)

By induction hypothesis Σ ; Σ′ ending as:
Σ1 � Γ, x1 : σ, . . . , xn : σ ` λy.N : A
Γ, x1 : σ, . . . , xn : σ ` λy.N : ∀α.A (∀I)
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Then, the desired Π′ is:
Σ1 � Γ, x1 : σ, . . . , xn : σ ` λy.N : A
Γ, x :!σ ` λy.N[x/x1, . . . , x/xn] : A

(m)

Γ, x :!σ ` λy.N[x/x1, . . . , x/xn] : ∀α.A
(∀I)

The cases where Π ends either by (∀E) or (w) rule are easier. The other cases are
not possible.

(2) Similar to the proof of the previous point of this lemma.
(3) By induction on Π. In the case the last rule of Π is (sp), the proof is obvious. The

case where the last rule of Π is (w) follows directly by induction hypothesis.
Consider the case where M ≡ N[x/x1, ..., x/xn] and the last rule is:

Σ � ∆, x1 : τ, ..., xn : τ ` N :!σ
∆, x :!τ ` N[x/x1, ..., x/xn] :!σ

(m)

In the case x1, . . . , xn /∈ FV(N) the conclusion follows immediately. Otherwise, by
induction hypothesis Σ ; Σ1, where Σ1 is composed by a subderivation Θ ending
with a rule (sp) proving !∆1 ` N :!σ, followed by a sequence δ of rules (w) or (m),
dealing with variables not occurring in N. Note that for each xi with 1 ≤ i ≤ n
such that xi ∈ FV(N), necessarily xi : τ ′ ∈ ∆1 and τ =!τ ′. Let ∆2 be the context
∆1 − {x1 : τ ′, . . . , xn : τ ′}, then the conclusion follows by the derivation:

∆2, x1 : τ ′, . . . , xn : τ ′ ` N : σ
∆2, x :!τ ′ ` N[x/x1, . . . , x/xn] : σ

(m)

!∆2, x :!τ ` N[x/x1, . . . , x/xn] :!σ
(sp)

followed by a sequence of rules (w) recovering the context ∆ from the context ∆2.
The other cases are not possible.

(4) By induction on Π. In the case the last rule of Π is (sp), the proof is obvious. The
only other possible case is when the last rule is (m). Consider the case where M ≡
N[x/x1, ..., x/xn] and Π ends as follows:

Σ �!∆, x1 : τ, ..., xn : τ ` N :!σ
!∆, x :!τ ` N[x/x1, ..., x/xn] :!σ

(m)

If τ ≡!τ ′, by induction hypothesis Σ ; Σ1, where Σ1 ends as:
Θ � ∆, x1 : τ ′, ..., xn : τ ′ ` N : σ

!∆, x1 :!τ ′, ..., xn :!τ ′ ` N :!σ
(sp)

So the desired derivation Π′ is Θ, followed by a rule (m) and a rule (sp). In the case
τ is linear, by Lemma 2.4, xi 6∈ FV(N) for each 1 ≤ i ≤ n. Moreover by the previous
point of this lemma, Σ can be rewritten as:

Σ1 � ∆1 ` N : σ
!∆1 ` N :!σ

(sp)

followed by a sequence δ of rules, all dealing with variables not occurring in N.
So δ needs to contain some rules introducing the variables x1, ..., xn. Let δ′ be the
sequence of rules obtained from δ by erasing such rules, and inserting a (w) rule
introducing the assignment x : τ . The desired derivation Π′ is Σ1 followed by δ′,
followed by (sp).

2.1. Subject reduction
In order to prove subject reduction, we need to prove before that the system enjoys the
property of substitution.
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LEMMA 2.7 (SUBSTITUTION LEMMA).
Let Γ, x : µ ` M : σ and ∆ ` N : µ such that Γ#∆. Then

Γ,∆ ` M[N/x] : σ

PROOF. We prove something stronger. That is, given

Π � Γ, x1 : µ1, . . . , xn : µn ` M : σ

and Σ1 � ∆1 ` N1 : µ1, . . . ,Σn � ∆n ` Nn : µn such that Γ#∆i and ∆i#∆j for each
1 ≤ i, j ≤ n, we show that there is a derivation Θ such that

Θ � Γ,∆1, . . . ,∆n ` M[N1/x1, . . . , Nn/xn] : σ

We proceed by induction on the height of Π. The base cases (Ax), (B0I) and (B1I) are
trivial. The cases where Π ends either by (( I), (∀I) or (∀E) follow directly from the
induction hypothesis.
Let Π ends as

Π′� Γ′, x1 : µ′1, . . . , xn : µ′n ` M : σ′

!Γ′, x1 :!µ′1, . . . , xn :!µ′n ` M :!σ′
(sp)

By Lemma 2.6.3, for each 1 ≤ i ≤ n we have Σi ; Σ′′1 which is composed by a
subderivation ending with an (sp) rule with premise Σ′i � ∆′i ` Ni : µ′i followed by
a sequence of rules (w) and/or (m). By induction hypothesis we have a derivation
Θ′� Γ′,∆′1, . . . ,∆

′
n ` M[N1/x1, . . . , Nn/xn] : σ′. By applying the rule (sp) and the se-

quences of (w) and/or (m) rules we obtain a derivation Θ with conclusion

Γ,∆1, . . . ,∆n ` M[N1/x1, . . . , Nn/xn] : σ

Let Π ends by a (( E) rule. Without loss of generality we can consider a case as
follows:

Π1 � x1 : µ1, . . . , xi : µi,Γ1 ` M : σ ( A Π2 � xi+1 : µi+1, . . . , xn : µn,Γ2 ` N : σ
Γ1, x1 : µ1, . . . , xi : µi, xi+1 : µi+1, . . . , xn : µn,Γ2 ` MN : A

By the induction hypothesis there are derivations Θ1 � Γ1,∆1, . . . ,∆i `
M[N1/x1, . . . , Ni/xi] : σ ( A and Θ2 � Γ2,∆i+1, . . . ,∆n ` N[Ni+1/xi+1, . . . , Nn/xn] : σ. By
applying a (( E) rule we obtain a derivation Θ with conclusion:

Γ1,Γ2,∆1, . . . ,∆i,∆i+1, . . . ,∆n ` MN[N1/x1, . . . , Nn/xn] : A

Consider the case Π ends by:

Π0 � Γ′ ` M0 : B Π1 � Γ′ ` M1 : A Π2 � Γ′ ` M2 : A
Γ′ ` if M0 then M1 else M2 : A

(BE)

with Γ′ = Γ, x1 : µ1, . . . , xn : µn. Then, by the induction hypothesis there are derivations
Θ0 � Γ,∆1, . . . ,∆n ` M0[N1/x1, . . . , Nn/xn] : B, Θ1 � Γ,∆1, . . . ,∆n ` M1[N1/x1, . . . , Nn/xn] :
A and Θ2 � Γ,∆1, . . . ,∆n ` M2[N1/x1, . . . , Nn/xn] : A. By applying a (BE) rule we obtain
a derivation Θ with conclusion:

Γ,∆1, . . . ,∆n ` ( if M0 then M1 else M2 )[N1/x1, . . . , Nn/xn] : A

Consider the case Π ends by an (m) rule. Note that if the variable x on which the
multiplexing applies is not between x1, . . . , xn, then the conclusion follows directly by
induction hypothesis. So consider a case as follows:

Π′� Γ, x1 : µ1, . . . , x1
i : µ′i, . . . , x

m
i : µ′i, . . . , xn : µn ` M : σ

Γ, x1 : µ1, . . . , xi :!µ′i, . . . , xn : µn ` M[xi/x1
i , . . . , xi/x

m
i ] : σ

(m)
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By Lemma 2.6.3 Σi ; Σ′′i ending by an (sp) rule with premise Σ′i � ∆′i ` Ni : µ′i followed
by a sequence of rules (w) and/or (m). Consider fresh copies of the derivation Σ′i i.e.
Σji � ∆j

i ` Nji : µ′i where Nji and ∆j
i are fresh copies of Ni and ∆′i (1 ≤ j ≤ m). Then, by

induction hypothesis we have a derivation Θ′ proving

Γ,∆1, . . . ,∆1
i , . . . ,∆

m
i , . . . ,∆n ` M[N1/x1, . . . , N

1
i /x

1
i , . . . , N

m
i /x

m
i , . . . , Nn/xn] : σ

By applying a sequence of (m) rules we can obtain a derivation Θ′′ proving

Γ,∆1, . . . , !∆′, . . . ,∆n ` M[N1/x1, . . . , Ni/x
1
i , . . . , Ni/x

m
i , . . . , Nn/xn] : σ

Finally by applying the sequence of rules (m) and (w) rules we obtain a derivation Θ
with conclusion:

Γ,∆1, . . . ,∆i, . . . ,∆n ` M[N1/x1, . . . , Ni/x
1
i , . . . , Ni/x

m
i , . . . , Nn/xn] : σ

This concludes the proof.

We can finally prove the main property of this section.

LEMMA 2.8 (SUBJECT REDUCTION). Let Γ ` M : σ and M→βδ N. Then, Γ ` N : σ.

PROOF. By induction on the derivation Θ � Γ ` M : σ. Consider the case of a →δ

reduction. Without loss of generality we can consider only the case Θ ends as:

Π � Γ ` b : B Π0 � Γ ` M0 : A Π1 � Γ ` M1 : A
Γ ` if b then M0 else M1 : A

(BE)

where b is either 0 or 1. The others follow directly by induction hypothesis. If b ≡ 0
then if b then M0 else M1 →δ M0 and since Π0 � Γ ` M0 : A, the conclusion follows.
Analogously if b ≡ 1 then if b then M0 else M1 →δ M1 and since Π1 � Γ ` M1 : A, the
conclusion follows.
Now consider the case of a →β reduction. Without loss of generality we can consider
only the case Θ ends as:

Π � Γ1 ` λx.M : σ ( A Σ � Γ2 ` N : σ
Γ1,Γ2 ` (λx.M)N : A

(( E)

where Γ = Γ1,Γ2. The others follow directly by induction hypothesis. Clearly
(λx.M)N→β M[N/x]. By Lemma 2.6.2 Π ; Π1 ending as

Π2 � Γ1, x : σ ` M : A
Γ1 ` λx.M : σ ( A

By the Substitution Lemma 2.7 since Π2 � Γ1, x : σ ` M : A and Σ � Γ2 ` N : σ we have
Γ1,Γ2 ` M[N/x] : A, hence the conclusion follows.

It is worth noticing that, due to the additive rule (BE), STAB is no more correct for
polynomial time, since terms with exponential number of reductions can be typed by
derivations with a priori fixed degree, where the degree is the nesting of (sp) applica-
tions.

Example 2.9. Consider for n ∈ N terms Mn of the shape:

(λf.λz.fnz)(λx. if x then x else x)0

It is easy to verify that for each Mn there are reduction sequences of length exponential
in n.
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Table II. System F with explicit contraction and weakening rules.

x : C `F x : C
(Ax)

Γ `F M : B

Γ, x : C `F M : B
(w)

Γ, x1 : C, x2 : C `F M : B

Γ, x : C `F M[x/x1, x/x2] : B
(c)

Γ, x : C `F M : B

Γ `F λx.M : C ⇒ B
(⇒ I)

Γ `F M : C ⇒ B ∆ `F N : C

Γ,∆ `F MN : B
(⇒ E)

Γ `F M : ∀α.B
Γ `F M : B[C/α]

(∀E)
Γ `F M : C α /∈ FTV(Γ)

Γ `F M : ∀α.C
(∀I)

2.2. Strong Normalization
Strong normalization is proved by a translation, preserving reduction, of STAB in a
slightly variant of Girard’s System F [Girard 1972]. The variant we consider is showed
in Table II and it differs from the original system since it has explicit rules for weak-
ening and contraction. It is straightforward to prove that it shares all the properties of
the original one, in particular strong normalization.

Definition 2.10. The set TF of System F types is defined by the grammar:

B,C ::= α | B ⇒ B | ∀α.B
where α ranges over a countable set of type variables.

We firstly define a forgetful map over types and terms.

Definition 2.11. The map (−)∗ : TB ∪ ΛB → TF ∪ Λ is defined on types as:

(B)∗ = ∀α.α⇒ α⇒ α (α)∗ = α (σ ( A)∗ = (σ)∗ ⇒ (A)∗

(!σ)∗ = (σ)∗ (∀α.A)∗ = ∀α.(A)∗

and it is defined on terms as:
(0)∗ = λx.λy.x (1)∗ = λx.λy.y ( if M then M1 else M2 )∗ = (M)∗(M1)∗(M2)∗

(λx.M)∗ = λx.(M)∗ (MN)∗ = (M)∗(N)∗

The following lemma assures that the translation well behaves.

LEMMA 2.12. If Γ ` M : σ then (Γ)∗ `F (M)∗ : (σ)∗.

PROOF. By induction on the derivation Π proving Γ ` M : σ.
Let us consider base cases. The (Ax) case is trivial. Consider the case Π consists in the
rule

` 0 : B
(B0I)

Then we have the following derivation

x : α `F x : α
(Ax)

y : α, x : α `F x : α
(w)

x : α `F λy.x : α⇒ α
(⇒ I)

`F λxy.x : α⇒ α⇒ α
(⇒ I)

`F λxy.x : ∀α.α⇒ α⇒ α
(∀I)

The case Π consists in the (B1I) rule is similar. The case Π ends by (sp) rule follows
directly from the induction hypothesis. In case Π ends by a (( I), (( E), (w) rule
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the conclusion follows from induction hypothesis and an application of the same rule
in System F. In the case Π ends by a (m) rule the conclusion follows from induction
hypothesis and some applications of the (c) rule. In the case Π ends as

Γ ` M : B Γ ` N0 : A Γ ` N1 : A
Γ ` if M then N0 else N1 : A

(BE)

by induction hypothesis we have derivations Π1 �(Γ)∗ `F (M)∗ : (B)∗, Π2 �(Γ)∗ `F
(N0)∗ : (A)∗ and Π3 �(Γ)∗ `F (N1)∗ : (A)∗. Let Π′1, Π′2 and Π′3 be copies of Π1, Π2 and
Π3 respectively with different renaming of free variables. That is, Π′1 � Γ1 `F M′ : (B)∗
Π′2 � Γ2 `F N′0 : (A)∗ and Π′3 � Γ3 `F N′1 : (A)∗. So, we can build a derivation ending as:

Γ1 `F M′ : (B)∗ = ∀α.α⇒ α⇒ α

Γ1 `F M′ : (A)∗ ⇒ (A)∗ ⇒ (A)∗ Γ2 `F N′0 : (A)∗

Γ1,Γ2 `F M′N′0 : (A)∗ ⇒ (A)∗ Γ3 `F N′1 : (A)∗

Γ1,Γ2,Γ3 `F M′N′0N
′
1 : (A)∗

So, the conclusion Γ ` (M)∗(N0)∗(N1)∗ : (A)∗ follows from several applications of the rule
(c).

Moreover, the translation preserves the reduction.

LEMMA 2.13 (SIMULATION). If M→βδ N then (M)∗ →+
β (N)∗.

PROOF. The case of a β-reduction is trivial, so consider a δ-reduction as:

M = C[ if 0 then P else Q ]→δ C[P] = N

By definition of the map ( )∗ we have:

(M)∗ = (C[ if 0 then P else Q ])∗ = C′[(0)∗(P)∗(Q)∗] = C′[(λx.λy.x)(P)∗(Q)∗]

and clearly:

C′[(λx.λy.x)(P)∗(Q)∗]→β C′[(λy.(P)∗)(Q)∗]→β C′[(P)∗] = (N)∗

and so the conclusion. The other case is analogous.

Now, we have the following.

THEOREM 2.14 (STRONG NORMALIZATION).
If Γ ` M : σ then M is strongly normalizing with respect to the relation→βδ.

PROOF. By Lemmas 2.12 and 2.13 and the strong normalization of System F.

3. STRUCTURAL OPERATIONAL SEMANTICS
In this section the operational semantics of terms of ΛB is presented, through an eval-
uation machine, named KCB, defined in SOS style [Plotkin 2004; Kahn 1987]. The ma-
chine KCB is related to the type assignment system STAB since it evaluates programs
(i.e., closed terms of boolean type). The machine allows us to measure the space used
during the evaluation. In order to justify our space measure, a small step version of
KCB is used.

3.1. The evaluation machine KC
B

The machine KCB evaluates programs according to the leftmost outermost strategy. If
restricted to λ-calculus, the machine KCB is quite similar to the Krivine machine [Kriv-
ine 2007], since β-reduction is not an elementary step, but the substitution of a term
to a variable is performed one occurrence at a time. The machine KCB uses two memory
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devices, the m-context and the B-context, that memorize respectively the assignments
to variables and the control flow.

Definition 3.1.

— An m-context A is a sequence of variable assignments of the shape x := M where M is
a term and all the variables are distinct. The symbol ε denotes the empty m-context
and the set of m-contexts is denoted by Ctxm.
The cardinality of an m-context A, denoted by #(A), is the number of variable as-
signments in A. The size of an m-context A, denoted by |A|, is the sum of the sizes
of all the variable assignments in A, where a variable assignment x := M has size
|M|+ 1.

— Let ◦ be a distinguished symbol. The set CtxB of B-contexts is defined by the follow-
ing grammar:

C[◦] ::= ◦ | ( if C[◦] then M else N )V1 · · · Vn
The size of a B-context C[◦], denoted by |C[◦]|, is the size of the term obtained by
replacing the symbol ◦ by a variable.
The cardinality of a B-context C[◦], denoted by #(C[◦]), is the number of nested B-
contexts in it. i.e.:

#(◦) = 0 #(( if C[◦] then M else N )V1 · · · Vn) = #(C[◦]) + 1

It is worth noticing that a B-contexts C[◦] can be seen as a stack of atomic contexts, i.e.
contexts of the shape ( if ◦ then M else N )V1 · · · Vn, and that the cardinality #(C[◦]) is
the height of such a stack.

NOTATION 3. The notation A1@A2 is used for the concatenation of the disjoint m-
contextsA1 andA2. Moreover, [x := M] ∈ A denotes the fact that x := M is in the m-context
A. The notation FV(A) identifies the set:

⋃
[x:=M]∈A FV(M).

As usual, C[M] denotes the term obtained by filling the hole [◦] in C[◦] by M. In general we
omit the hole [◦] and we range over B-contexts by C. As expected, FV(C) denotes the set
FV(C[M]) for every closed term M.

Note that variable assignments in m-contexts are ordered; this fact allows us to
define the following closure operation.

Definition 3.2. Let A = [x1 := N1, . . . , xn := Nn] be a m-context. Then, (−)A : ΛB →
ΛB is the map associating to each term M the term (M)A ≡ M[Nn/xn][Nn−1/xn−1] · · · [N1/x1].

The correct inputs for the machine are programs, defined as follows.

Definition 3.3. The set P of programs is the set of closed terms typable by the
ground type. i.e. P = {M | ` M : B}.

The design of the evaluation machine follows the syntactic shape of programs.

Remark 3.4. It is easy to check that every term has the following shape:
λx1...xn.ζV1 · · · Vm, for some n,m ≥ 0, where ζ is either a boolean b, a variable x, a
redex (λx.N)P, or a subterm of the shape if P then N0 else N1 . It is immediate to check
that, if a term is in P, then n = 0. Moreover, if a term in P is a normal form, then it
coincides with a boolean constant b.

The evaluation machine KCB proves statements of the shape:

C,A |= M ⇓ b
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Table III. The Abstract Machine KCB.

C,A |= b ⇓ b
(Ax)

C,A@[x′ := N] |= M[x′/x]V1 · · · Vm ⇓ b

C,A |= (λx.M)NV1 · · · Vm ⇓ b
(β)§

[x := N] ∈ A C,A |= NV1 · · · Vm ⇓ b

C,A |= xV1 · · · Vm ⇓ b
(h)

C[( if [◦] then N0 else N1 )V1 · · · Vm],A |= M ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · · Vm ⇓ b
( if 0)

C[( if [◦] then N0 else N1 )V1 · · · Vm],A |= M ⇓ 1 C,A |= N1V1 · · · Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · · Vm ⇓ b
( if 1)

(§) x′ is a fresh variable.

where C,A are a B-context and a m-context respectively, M is a term, and b is a boolean
value. Its rules are listed in Table III. The (β) rule applies when the head of the sub-
ject is a β-redex, then the association between the bound variable and the argument is
recorded in the m-context and the body of the term in functional position is evaluated.
Note that an α-rule is always performed. The (h) rule replaces the head occurrence of
the head variable by the term associated with it in the m-context. Rules ( if 0) and
( if 1) perform the δ reductions. In order to evaluate the test M, a part of the sub-
ject is naturally erased. This erased information is stored in the B-context. Indeed
B-contexts are stacks that permit to store all the branches of a computation produced
by conditionals. When the evaluation of the test M of the current conditional is com-
pleted, the machine pops the top B-context and continues by evaluating the term in
the right branch of the computation. The behaviour of the machine KCB is formalized in
the following definition.

Definition 3.5.

(1) The evaluation relation ⇓⊆ CtxB×Ctxm×ΛB×B is the relation inductively defined
by the rules of KCB. If M is a program, and if there is a boolean b such that ◦, ε |= M ⇓ b
then we say that M evaluates, and we write M ⇓. As usual, |= M ⇓ b is a short for
◦, ε |= M ⇓ b.

(2) Derivation trees in the abstract machine are called computations and are denoted
by ∇,3. We use ∇ :: C,A |= M ⇓ b to denote the computation with conclusion
C,A |= M ⇓ b.

(3) Given a computation ∇ each node of ∇, which is of the shape C,A |= M ⇓ b is a
configuration. The notation C,A |= M ⇓ b ∈ ∇ is used to stress that C,A |= M ⇓ b
is a configuration in the computation ∇. Configurations are denoted by φ, ψ. The
notation φ � C,A |= M ⇓ b means that φ is the configuration C,A |= M ⇓ b. The
conclusion of the derivation tree is called the initial configuration.

(4) Given a computation ∇, the path to reach a configuration φ, denoted path∇(φ), is
the sequence of configurations between the conclusion of ∇ and φ. In general, we
simply write path(φ) when ∇ is clear from the context.

In Table IV we present an example of KCB computation on a term M2 as defined in
Example 2.9.
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Table IV. An example of computation in KCB.

C1,A3 |= 0 ⇓ 0

C1,A3 |= z1 ⇓ 0

C1,A3 |= x2 ⇓ 0

φ � C0,A3 |= 0 ⇓ 0

C0,A3 |= z1 ⇓ 0

C0,A3 |= x2 ⇓ 0

C0,A3 |= if x2 then x2 else x2 ⇓ 0

C0,A2 |= (λx. if x then x else x)z1 ⇓ 0

C0,A2 |= f1z1 ⇓ 0

C0,A2 |= x1 ⇓ 0

C2,A4 |= 0 ⇓ 0

C2,A4 |= z1 ⇓ 0

C2,A4 |= x3 ⇓ 0

A4 |= 0 ⇓ 0

A4 |= z1 ⇓ 0

A4 |= x3 ⇓ 0

A4 |= if x3 then x3 else x3 ⇓ 0

A2 |= (λx. if x then x else x)z1 ⇓ 0

A2 |= f1z1 ⇓ 0

ψ �A2 |= x1 ⇓ 0

A2 |= if x1 then x1 else x1 ⇓ 0

A1 |= (λx. if x then x else x)(f1z1) ⇓ 0

A1 |= f1(f1z1) ⇓ 0

A0 |= (λz.f1(f1z))0 ⇓ 0

|= (λf.λz.f2z)(λx. if x then x else x)0 ⇓ 0

A0 = [f1 := λx. if x then x else x]
A1 = A0@[z1 := 0]
A2 = A1@[x1 := f1z1]
A3 = A2@[x2 := z1]
A4 = A2@[x3 := z1]

C0 = if ◦ then x1 else x1

C1 = C0[ if ◦ then x2 else x2 ]
C2 = if ◦ then x3 else x3

In order to prove that the machine is sound and complete with respect to programs,
we need to prove some additional properties. First of all, the next lemma proves that
the machine enjoys a sort of weakening, with respect to both contexts.

LEMMA 3.6.

(1) Let C[◦],A |= M ⇓ b. Then, for every C′[◦] such that (C′[C[M]])A ∈ P, C′[C[◦]],A |= M ⇓ b.
(2) Let ∇ :: C,A |= M ⇓ b and x be a fresh variable. Then, ∇ :: C,A@[x := N] |= M ⇓ b.

PROOF. Both points can be easily proved by induction on the computation.

LEMMA 3.7.

(1) Let C,A |= M ⇓ b for some b and let (C[M])A ∈ P. Then, both (M)A →∗βδ b and
(C[M])A →∗βδ b′, for some b′.

(2) Let M ∈ P and ∇ ::|= M ⇓ b. For each φ � C,A |= N ⇓ b′ ∈ ∇, (C[N])A ∈ P.
(3) Let (M)A ∈ P and (M)A →∗βδ b. Then, ◦,A |= M ⇓ b.

PROOF.

(1) First of all, the property (C[M])A →∗βδ b′, for some b′ derives directly from the fact
that (C[M])A ∈ P. In fact this implies (C[M])A is a closed strongly normalizing term
of type B, and so its normal form is necessarily a boolean constant. So in what
follows we will prove just that C,A |= M ⇓ b and (C[M])A ∈ P implies (M)A →∗βδ b.
Note that if (C[M])A ∈ P then clearly (M)A ∈ P. We proceed by induction on the
derivation proving C,A |= M ⇓ b. Let the last rule be:

C,A |= b ⇓ b
(Ax)
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Obviously (b)A →∗βδ b. Let the derivation ends as:
C,A@[x′ := N] |= P[x′/x]V1 · · · Vm ⇓ b
C,A |= (λx.P)NV1 · · · Vm ⇓ b

(β)

By induction hypothesis (P[x′/x]V1 · · · Vm)A@[x′:=N] →∗βδ b. Clearly since x′ is fresh:

(P[x′/x]V1 · · · Vm)A@[x′:=N] ≡ ((P[x′/x]V1 · · · Vm)[N/x′])A ≡ (P[N/x]V1 · · · Vm)A

hence:

((λx.P)NV1 · · · Vm)A →βδ (P[N/x]V1 · · · Vm)A →∗βδ b

and the conclusion follows. The case of a rule (h) follows directly by induction hy-
pothesis.
Let the derivation end as:

C′,A |= P ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b
C,A |= ( if P then N0 else N1 )V1 · · · Vm ⇓ b

( if 0)

where C′ = C[( if [◦] then N0 else N1 )V1 · · · Vm]. By induction hypothesis (P)A →∗βδ 0,
hence:

(( if P then N0 else N1 )V1 · · · Vm)A →∗βδ (( if 0 then N0 else N1 )V1 · · · Vm)A

and by δ reduction
(( if 0 then N0 else N1 )V1 · · · Vm)A →δ (N0V1 · · · Vm)A

moreover, since by induction hypothesis we also have (N0V1 · · · Vm)A →∗βδ b, the
conclusion follows. The case of rule ( if 1) is analogous.

(2) Easy, by induction on the length of path(φ).
(3) The proof is by induction on the number of steps needed to reach the normal form

b of (M)A according to the leftmost strategy. Since (M)A is strongly normalizing this
is clearly well-founded.
If (M)A is already in normal form, since it must be typable of type B then M ≡ b,
and the result is trivial. Otherwise (M)A cannot be an abstraction, since its typing,
so it is an application NQV1...Vm.
Suppose N ≡ λx.R. There are two cases, either (M)A ≡ ((λx.R′)Q′V′1...V

′
m)A or

(M)A ≡ (yQ′V′1...V
′
m)A and [y := λx.R′] ∈ A.

Let us consider the first case. Then ((λx.R′)Q′V′1...V
′
m)A →β (R′[Q′/x]V′1...V

′
m)A ≡

(R′[x′/x]V′1...V
′
m)A@[x′:=Q′]. By induction hypothesis we have [◦],A@[x′ := Q′] |=

R′[x′/x]V′1...V
′
m ⇓ b and so the result follows by rule (β).

In the second case, since [y := λx.R′] ∈ A, then (yQ′V′1...V
′
m)A →β

(R′[Q′/x]V′1...V
′
m)A ≡ (R′[x′/x]V′1...V

′
m)A@[x′:=Q′]. By induction hypothesis

[◦],A@[x′ := Q′] |= R′[x′/x]V′1...V
′
m ⇓ b, so by one application of the rule (β),

[◦],A |= (λx.R′)Q′V′1...V
′
m ⇓ b. Finally, by one application of the rule (h), since

[y := λx.R′] ∈ A, we have [◦],A |= yQ′V′1...V
′
m ⇓ b.

The remaining case is the one where N ≡ if M′ then N′0 else N′1 .
By definition (M)A ≡ (( if M′ then N′0 else N′1 )Q′V′1...V

′
m)A ≡

( if (M′)A then (N′0)
A else (N′1)

A )(Q′)A(V′1)A...(V′m)A. Since (M)A ∈ P, ` (M)A : B,
so, by the strong normalization property, (M)A →∗βδ b. This implies either
(M′)A = b′ or (M′)A →∗βδ b′ for some b′. Let us consider the latter case. The
number of reduction steps of the sequence (M′)A →∗βδ b′ is shorter than the
one of (M)A →∗βδ b, so by induction [◦],A |= M′ ⇓ b′, and, by Lemma 3.6.1,
( if [◦] then N′0 else N′1 )Q′V′1...V

′
m,A |= M′ ⇓ b′. Without loss of generality, we con-

sider only the case where b′ = 0. Then (M)A →∗βδ b implies (N′0Q
′V′1...V

′
m)A →∗βδ b, so
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Table V. (a) The small step machine kCB. (b) The garbage collector procedure.

A′ = clear(C,A@[x′ := N], M[x′/x]V1 · · · Vm)

〈C,A � (λx.M)NV1 · · · Vm〉 7→ 〈C,A′ � M[x′/x]V1 · · · Vm〉
(β0)§

[x := N] ∈ A A′ = clear(C,A, NV1 · · · Vm)

〈C,A � xV1 · · · Vm〉 7→ 〈C,A′ � NV1 · · · Vm〉
(h0)

C′ = C[( if [◦] then N0 else N1 )V1 · · · Vn]

〈C,A � ( if M then N0 else N1 )V1 · · · Vm〉 7→ 〈C′,A � M〉
( if )

A′ = clear(C,A, N0V1 · · · Vn)

〈C[( if [◦] then N0 else N1 )V1 · · · Vn],A � 0〉 7→ 〈C,A′ � N0V1 · · · Vn〉
(r0)

A′ = clear(C,A, N1V1 · · · Vn)

〈C[( if [◦] then N0 else N1 )V1 · · · Vn],A � 1〉 7→ 〈C,A′ � N1V1 · · · Vn〉
(r1)

(§) x′ is a fresh variable.

clear(C, ε, M) = ε

clear(C,A, M) = A′ x ∈ FV(C) ∪ FV(M) ∪ FV(A)

clear(C, [x := N]@A, M) = [x := N]@A′

clear(C,A, M) = A′ x /∈ FV(C) ∪ FV(M) ∪ FV(A)

clear(C, [x := N]@A, M) = A′

by induction [◦],A |= N′0Q
′V′1...V

′
m ⇓ b, and the result follows by rule ( if 0). The case

(M′)A = b′ is easier. The case (M)A ≡ (yQ′V′1...V
′
m)A, and (y := if M′ then N′0 else N

′
1 ),

is similar, but both rules (h) and ( if ) must be used.

Then we can state the soundness and completeness of the evaluation machine KCB
with respect to the reduction on programs.

THEOREM 3.8. Let M ∈ P . Then:

(1) If |= M ⇓ b then M→∗βδ b. (Soundness)
(2) If M→∗βδ b then |= M ⇓ b. (Completeness)

PROOF.

(1) It follows directly by Lemma 3.7.(1).
(2) It follows directly by Lemma 3.7.(3).

3.2. A small step version of KC
B

In order to prove that programs are evaluated by the machine KCB in polynomial space
we need a formal definition of the space consumption, which in its turn needs a deep
investigation on the machine behaviour. In fact, we will explicitly show that compu-
tations in the machine KCB can be performed with no need of backtracking or complex
state memorizations.
For this reason, in Table V.(a) we depict a small step abstract machine kCB. This new
machine is able to reduce sequentially programs in STAB following a leftmost outer-
most strategy exploiting a contexts management similar to the one implemented by
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the machine KCB but for the use of a garbage collector procedure, described in Table
V.(b), in order to maintain the desired complexity property.

Definition 3.9 (Small Step Machine kCB).
The reduction relation 7→⊆ (CtxB × Ctxm × ΛB) × (CtxB × Ctxm × ΛB) is the relation
inductively defined by the rules for the machine kCB given in Table V. The relation 7→∗
is the reflexive and transitive closure of the reduction relation 7→.
If M is a program, and if there is a boolean b such that 〈◦, ε � M〉 7→∗ 〈◦, ε � b〉 for some
A, then we say that M reduces to b, and we simply write M 7→∗ b for short.

There is a direct correspondence between the configurations of a computation in the
big step machine KCB and the ones in the small step machine kCB. This correspondence
can be made explicit by the following translation:

Definition 3.10. Let φ � C,A |= N ⇓ b′ be a configuration of a KCB computation. Then,
the translation (−)s, assigning to φ a kCB configuration, is defined as (φ)s = 〈C,A′ � N〉
where A′ = clear(C,A, N).

The translation (−)s defined above is useful in order to state the correspondence be-
tween the big step and the small step machine. In order to establish this correspon-
dence we need to visit the evaluation trees of the big step machine computation fol-
lowing a determined visiting order. In particular, we consider the left-depth-first visit.
E.g. consider the following tree:

g

======== h

�������

e

<<<<<<<< f

��������

d l

c

>>>>>>>> i

��������

b

a

the left-depth-first visit coincides with the visit of the nodes in the alphabetical order.
Below, we need to talk about the visit of nodes in a given computation ∇ :: |= M ⇓ b.
For this reason, we say that a configuration ψ immediately follows a configuration φ if
the node visited after φ for left-depth-first visit is the node ψ. For instance, the node i
immediately follows the node h in the above figure.
Now we can state an important result.

LEMMA 3.11. Let ∇ :: |= M ⇓ b and let φ, ψ ∈ ∇ be two distinct configurations (i.e.
φ 6= ψ) such that ψ immediately follows φ in the left-depth-first visit of ∇. Then:

(φ)s 7→ (ψ)s

PROOF. We proceed by induction on the height of ∇. The base case is easy, since ∇
is an application of the (Ax) rule, hence there are no configurations φ, ψ ∈ ∇ such that
φ 6= ψ. Consider now the case where the height of ∇ is greater than 1. If the rule with
conclusion φ is not an axiom, then ψ coincides with one of its premises. Let us consider
all the possible cases. Consider the case where the rule with conclusion φ is (β). Then,
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we are in a situation as:
ψ � C,A@[x′ := N] |= P[x′/x]V1 · · · Vm ⇓ b

φ � C,A |= (λx.P)NV1 · · · Vm ⇓ b
(β)

By definition of the translation (−)s we have (φ)s = 〈C,A′ � (λx.P)NV1 · · · Vm〉 where
A′ = clear(C,A, (λx.P)NV1 · · · Vm) and (ψ)s = 〈C,A′′ � P[x′/x]V1 · · · Vm〉 where A′′ =
clear(C,A@[x′ := N], P[x′/x]V1 · · · Vm). By definition of the clear procedure it is also
easy to verify that A′′ = clear(C,A′@[x′ := N], P[x′/x]V1 · · · Vm). So, by one application
of the rule (β0) we have:

(φ)s = 〈C,A′ � (λx.P)NV1 · · · Vm〉 7→ 〈C,A′′ � P[x′/x]V1 · · · Vm〉 = (ψ)s

Consider the case where the rule with conclusion φ is:
[x := N] ∈ A ψ � C,A |= NV1 · · · Vm ⇓ b

φ � C,A |= xV1 · · · Vm ⇓ b
(h)

Then, by definition of the translation (−)s we have: (φ)s = 〈C,A′ � xV1 · · · Vm〉
where A′ = clear(C,A, xV1 · · · Vm), and similarly (ψ)s = 〈C,A′′ � NV1 · · · Vm〉 where
A′′ = clear(C,A, NV1 · · · Vm). Since [x := N] ∈ A and x ∈ FV(xV1 · · · Vn), by def-
inition of the clear procedure it is easy to verify that [x := N] ∈ A′ and thus
A′′ = clear(C,A′, NV1 · · · Vm). So, by one application of the rule (h0) we can conclude:

(φ)s = 〈C,A′ � xV1 · · · Vm〉 7→ 〈C,A′′ � NV1 · · · Vm〉 = (ψ)s

Consider the case where the rule with conclusion φ is:
ψ � C[( if [◦] then N0 else N1 )V1 · · · Vm],A |= N ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b

φ � C,A |= ( if N then N0 else N1 )V1 · · · Vm ⇓ b
Then, by definition we have (φ)s = 〈C,A′ � ( if N then N0 else N1 )V1 · · · Vm〉
where A′ = clear(C,A, ( if N then N0 else N1 )V1 · · · Vm), and similarly
(ψ)s = 〈C[ if [◦] then N0 else N1 )V1 · · · Vm],A′′ � N〉 where A′′ =
clear(C[ if [◦] then N0 else N1 )V1 · · · Vm],A, N). Obviously, we have A′ = A′′. Thus,
by one application of the rule ( if ) we can conclude

(φ)s = 〈C,A′ � ( if N then N0 else N1 )V1 · · · Vm〉 7→
〈C[ if [◦] then N0 else N1 )V1 · · · Vm],A′′ � N〉 = (ψ)s

The case where the rule with conclusion φ is ( if 1) is similar.
Now consider the case φ is the conclusion of an axiom rule, i.e.:

φ � C,A |= b ⇓ b
(Ax)

If C is empty, then φ is the last configuration in the left-depth-first visit of ∇, hence
there is no configuration ψ ∈ ∇ immediately following φ such that φ 6= ψ. Otherwise,
∇ has a subderivation 3 of the shape:

φ � C,A |= b ⇓ b
(Ax)

... ψ � C1,A1 |= NbV1 · · · Vm ⇓ b1
φ′ � C1,A1 |= ( if N then N0 else N1 )V1 · · · Vm ⇓ b1

( if b)

where by definition of left-depth-first visit ψ is the configuration immediately following
φ. Note that path3(φ) does not cross any if-rule by following its left premise. Hence,
we have C = C1[( if [◦] then N0 else N1 )V1 · · · Vm].
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By (−)s definition we have (φ)s = 〈C,A′ � b〉 where A′ = clear(C,A, b), and sim-
ilarly (ψ)s = 〈C1,A′′, NbV1 · · · Vn〉 where A′′ = clear(C1,A1, NbV1 · · · Vn). Note that
A = A1@[x1 := N1]@ · · ·@[xk := Nk] where the assignments [x1 := N1], . . . , [xk := Nk]
have been introduced in the path from φ′ to φ (by rules (β)). Since for each 1 ≤ i ≤ k
we have xi /∈ FV(C) ∪ FV(A1) ∪ FV(b) it follows that A′ = clear(C,A1, b). Thus, it is
easy to verify that clear(C1,A′, NbV1 · · · Vn) = clear(C1,A1, NbV1 · · · Vn) = A′′. So, by one
application of a rule (rb) we can conclude

(φ)s = 〈C1[( if [◦] then N0 else N1 )V1 · · · Vm],A′ � b〉 7→ 〈C1,A′′, NbV1 · · · Vn〉 = (ψ)s

and the proof is given.

A converse of the above lemma can be easily obtained. Nevertheless, the previous re-
sult is sufficient in order to show that our space measures are sound. To this end we
will use the following.

THEOREM 3.12. Let M ∈ P. Then:

|= M ⇓ b implies M 7→∗ b
PROOF. By using the translation (−)s and by repeatedly applying Lemma 3.11.

Indeed, Lemma 3.11, if repeatedly applied, allows us to define the execution in the KCB
machine as a sequence of configurations corresponding to the left-depth-first visit of
the derivation tree.

Example 3.13. By returning to the computation example in Table IV, it is worth
noticing that to pass from the configuration φ to the configuration ψ all necessary in-
formation are already present in the configuration φ itself. That is, we have a machine
kCB step as:

(φ)s = 〈C0,A′ � 0〉 7→ 〈[◦],A′′ � x1〉 = (ψ)s

where A′ = clear(C0,A3, 0) = A2, and A′′ = clear([◦],A′, x1) = A2. So, more explicitly,
since clear([◦],A2, x1) = A2, by applying a (r0) rule we have

(φ)s = 〈if ◦ then x1 else x1,A2 � 0〉 7→ 〈[◦],A2 � x1〉 = (ψ)s

We can view such a step as a→δ reduction

( if 0 then x1 else x1 )A3 = ( if 0 then x1 else x1 )A2 →δ (x1)A2

In fact, the behaviour shown in the above example is generalized by Lemma 3.11 and
Theorem 3.12. So, in this sense we don’t need neither a mechanism for backtracking
nor the memorization of parts of the computation tree. Inspired by this property, we
can define the notion of space needed to evaluate a term in the machines.

Let us first define the size of a configuration in both the machines.

Definition 3.14.

(1) If 〈C,A � M〉 is a configuration in kCB, then its size is |C|+ |A|+ |M|.
(2) If φ � C,A |= M ⇓ b is a configuration in KCB, then its size (denoted by |φ|) is |C| +
|A|+ |M|.

We can now define the required space in both the machines as the maximal size of a
configuration in the computation.

Definition 3.15.

(1) Let 〈[◦], ε � M〉 7→∗ b be a computation in kCB. Then its required space, denoted by
spaces(M), is the maximal size of a configuration in it.
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(2) Let ∇ :: [◦], ε |= M ⇓ b be a computation in KCB. Then its required space, denoted by
space(M), is the maximal size of a configuration in ∇.

The small step machine is a concrete device to evaluate programs. Moreover, it is
close to a concrete implementation. Indeed, the following is easy to prove.

LEMMA 3.16. Each M ∈ P can be evaluated using a Turing Machine working in
space O(spaces(M)2).

PROOF. Easy.

Note that in the previous lemma the square is a rough bound given to consider the
encoding of the different data structures and the technique used to encode variables
names, e.g. de Bruijn indexes. However, it is sufficient to prove polynomial space
soundness in the next section.

We can now show that the relation on the required space of the two machines is the
expected one.

LEMMA 3.17. Let M ∈ P. Then:

spaces(M) ≤ space(M)

PROOF. By definition of the translation (−)s and Lemma 3.11.

As a result, an upper bound on space(M) is also an upper bound on the amount of
space which is needed to evaluate M using the small step machine kCB. So, from now on
we can restrict our attention to prove the polynomial space measure soundness in the
case of the big step evaluation machine.

4. PSPACE SOUNDNESS
In this section we will show that STAB is correct for polynomial space computations.
The degree of a type derivation, i.e. the maximal nesting of applications of the rule (sp)
in it, is the key notion in order to obtain the correctness. Indeed, we will prove that each
program typable through a derivation with degree d can be executed on the machine
KCB in space polynomial in its size, where the maximum exponent of the polynomial is d.
So, by considering fixed degrees we get PSPACE soundness. Considering a fixed d is not
a limitation. In fact until now, in STAB programs we have not distinguished between
the program code and input data. But it will be shown in Section 5 that data types are
typable through derivations with degree 0. Hence, the degree can be considered as a
real characteristic of the program code.
Moreover, every STAB program can be typed by means of several derivations with
different degrees, nevertheless for each program there is a kind of minimal derivation
for it, with respect to the degree. So, we can stratify programs with respect to the
degree of their derivations, according to the following definition.

Definition 4.1.

(1) Let Π be a type derivation and Π1 be one of its subderivations. The depth of Π1 in
Π, denoted d(Π1,Π) is the number of applications of rule (sp) encountered in the
path from the root of Π to the root of Π1. It is inductively defined as follows:
— if Π coincides with the subderivation Π1 then d(Π1,Π) = 0
— if Π ends by a rule

Σ � Γ ` M : σ
!Γ ` M :!σ

(sp)

and Π1 is a subderivation of Σ, then d(Π1,Π) = d(Π1,Σ) + 1
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— in any other case Π ends by a rule (R) and Π1 is a subderivation of one of the
premise Σ of (R). In such a case, d(Π1,Π) = d(Π1,Σ).

(2) Let Π be a type derivation. The degree of Π, denoted d(Π) is the maximal nesting
of applications of rule (sp) in Π. That is,

d(Π) = max{d(Σ,Π) | Σ subderivation of Π}
(3) For each d ∈ N the set Pd is the set of STAB programs typable through derivation

with degree d.

Pd = {M | Π � ` M : B ∧ d(Π) = d}
Clearly, P corresponds to the union for n ∈ N of the different Pn.

The proof of the PSPACE soundness is quite involved, for this reason we divide this
section into three subsections. In the first, we refine the connections between the re-
quired space of a computation as defined in the previous section and the behaviour of
the KCB machine. In the second one, we define a weight associated to machine configu-
rations. This notion of weight is obtained by extending some measures defined on type
derivations to the machine KCB. Finally, in the third subsection, the soundness with re-
spect to PSPACE will be proved. The key ingredient will be Lemma 4.12, establishing
that the configuration weights decrease in exploring a computation path.

4.1. Refining KC
B Space Measures

In this subsection we establish some relations between the size of the contexts in a
configuration and the behaviour of the machine. These relations will then be useful in
the next subsections to prove the PSPACE soundness.

Definition 4.2. Let ∇ be a computation and φ ∈ ∇ a configuration. Then:

— the symbol #β(φ) denotes the number of applications of the (β) rule in path(φ),
— the symbol #h(φ) denotes the number of applications of the (h) rule in path(φ),
— the symbol #if(φ) denotes the number of applications of (if 0) and (if 1) rules in

path(φ).

The cardinality of the contexts in a configuration φ is a measure of the number of some
rules performed by the machine in the path to reach φ.

LEMMA 4.3. Let ∇ :: |= M ⇓ b be a computation. Then, for each configuration φ �
C,A |= P ⇓ b′ ∈ ∇:

(1) #(A) = #β(φ)
(2) #(C) = #if(φ)

PROOF.

(1) Easy, by induction on the length of path(φ), sincem-contexts can grow only through
applications of the (β) rule.

(2) Easy, by induction on the length of path(φ), since B-contexts can grow only through
applications of ( if 0) and ( if 1) rules.

The following key property ensures that in each computation ∇ of the shape |= M ⇓ b
only subterms of the initial term M are recorded in the m-contexts.

PROPERTY 4.4. Let M ∈ P and ∇ :: |= M ⇓ b. Then for each φ � C,A |= P ⇓ b′ ∈ ∇ if
[x := N] ∈ A then N is an instance (possibly with renaming of variables) of a subterm of
M.
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PROOF. The property is proved by contradiction. Take the configuration ψ with min-
imal path from it to the root of∇, such that in its m-context Aψ there is x := N, where N
is not an instance of a subterm of M. Let p be the length of this path. Since the only rule
that makes the m-context grow is a (β) rule we are in a situation like the following:

ψ � C,A′@[x := N] |= P[x/x′]V1 · · · Vn ⇓ b
C,A′ |= (λx′.P)NV1 · · · Vn ⇓ b

If N is not an instance of a subterm of M it has been obtained by a substitution. Substi-
tutions can be made only through applications of rule (h) replacing the head variable.
Hence, by the shape of (λx′.P)NV1 · · · Vn, the only possible situation is that there exists
an application of rule (h) as:

[y := M′] ∈ A′ C,A′ |= M′V′1 · · · V′m ⇓ b
C,A′ |= yV′1 · · · V′m ⇓ b

with N a subterm of M′. But this implies M′ is not an instance of a subterm of M and
it has been introduced by a rule of a path of length less than p, contradicting the
hypothesis.

The next lemma gives upper bounds on the size of the m-context, of the B-context and
of the subject of a configuration.

LEMMA 4.5. Let M ∈ P and ∇ ::|= M ⇓ b then for each configuration φ � C,A |= P ⇓
b′ ∈ ∇:

(1) |A| ≤ #β(φ)× (|M|+ 1)
(2) |P| ≤ (#h(φ) + 1)× |M|
(3) |C| ≤ #if(φ)× (max{|N| | ψ � C′,A′ |= N ⇓ b′′ ∈ path(φ)})

PROOF.

(1) By inspection of the rules of Table III it is easy to verify that m-contexts can grow
only by applications of the (β) rule. So the conclusion follows by Lemma 4.3.1 and
Property 4.4.

(2) By inspection of the rules of Table III it is easy to verify that the subject can grow
only by substitutions through applications of the (h) rule. So the conclusion follows
by Property 4.4.

(3) By inspection of the rules of Table III it is easy to verify that B-contexts can grow
only by applications of (if 0) and (if 1) rules. So the conclusion follows directly by
Lemma 4.3.2.

4.2. Space Weight and STAB

In order to prove the PSPACE soundness in the next subsection we need to establish
a formal connection between the machine configurations and the information given
by the type system. To some extent this connection has been already established by
Lemma 3.7. We here make it more explicit thanks to the following property.

PROPERTY 4.6. Let P ∈ P such that Π � ` P : B and ∇ :: |= P ⇓ b. Then, for each
configuration φ � C, [x1 := N1, . . . , xn : Nn] |= N ⇓ b1 ∈ ∇:

(1) there is a type derivation Θ � x1 :!m1A1, . . . , xn :!mnAn ` N : B obtained by composing
and duplicating some subderivations of Π (possibly with renaming of variables).

(2) there are type derivations Σ1, . . . ,Σn such that for each 1 ≤ i ≤ n: Σi � Γi ` Ni : Ai
and Σi is a subderivation of Π (possibly with renaming of variables).
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(3) there are type derivations Θi � xi :!miAi, . . . , xn :!mnAn ` N[x1:=N1,...,xi−1:=Ni−1] : B
for 1 ≤ i ≤ n obtained by composing and duplicating some subderivations of Π
(possibly with renaming of variables).

PROOF. All the three points follows easily by Lemma 3.7.2, using also Lemma 2.6.3
in the case of Point (2). Moreover, note that in Point (1) we can assume that all the
variables x1, . . . , xn appear in Θ thanks to the (w) rule. The same is true in Point (3)
for the variables x1, . . . , xn.

The definition of space weight for a configuration is slightly involved. We first start by
adapting to our case some measures for Soft Linear Logic given by Lafont in [Lafont
2004].

Definition 4.7.

— The rank of a rule (m):

Γ, x1 : σ, . . . , xn : σ ` M : µ
Γ, x :!σ ` M[x/x1, · · · , x/xn] : µ

(m)

is the number k ≤ n of variables xi such that xi belongs to the free variables of M. Let
r be the the maximal rank of a rule (m) in Π. Then, the rank of Π is rk(Π) = max(r, 1).

— Let r be a natural number. The slice weight δ(Π, r) of Π with respect to r is defined
inductively as follows:
— If Π consists in an (Ax) or in a (BbI) rule, then δ(Π, r) = 1.
— If Π ends by a rule

Σ � Γ, x : σ ` M : A
Γ ` λx.M : σ ( A

(( I)

then δ(Π, r) = δ(Σ, r) + 1.
— If Π ends by a rule

Σ � Γ ` M : σ
!Γ ` M :!σ

(sp)

then δ(Π, r) = r × δ(Σ, r).
— If Π ends by a rule

Σ � Γ ` M : µ ( A Θ � ∆ ` N : µ
Γ,∆ ` MN : A

(( E)

then δ(Π, r) = δ(Σ, r) + δ(Θ, r) + 1.
— If Π ends by a rule

Σ � Γ ` M : B Θ0 � Γ ` N0 : A Θ1 � Γ ` N1 : A
Γ ` if M then N0 else N1 : A

then δ(Π, r) = max{δ(Σ, r), δ(Θ0, r), δ(Θ1, r)}+ 1
— In any other case δ(Π, r) = δ(Σ, r) where Σ is the unique premise derivation.

The sliced weight of a type derivation is useful to control the space that can be used
during a computation. However, it does not suffice. We also need a measure expressing
the increasing of the slice weight due to a substitution. This is the factor of a variable
in a type derivation.

Definition 4.8. Let Π � Γ, x : σ ` M : τ , then the factor of x in Π with respect to r,
denoted γ(x,Π, r) is inductively defined as follows:
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— If Π consists in an (Ax) rule introducing x as

x : A ` x : A
(Ax)

then γ(x,Π, r) = 1.
— If Π consists in an (Ax) rule not introducing x, or in a (w) rule introducing x, or in a

(BbI) rule, then γ(x,Π, r) = 0.
— If Π ends by a rule

Σ � Γ, x1 : σ1, . . . , xn : σ1 ` N : τ
Γ, x :!σ1 ` N[x/x1, · · · , x/xn] : τ

(m)

then γ(x,Π, r) =
∑

1≤i≤n γ(xi,Σ, r).
— If Π ends by a rule

Σ � Γ, x : σ1 ` N : τ
!Γ, x :!σ1 ` N :!τ

(sp)

then γ(x,Π, r) = r × γ(x,Σ, r).
— If Π ends by a rule

Σ � Γ ` M : µ ( A Θ � ∆ ` N : µ
Γ,∆ ` MN : A

(( E)

then γ(x,Π, r) = γ(x,Σ, r) if x ∈ dom(Γ), γ(x,Π, r) = γ(x,Θ, r) otherwise.
— If Π ends by a rule

Σ1 � Γ, x : σ ` M : B Σ2 � Γ, x : σ ` N0 : A Σ3 � Γ, x : σ ` N1 : A
Γ, x : σ ` if M then N0 else N1 : A

then γ(x,Π, r) = max{γ(x,Σ1, r), γ(x,Σ2, r), γ(x,Σ3, r)}
— In any other case γ(x,Π, r) = γ(x,Σ, r) where Σ is the unique premise derivation.

The previous definition can also be understood as a generalization of the concept of
sliced occurrences of a variable used instead in [Gaboardi et al. 2008a].

Now we have all the ingredients to define the needed measure for configurations,
which is represented by the space weight defined as follows.

Definition 4.9 (Space Weight). Let P ∈ P such that Π � ` P : B and ∇ :: |= P ⇓ b.
Then, the space weight of a configuration φ � C, [x1 := N1, . . . , xn : Nn] |= N ⇓ b1 ∈ ∇,
denoted δΠ(φ, r) is defined as:

δΠ(φ, r) = δ(Σ, r) + γ(x1,Θ1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θn, r)× δ(Σn, r)
where Σ � x1 :!m1A1, . . . , xn :!mnAn ` N : B, Σi � Γi ` Ni : Ai and Θi � xi :!miAi, . . . , xn :
!mnAn ` N[x1:=N1,...,xi−1:=Ni−1] : B for 1 ≤ i ≤ n.

The definition above could seem a bit odd. First, note that it is well defined thanks to
Property 4.6. Besides, one can read it as the sum of the weights given by the different
terms in a configuration where the weight of each term Ni in them-context is multiplied
by the actual factor of the corresponding variable xi. Clearly, we have the following.

LEMMA 4.10. If Π � ` P : B and ∇ :: |= P ⇓ b, then for the initial configuration
φ� |= P ⇓ b we have

δΠ(φ, r) = δ(Π, r)

PROOF. Easy.

Moreover, another important property of the measures we have defined above is the
following.
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LEMMA 4.11. Let Π � Γ, x :!nA ` M : τ , then for each r ≥ rk(Π):

γ(x,Π, r) ≤ rn

PROOF. It follows easily by induction on Π and definition of rank.

4.3. Proof of PSPACE Soundness
We are now ready to show that the space weight δ gives a bound on the number of
rules in a computation path of the machine KCB.

LEMMA 4.12. Let P ∈ P with Π � ` P : B and ∇ :: |= P ⇓ b.

(1) Consider an occurrence in ∇ of the rule:
ψ � C,A@[x′ := N] |= M[x′/x]V1 · · · Vm ⇓ b

φ � C,A |= (λx.M)NV1 · · · Vm ⇓ b
(β)

Then, for every r ≥ rk(Π):

δΠ(φ, r) > δΠ(ψ, r)

(2) Consider an occurrence in ∇ of an if rule as:
ψ1 � C′,A |= M ⇓ b ψ2 � C,A |= NbV1 · · · Vm ⇓ b′

φ � C,A |= ( if M then N0 else N1 )V1 · · · Vm ⇓ b′
( if b)

where C′ ≡ C[( if [◦] then N0 else N1 )V1 · · · Vm]. Then, for every r ≥ rk(Π):
δΠ(φ, r) > δΠ(ψ1, r) and δΠ(φ, r) > δΠ(ψ2, r)

(3) Consider an occurrence in ∇ of an h rule as:
[x := N] ∈ A ψ � C,A |= NV1 · · · Vm ⇓ b′

φ � C,A |= xV1 · · · Vm ⇓ b′
(h)

Then, for every r ≥ rk(Π):

δΠ(φ, r) > δΠ(ψ, r)

PROOF.

(1) We proceed by induction on m. Consider the case m = 0 and suppose Σ � Γ `
(λx.M)N : B and Θ � Γ, x′ : τ ` M[x′/x] : B. Moreover, assume A = [x1 := N1, . . . , xn :=
Nn] with Σi � ∆i ` Ni : Ai for 1 ≤ i ≤ n. Without loss of generality we can assume
that Σ ends as follows:

Π1 � Γ1, x :!kA ` M : B
Γ1 ` λx.M :!kA ( B

(( I)
Π2 � Γ2 ` N : A

!kΓ2 ` N :!kA
(sp)

Γ1, !kΓ2 ` (λx.M)N : B
(( E)

where Γ1#!kΓ2. Since we have δ(Σ, r) = δ(Π1, r) + rkδ(Π2, r) + 2, by definition of
space weight we have:

δΠ(φ, r) = δ(Π1, r) + rk × δ(Π2, r)+

γ(x1,Θ1
1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ1

n, r)× δ(Σn, r) + 2

where Θ1
i � ∆1

i ` ((λx.M)N)[x1:=N1,...,xi−1:=Ni−1] : B for 1 ≤ i ≤ n. Analogously, since
clearly δ(Θ, r) = δ(Π1, r) we have:

δΠ(ψ, r) = δ(Π1, r) + γ(x′,Π1, r)× δ(Π2, r)+

γ(x1,Θ2
1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ2

n, r)× δ(Σn, r)
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where Θ2
i � ∆2

i ` (M[x′/x])[x′:=N,x1:=N1,...,xi−1:=Ni−1] : B, for 1 ≤ i ≤ n.
Since the occurrences of the rules introducing x′ can only be at a depth less than k,
it is easy to verify that for each 1 ≤ i ≤ n:

γ(xi,Θ2
i , r) ≤ γ(xi,Θ1

i , r)
Moreover, since r ≥ rk(Π) by Lemma 4.11 we have γ(x′,Π1, r) ≤ rk, and so we can
conclude

δΠ(ψ, r) ≤ δΠ(φ, r)− 2

The inductive step m = k + 1 follows easily by the induction hypothesis.
(2) Suppose Σ � ∆ ` ( if M then N0 else N1 )V1 · · · Vm : B, Σ1 � ∆ ` M : B and Σ2 � ∆ `

NbV1 · · · Vm : B. Moreover, assume A = [x1 := N1, . . . , xn := Nn] and that Σi � Γi ` Ni :
Ai for 1 ≤ i ≤ n. By definition of space weight we have:

δΠ(φ, r) = δ(Σ, r) + γ(x1,Θ1
1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ1

n, r)× δ(Σn, r)
where Θ1

i � ∆1
i ` (( if M then N0 else N1 )V1 · · · Vm)[x1:=N1,...,xi−1:=Ni−1] : B for 1 ≤ i ≤

n. Analogously, we have:
δΠ(ψ1, r) = δ(Σ1, n) + γ(x1,Θ2

1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ2
n, r)× δ(Σn, r)

where Θ2
i � ∆2

i ` (M)[x1:=N1,...,xi−1:=Ni−1] : B, for 1 ≤ i ≤ n. Finally we also have:
δΠ(ψ2, r) = δ(Σ2, n) + γ(x1,Θ3

1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ3
n, r)× δ(Σn, r)

where Θ3
i � ∆3

i ` (NbV1 · · · Vm)[x1:=N1,...,xi−1:=Ni−1] : B, for 1 ≤ i ≤ n.
By definition of the factor of a variable, it is easy to verify that for 1 ≤ i ≤ n we
have both

γ(xi,Θ1
i , r) ≥ γ(xi,Θ2

i , r) and γ(xi,Θ1
i , r) ≥ γ(xi,Θ3

i , r)
Moreover, by definition of slice weight we have

δ(Σ, r) > δ(Σ1, r) and δ(Σ, r) > δ(Σ2, r)
So, we can conclude both

δΠ(φ, r) > δΠ(ψ1, r) and δΠ(φ, r) > δΠ(ψ2, r)
(3) Suppose Σ � ∆ ` xV1 · · · Vm : B and Θ � ∆ ` NV1 · · · Vm : B. Moreover, assume
A = [x1 := N1, . . . , xn := Nn] with x = xk and N = Nk for some 1 ≤ k ≤ n and that
Σi � Γi ` Ni : Ai. By definition of space weight we have:

δΠ(φ, r) = δ(Σ, r) + γ(x1,Θ1
1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ1

n, r)× δ(Σn, r)
where Θ1

i � ∆1
i ` (xV1 · · · Vm)[x1:=N1,...,xi−1:=Ni−1] : B for 1 ≤ i ≤ n. Analogously, we

have:
δΠ(ψ, r) = δ(Θ, n) + γ(x1,Θ2

1, r)× δ(Σ1, r) + · · ·+ γ(xn,Θ2
n, r)× δ(Σn, r)

where Θ2
i � ∆2

i ` (NV1 · · · Vm)[x1:=N1,...,xi−1:=Ni−1] : B, for 1 ≤ i ≤ n.
Let d be the depth in Σ of the axiom introducing the occurrence of x that is replaced
by N in Θ. Noting that such an axiom cannot be above a (BE) rule in Σ, we have

δ(Θ, r) = δ(Σ, r)− rd + rd × δ(Σk, r)
Now, it is easy to verify that γ(xi,Θ1

i , r) = γ(xi,Θ2
i , r) for all 1 ≤ i ≤ n with

i 6= k thanks to the fact that N can contain only xj for j > k. However, we have
γ(xk,Θ2

k, r) = γ(xi,Θ1
k, r)− rd So, summarizing we have

δΠ(ψ, r) = (δ(Σ, r)− rd + rd × δ(Σk, r)) + γ(x1,Θ1
1, r)× δ(Σ1, r) + · · ·+

(γ(xk,Θ1
k, r)− rd)× δ(Σk, r) + · · ·+ γ(xn,Θ1

n, r)× δ(Σn, r)
and since clearly rd ≥ 1 we can conclude

δΠ(ψ, r) ≤ δΠ(φ, r)− 1
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Thanks to the above lemma we have the following important property.

LEMMA 4.13. Let Π � M : B and ∇ :: |= M ⇓ b. Then for each φ ∈ ∇ such that
φ � C,A |= N ⇓ b′ if r ≥ rk(Π):

#β(φ) + #if(φ) + #h(φ) ≤ δ(Π, r)

PROOF. Easy, by Lemma 4.12 and Lemma 4.10.

As defined in the previous section, the space used by the machine KCB is the maxi-
mum space used by its configurations. The above lemma gives a measure on the num-
ber of rules in the path to reach a configuration. We now only need to relate the space
weight with both the size of the term and the degree of the derivation. This is done
thanks to the following lemma.

LEMMA 4.14. Let Π � Γ ` M : σ.

(1) δ(Π, 1) ≤ |M|.
(2) δ(Π, r) ≤ δ(Π, 1)× rd(Π).
(3) δ(Π, rk(Π)) ≤ |M|d(Π)+1.

PROOF.

(1) By induction on Π. Base cases are trivial. Cases (sp), (m), (w), (∀I) and (∀E) follow
directly by induction hypothesis. The other cases follow by definition of δ(Π, 1).

(2) By induction on Π. Base cases are trivial. Cases (m), (w), (∀I) and (∀E) follow di-
rectly by induction hypothesis. The other cases follow by induction hypothesis and
the definitions of δ(Π, r) and d(Π).

(3) By definition of rank it is easy to verify that rk(Π) ≤ |M|, hence by the previous two
points the conclusion follows.

The next lemma gives a bound on the dimension of all the components of a machine
configuration, namely the term, the m-context and the B-context.

LEMMA 4.15. Let M ∈ Pd and ∇ :: |= M ⇓ b. Then for each φ � C,A |= N ⇓ b′ ∈ ∇:

|A|+ |N|+ |C| ≤ 2× |M|2d+3

PROOF. By Lemma 4.5 we have

|A|+ |N|+ |C| ≤ #β(φ)× (|M|+ 1) + (#h(φ) + 1)× |M|+
#if(φ)× (max{|N| | ψ � C′,A′ |= N ⇓ b′′ ∈ path(φ)})

≤ (#β(φ) + (#h(φ) + 1) + #if(φ))× ((#h(φ) + 1)× |M|)

So, by Lemma 4.13 and Lemma 4.14 we can conclude.

|A|+ |N|+ |C| ≤ δ(Π, rk(Π))× ((δ(Π, rk(Π)) + 1)× |M|)
≤ |M|d+1 × ((|M|d+1 + 1)× |M|) ≤ 2× |M|2d+3

The above lemma gives us the bound on the space required to evaluate a program by
means of the KCB machine.

THEOREM 4.16. Let M ∈ Pd. Then:

space(M) ≤ 2× |M|2d+3

PROOF. By definition of space(M) and Lemma 4.15.
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Finally the PSPACE soundness follows immediately.

THEOREM 4.17 (POLYNOMIAL SPACE SOUNDNESS).
Each M ∈ Pd can be evaluated by a Turing Machine working in space O(|M|4d+6).

PROOF. By Theorem 4.16, Lemma 3.17 and Lemma 3.16.

5. PSPACE COMPLETENESS
A well known result of the seventies states that the class of problem decidable by
a Deterministic Turing Machine (DTM) in space polynomial in the length of the in-
put coincides with the class of problems decidable by an Alternating Turing Machine
(ATM) [Chandra et al. 1981] in time polynomial in the length of the input, i.e.

PSPACE = APTIME

We use this result, and we prove that each polynomial time ATMM can be simulated
by a term typable in STAB. In order to do this, we will use a result already obtained
by two of the authors of this paper [Gaboardi and Ronchi Della Rocca 2007; Gaboardi
2007], namely that STA, the type assignment system for the λ-calculus on which STAB

is based, characterizes all the polynomial time functions. In particular, we use the
same encoding as in [Gaboardi and Ronchi Della Rocca 2007; Gaboardi 2007] for the
representation of the polynomials. Notice that the data types are coded by means of
terms that are typable in a uniform way through derivations of degree 0. This approach
ensures that the degree of the polynomial space bound does not depends on the input
data.

Some syntactic sugar
Let ◦ denotes composition. In particular M ◦ N stands for λz.M(Nz) and M1 ◦ M2 ◦ · · · ◦ Mn
stands for λz.M1(M2(· · · (Mnz))).
Tensor product is definable as σ ⊗ τ

.= ∀α.(σ ( τ ( α) ( α. In particular 〈M, N〉
stands for λx.xMN and let z be x, y in N stands for z(λx.λy.N). Note that, since STAB

is an affine system, tensor product enjoys some properties of the additive conjunction,
as to permit the projections: as usual π1(M) stands for M(λx.λy.x) and π2(M) stands for
M(λx.λy.y). The n-ary tensor product can be easily defined through the binary one and
we use σn to denote σ ⊗ · · · ⊗ σ n-times. In the sequel we sometimes consider tensor
product modulo associativity.

B-programmable functions
We need both to generalize the usual notion of lambda definability, given in [Baren-
dregt 1984], to different kinds of input data, and to specialize it to our typing system.

Definition 5.1. Let f : I1 × · · · × In → O be a total function and let each element
o ∈ O and ij ∈ Ij , for 0 ≤ j ≤ n, be encoded by terms o and ij such that ` o : O and
` ij : Ij .

(i) The function f is B-definable if there is a term f ∈ ΛB such that for each ij ∈ Ij the
term fi1 · · · in is typable as ` fi1 · · · in : O and:

f(i1, . . . , in) = o ⇐⇒ fi1 · · · in =βδ o

(ii) Let O = B. The function f is B-programmable if there is a term f ∈ ΛB such that
for each ij ∈ Ij : fi1 . . . in ∈ P and:

f(i1, . . . , in) = b ⇐⇒ |= fi1 . . . in ⇓ b
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Natural numbers and strings of booleans
Natural numbers, as usual in the λ-calculus, are represented by Church numerals, i.e.
n
.= λs.λz.sn(z). Each Church numeral n is such that ` n : Ni for every i ≥ 1 where the

indexed type Ni is defined as:

Ni
.= ∀α.!i(α ( α) ( α ( α

It is easy to check that n is typable by means of derivations with degree 0. We simply
use N to mean N1.
The standard terms suc

.= λn.λs.λz.s(nsz), add
.= λn.λm.λs.λz.ns(msz) and mul

.=
λn.λm.λs.n(ms), defining successor, addition and multiplication, analogously to what
happens in STA, are typable as: ` suc : Ni ( Ni+1, ` add : Ni ( Nj ( Nmax(i,j)+1

and ` mul : Ni (!iNj ( Ni+j . From this we have for STAB the following completeness
for polynomials.

LEMMA 5.2 ([GABOARDI AND RONCHI DELLA ROCCA 2007]). Let P be a polyno-
mial and deg(P ) its degree. Then there is a term P defining P typable as:

` P :!deg(P )N ( N2deg(P )+1

Strings of booleans are represented by terms of the shape λc.λz.cb0(· · · (cbnz) · · · )
where bi ∈ {0, 1}. Such terms are typable by the indexed type Si

.= ∀α.!i(B (
α ( α) ( α ( α. Again, we write S to mean S1. Moreover, there is a term
len

.= λc.λs.c(λx.λy.sy) typable as ` len : Si ( Ni that given a string of booleans
returns its length. Note that the data types defined above can be typed in STAB by
derivations with degree 0.

Boolean connectives
Thanks to the presence of the (BE) rule it is possible to define the usual boolean con-
nectives. Remembering that in our language 0 denotes “true” while 1 denotes “false”,
we have the following terms:

M and N
.= if M then ( if N then 0 else 1 ) else 1

M or N
.= if M then 0 else ( if N then 0 else 1 )

It is worth noticing that due to the presence of the (BE) rule, the following rules with
an additive management of contexts are derivable in STAB:

Γ ` M : B Γ ` N : B
Γ ` M and N : B

Γ ` M : B Γ ` N : B
Γ ` M or N : B

Moreover, there is a term not defining the expected boolean function.

ATMs Configurations
The encoding of Deterministic Turing Machine configuration given in [Gaboardi and
Ronchi Della Rocca 2007] can be adapted in order to encode Alternating Turing Ma-
chine configurations. In fact, an ATM configuration can be viewed as a DTM configura-
tion with an extra information about the state. There are four kinds of state: accepting
(A), rejecting (R), universal (∧) and existential (∨) . We can encode such information by
tensor pairs of booleans. In particular:

〈1, 0〉 A 〈1, 1〉 R 〈0, 1〉 ∧ 〈0, 0〉 ∨

We say that a configuration is accepting, rejecting, universal or existential depending
on the kind of its state.
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We can encode ATM configurations by terms of the shape:

λc.〈cbl0 ◦ · · · ◦ cbln, cbr0 ◦ · · · ◦ cbrm, 〈Q, k〉〉
where cbl0 ◦ . . . ◦ cbln and cbr0 ◦ . . . ◦ cbrn are respectively the left and right hand side
words on the ATM tape, Q is a tuple of length q encoding the state and k ≡ 〈k1, k2〉 is
the tensor pair encoding the kind of the state. By convention, the left part of the tape is
represented in a reversed order, the alphabet is composed by the two symbols 0 and 1,
the scanned symbol is the first symbol in the right part and final states are divided in
accepting and rejecting. In fact, a standard three symbols alphabet (0,1,blank) for the
machine working tape can be mapped to our two symbols alphabet {0, 1} in a standard
way. For instance we can consider an encoding function ξ that maps each symbol of the
ternary alphabet to a pair of symbols of the binary alphabet, e.g. ξ(0) = (0, 0); ξ(1) =
(0, 1) and ξ(blank) = (1, 1). Moreover, we can assume that the transition function δ
and the polynomial bounds are designed in accordance with this assumption.
Analogously to what happens in the case of Church numerals, the terms representing
configurations presented above can be typed by using indexed types (for every i ≥ 1)
as:

ATMq
i
.= ∀α.!i(B ( α ( α) ( ((α ( α)2 ⊗Bq+2)

Note that the q in ATMq
i is the length of the tuple encoding the state. Such a length

is determined once a particular ATM is fixed. We need some terms defining operations
on ATM. In particular, the term Initm

.= λt.λc.〈λz.z, λz.t(c0)z, 〈Q0, k0〉〉 defines the
initialization function that takes in input a Church numeral n and gives as output a
Turing machine with tape of length n filled by 0’s in the initial state Q0 ≡ 〈q0, . . . , qm〉
of kind k0 ≡ 〈k′0, k′′0〉 and with the head at the beginning of the tape. It is easy to verify
that Initm : Ni ( ATMm

i for every i ≥ 1. Note that the term Initm and its typing are
parametric in the length m of the tuple encoding the state.
An ATM transition relation δ can be considered as the union of the transition func-
tions δ1, . . . , δn being its components. So, we need to show that these components are
definable. We decompose an ATM transition function step in two stages. In the first
stage, the ATM configuration is decomposed to extract the information needed by the
transition relation δ. In the second one, the previously obtained information are com-
bined, depending on the considered transition component δj , in order to build the new
ATM configuration. The term performing the decomposition stage is:

Dec
.= λs.λc.let s(F[c]) be l, r, p in let p be q, k in let l〈I, λx.I,0〉

be tl, cl, bl0 in let r〈I, λx.I,0〉 be tr, cr, br0 in 〈tl, tr, cl, bl0, cr, br0, q, k〉

where F[c] .= λb.λz.let z be g, h, i in 〈hi ◦ g, c, b〉. It is boring but easy to check that
the term Dec can be typed as ` Dec : ATMq

i ( IDq
i , where the indexed type IDq

i is
used to type the intermediate configuration decomposition and it is defined as IDq

i
.=

∀α.!i(B ( α ( α) ( ((α ( α)2 ⊗ ((B ( α ( α) ⊗B)2 ⊗Bq ⊗B2). The behaviour of
Dec is the following:

Dec (λc.〈cbl0 ◦ · · · ◦ cbln, cbr0 ◦ · · · ◦ cbrm, 〈Q, k〉〉)→∗βδ
λc.〈cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, c, bl0, c, br0, Q, k〉

The transition combination stage is performed by the term
Comj

.= λs.λc.let sc be l, r, cl, bl, cr, br, q, k in
let δj〈br, q, k〉 be b′, q′, k′, m in (if m then R else L)b′q′k′〈l, r, cl, bl, cr〉

where R
.= λb′.λq′.λk′.λs.let s be l, r, cl, bl, cr in 〈crb′ ◦ clbl ◦ l, r, 〈q′, k′〉〉, L

.=
λb′.λq′.λk′.λs.let s be l, r, cl, bl, cr in 〈l, clbl ◦ crb′ ◦ r, 〈q′, k′〉〉 and δj is a term defin-
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ing the δj component of the transition relation δ. The term Comj can be typed as
` Comj : IDq

i ( ATMq
i . It combines the symbols obtained after the decomposition

stage depending on the considered component δj and returns the new ATM configura-
tion. If δj(br0, Q, k) = (b′, Q′, k′,Right), then

Comj (λc.〈cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, c, bl0, c, br0, 〈Q, k〉〉)→∗βδ
λc.〈cb′ ◦ cbl0 ◦ cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, 〈Q′, k′〉〉

otherwise, if δj(br0, Q, k) = (b′, Q′, k′,Left) then

Comj (λc.〈cbl1 ◦ · · · ◦ cbln, cbr1 ◦ · · · ◦ cbrm, c, bl0, c, br0, 〈Q, k〉〉)→∗βδ
→∗βδ λc.〈cbl1 ◦ · · · ◦ cbln, cbl0 ◦ cb′ ◦ cbr1 ◦ · · · ◦ cbrm, 〈Q′, k′〉〉

By combining Dec with Comj we obtain the j-th component of transition between ATM
configurations:

` Trj = Comj ◦ Dec : ATMq
i ( ATMq

i

We can give a term In defining the function that, when supplied by a boolean string and
an ATM configuration, writes the input string on the tape of the ATM. This function
should consider the encoding function ξ in order to map the input symbols to their
concrete instances on the working tape. Given a term ξ for the encoding function ξ we
can define the desired term In as:

In
.= λs.λm.s(λb.let ξb be b1, b2 in (Tb2) ◦ Dec ◦ (Tb1) ◦ Dec)m

where T
.= λb.λs.λc.let sc be l, r, cl, bl, cr, br, q, k in 〈crb ◦ clbl ◦ l, r, 〈q, k〉〉. This is

typable as

` In : S ( ATMq
i ( ATMq

i

Finally, the term that takes a configuration and return its kind is:

Kind
.= λx.let x(λb.λy.y) be l, r, s in (let s be q, k in k)

which is typable as ` Kind : ATMq
i ( B2.

Evaluation function
Given an ATMM working in polynomial time we define a recursive evaluation proce-
dure evalM that takes a string s and returns 0 or 1 if the initial configuration (with
the tape filled with s) leads to an accepting or rejecting configuration respectively.
Without loss of generality we consider ATMs with transition relation δ of degree two.
So in particular, at each step we have two transitions terms Tr1

M and Tr2
M defining

the two components δ1 and δ2 of the transition relation ofM. We need to define some
auxiliary functions. In particular, we need a function α acting on states as

α(A, M1, M2) = A
α(R, M1, M2) = R

α(∧, M1, M2) = M1 ∧ M2

α(∨, M1, M2) = M1 ∨ M2

where ∧ and ∨ denotes the universal and existential connectives on states. That is,
M1 ∧ M2 is an accepting state only if both the arguments are accepting, M1 ∨ M2 is an
accepting state if at least one argument is accepting. This can be defined by the term

α(M0, M1, M2)
.= let M0 be a1, a2 in if a1 then ( if a2 then 〈a1,

π2(M1) or π2(M2)〉 else 〈a1, π2(M1) and π2(M2)〉) else 〈a1, a2〉
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It is worth noticing that α has typing:

Γ ` M0 : B2 Γ ` M1 : B2 Γ ` M2 : B2

Γ ` α(M0, M1, M2) : B2

where the contexts management is additive. This is one of the main reason for intro-
ducing the if rule with an additive management of contexts. Moreover, note that we
do not need any modality here, in particular this means that the α function can be
defined in the linear fragment of the STAB system.
The evaluation function evalM can now be defined as an iteration of an higher order
StepM function over a Base case. Let Tr1M and Tr2M be two closed terms defining the
two components of the transition relation. Let us define

Base
.= λc.(Kind c)

StepM
.= λh.λc.α(Kind c, h(Tr1M c), h(Tr2M c))

It is easy to verify that such terms are typable as:

` Base : ATMq
i ( B2

` StepM : (ATMq
i ( B2) ( ATMq

i ( B2

Let P be a polynomial definable by a term P typable as ` P :!deg(P )N ( N2deg(P )+1.
Then, the evaluation function of an ATMM working in polynomial time P is definable
by the term:

evalM
.= λs.let (P (len s) StepM Base)(In s (Initq

M
(P (len s)))) be l, r in r

which is typable in STAB as ` evalM :!tS ( B where t = max(deg(P ), 1) + 1.
Here, the evaluation is performed by a higher order iteration, which represents a recur-
rence with parameter substitutions. Note that by considering an ATMM that decides
a language L, we have that the final configuration is either accepting or rejecting.

LEMMA 5.3. A decision problem D : {0, 1}∗ → {0, 1} decidable by an ATM M in
polynomial time is B-programmable in STAB.

PROOF. D(s) = b ⇐⇒ evalMs ⇓ b

From the well known result of [Chandra et al. 1981] we can conclude.

THEOREM 5.4 (POLYNOMIAL SPACE COMPLETENESS). Every decision problem
D ∈ PSPACE is B-programmable in STAB.

6. CONCLUSION AND RELATED TOPICS
In this paper we have designed STAB, a language correct and complete with respect to
the polynomial space computations. Namely, the calculus is an extension of λ-calculus,
and we supplied a type assignment system for it, such that well typed programs (closed
terms of constant type) can be evaluated in polynomial space and moreover all poly-
nomial space decision functions can be computed by well typed programs. In order to
perform the complexity bounded evaluation a suitable evaluation machine KCB has been
defined, evaluating programs according to the left-most outer-most evaluation strat-
egy and using two memory devices, one in order to make the evaluation space-efficient
and the other in order to avoid backtracking.

We conclude by suggesting some further directions that could bring to new interest-
ing results.
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Alternation Revisited
The results presented in this paper have been obtained by exploiting the equivalence
[Chandra et al. 1981]:

PSPACE = APTIME

Indeed, evaluations in the machine KCB can be regarded as computations in Alternating
Turing Machines. Moreover, the simulation of big step evaluations by means of small
step reductions is a reminiscence of the simulation of ATM by means of Deterministic
Turing Machines. Conversely, the PSPACE completeness is shown by encoding poly-
nomial time ATM by means of well typed terms. In our completeness proof, as usual
in light logics, the modal part of the STAB system is only involved in the polynomial
iteration (the quantitative part), while the ATM behaviour (i.e. the α function) can be
defined in the modal free fragment of the system (the qualitative part). This suggests
that our approach could be further refined in order to revisit some classical complexity
results relating time and space [Stockmeyer 1976].

FPSPACE characterization.
FPSPACE is the class of function computable in polynomial space. The completeness
for FPSPACE can be obtained by replacing booleans by words over booleans. In partic-
ular we can add to STA the type W and the following rules:

` ε : W
Γ ` M : W

Γ ` 0(M) : W
Γ ` M : W

Γ ` 1(M) : W
Γ ` M : W

Γ ` p(M) : W

and the conditional
Γ ` M : W Γ ` Nε : W Γ ` N0 : W Γ ` N1 : W

Γ ` D(M, Nε, N0, N1) : W

The obtained system STAW equipped with the obvious reduction relation could be
shown to be FPSPACE sound following what we have done for STAB. Moreover, anal-
ogously to [Leivant and Marion 1993], completeness for FPSPACE can be proved by
considering two distinct data types S (Church representations of Strings) and W (Flat
words over Booleans) as input and output data type respectively.

STAB and Soft Linear Logic.
STA has been introduced as a type assignment counterpart of Soft Linear Logic [La-
font 2004]. STAB is an extension of STA by booleans constants. One would wonder to
exploit the proofs-as-programs correspondence in the design of a purely logical charac-
terization of the class PSPACE.
We can add to SLL (or define by means of second order quantifier) the additive dis-
junction ⊕ and the rules to deal with it, which in a natural deduction style are:

Γ ` A
Γ ` A⊕B (⊕lI) Γ ` B

Γ ` A⊕B (⊕rI)
Γ ` A⊕B ∆, A ` C ∆, B ` C

Γ,∆ ` C (⊕E)

We can so define B = 1⊕1, where 1 is the multiplicative unit, and specialize the above
rules to booleans:

Γ ` 1
Γ ` 1⊕ 1

(0) Γ ` 1
Γ ` 1⊕ 1

(1)
Γ ` 1⊕ 1 ∆,1 ` C ∆,1 ` C

Γ,∆ ` C (E)

It is worth noticing that such rules do not change the complexity of SLL. In fact it is
essential in order to obtain a logical system behaving as STAB to modify the above
elimination rule allowing free contraction between contexts Γ and ∆. Hence we can
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modify the (E) rule as follows:

Γ ` 1⊕ 1 Γ,1 ` C Γ,1 ` C
Γ ` C (E1)

The logical system obtained by adding the above modified rule to SLL behaves like
STAB, however, to prove the polynomial space soundness one needs to mimic in the
normalization process the abstract machine mechanism of Section 3. Since natural
deduction does not permit a fine control of the normalization, one would understand
instead how to do this in sequent calculus or proof nets, the two proof formalisms most
natural for linear logic. Unfortunately, the logical sequent calculus system obtained by
forgetting terms is unsatisfactory. Indeed, the rule (BE) or (E1) has no direct corre-
spondent. Moreover, it looks not so easy to understand how to transfer the complexity
bound from the term evaluation to the cut-elimination in a logic. All these difficulties
suggest that exploring this direction could be a true test for the light logics principles.
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